Denotational Semantics

10 lectures for Part II CST 2013/14

Marcelo Fiore

Course web page:

http://www.cl.cam.ac.uk/teaching/1314/DenotSem/

Topic 1

Introduction

What is this course about?

• General area.

Formal methods: Mathematical techniques for the specification, development, and verification of software and hardware systems.

Specific area.

Formal semantics: Mathematical theories for ascribing meanings to computer languages.

Why do we care?

- Rigour.
 - ... specification of programming languages
 - ... justification of program transformations
- Insight.
 - ... generalisations of notions computability
 - ... higher-order functions
 - ... data structures

- Feedback into language design.
 - ... continuations
 - ... monads
- Reasoning principles.
 - ... Scott induction
 - ... Logical relations
 - ... Co-induction

Styles of formal semantics

Operational.

Meanings for program phrases defined in terms of the *steps* of computation they can take during program execution.

Axiomatic.

Meanings for program phrases defined indirectly via the *axioms and rules* of some logic of program properties.

Denotational.

Concerned with giving *mathematical models* of programming languages. Meanings for program phrases defined abstractly as elements of some suitable mathematical structure.

Basic idea of denotational semantics

- Abstract models (i.e. implementation/machine independent).
- Compositionality.
- Relationship to computation (e.g. operational semantics).
 - \rightsquigarrow Lectures 7 and 8.

Characteristic features of a denotational semantics

- Each phrase (= part of a program), P, is given a denotation,
 [P] a mathematical object representing the contribution of P to the meaning of any complete program in which it occurs.
- The denotation of a phrase is determined just by the denotations of its subphrases (one says that the semantics is compositional).

Basic example of denotational semantics (I)

Arithmetic expressions

$$A \in \mathbf{Aexp} ::= \underline{n} \mid L \mid A+A \mid \dots$$
 where n ranges over *integers* and L over a specified set of *locations* \mathbb{L}

Boolean expressions

$$B \in \mathbf{Bexp} ::= \mathbf{true} \mid \mathbf{false} \mid A = A \mid \dots$$

Commands

$$C \in \mathbf{Comm}$$
 ::= $\mathbf{skip} \mid L := A \mid C; C$
| $\mathbf{if} B \mathbf{then} C \mathbf{else} C$

Basic example of denotational semantics (II)

Semantic functions \sim The integer value of the arthmeter $A: Aexp \rightarrow (State \rightarrow \mathbb{Z})$ to expression $A: Bexp \rightarrow (State \rightarrow \mathbb{B})$ in state $A: Bexp \rightarrow (State \rightarrow \mathbb{B})$ $\mathcal{C}: \mathbf{Comm} \to (State \rightharpoonup State)$ where $\mathbb{Z} = \{\ldots, -1, 0, 1, \ldots\}$ $\mathbb{B} = \{ true, false \}$ ETCI is a state tronsformer

Def Gener sets A and B we let

(A > B) be The set of all functions from

A to B.

Erample State = (1 > 2)

Idea here is that for a state of Estate and a location $L \in \mathbb{R}$,

s(L) is the integer stored in L at states.

Def For sets A and B, The set $(A \rightarrow B)$ is that of partial functions from A to B.

Example (State \rightarrow State)

Semon to function of. sem on tizs ALIJS = n EZ A[L] s = s(L) EZ OF [A1+A2] = A[A1] addition

Basic example of denotational semantics (III)

Semantic function A

$$\mathcal{A}[\![\underline{n}]\!] = \lambda s \in State. n$$

$$\mathcal{A}[\![L]\!] = \lambda s \in State. s(L)$$

$$\mathcal{A}[\![A_1 + A_2]\!] = \lambda s \in State. \mathcal{A}[\![A_1]\!](s) + \mathcal{A}[\![A_2]\!](s)$$

Basic example of denotational semantics (IV)

Semantic function \mathcal{B}

$$\mathcal{B}[\![\mathbf{true}]\!] = \lambda s \in State.\ true$$
 $\mathcal{B}[\![\mathbf{false}]\!] = \lambda s \in State.\ false$
 $\mathcal{B}[\![A_1 = A_2]\!] = \lambda s \in State.\ eq(\mathcal{A}[\![A_1]\!](s), \mathcal{A}[\![A_2]\!](s))$
where $eq(a, a') = \begin{cases} true & \text{if } a = a' \\ false & \text{if } a \neq a' \end{cases}$

Basic example of denotational semantics (V)

Semantic function \mathcal{C}

$$[skip] = \lambda s \in State.s$$
The identity function

NB: From now on the names of semantic functions are omitted!

A simple example of compositionality

Given partial functions $\llbracket C \rrbracket$, $\llbracket C' \rrbracket$: $State \rightarrow State$ and a function $\llbracket B \rrbracket$: $State \rightarrow \{true, false\}$, we can define

$$[if B then C else C'] = \lambda s \in State. if ([B](s), [C](s), [C'](s))$$

where

$$if(b, x, x') = \begin{cases} x & \text{if } b = true \\ x' & \text{if } b = false \end{cases}$$

[[L=A]](s) E State

The state os s, but modified or That

L is mapped to [A](s).

Basic example of denotational semantics (VI)

Semantic function \mathcal{C}

$$\llbracket L := A \rrbracket = \lambda s \in State. \lambda \ell \in \mathbb{L}. if (\ell = L, \llbracket A \rrbracket(s), s(\ell))$$

Recall (fog) = 2 z. f(gz)

Denotational semantics of sequential composition

Denotation of sequential composition C; C' of two commands

$$\llbracket C; C' \rrbracket = \llbracket C' \rrbracket \circ \llbracket C \rrbracket = \lambda s \in State. \llbracket C' \rrbracket \big(\llbracket C \rrbracket (s) \big)$$

given by composition of the partial functions from states to states

 $[\![C]\!], [\![C']\!]: State \longrightarrow State$ which are the denotations of the

commands. Seguencing -> Composition

Cf. operational semantics of sequential composition:

$$rac{C,s \Downarrow s' \quad C',s' \Downarrow s''}{C;C',s \Downarrow s''}$$

P: C, s & s 1 TF (S) = s'

[white 3 do C]

= m [B] ~ [C] ~