
Databases : Lecture 11 :
Beyond ACID/Relational databases

Timothy G. Griffin
Lent Term 2014

•  Rise of Web and cluster-based computing
•  “NoSQL” Movement
•  Relationships vs. Aggregates
•  Key-value store
•  XML or JSON as a data exchange language
•  Not all applications require ACID
•  CAP = Consistency, Availability, and Partition tolerance
•  The CAP theorem (pick any two?)
•  Eventual consistency

Apologies to Martin Fowler (“NoSQL Distilled”)

Application-specific databases
have always been with us . . .

Daytona (AT&T): “Daytona is a data management
system, not a database”. Built on top of the unix file
system, this toolkit is for building application-specific
and highly scalable data stores. Is used at AT&T
for analysis of 100s of terabytes of call records.
http://www2.research.att.com/~daytona/

DataBlitz (Bell Labs, 1995) : Main-memory
database system designed for embedded systems
such as telecommunication switches. Optimized for
simple key-driven queries.

But these systems
are proprietary.

Open source is a
hallmark of NoSQL

Two that I am familiar with:

What’s new? Internet scale, cluster computing, open source . . .

Something big is happening in
the land of databases

The Internet
+ cluster computing
+ open source systems

many more points in the
database design space
are being explored and
deployed

Broader context helps clarify the strengths and weaknesses
of the standard relational/ACID approach.

http://nosql-database.org/

Eric Brewer’s PODC Keynote
(July 2000)

ACID vs. BASE (Basically Available, Soft-state, Eventually consistent)

•  Strong consistency
•  Isolation
•  Focus on “commit”
•  Nested transactions
•  Availability?
•  Conservative (pessimistic)
•  Difficult evolution (e.g. schema)

 Weak consistency
 Availability first
Best effort
Approximate answers OK
Aggressive (optimistic)
Simpler!
Faster
Easier evolution

A wide spectrum with many design points

“Real internet systems are a careful mixture of ACID and BASE subsystems”

ACID BASE

The emerging world of databases

•  Relational
•  Postgres
•  MySQL

•  Graph databases
•  Neo4j
•  VertexDB

•  Key-Value stores
•  Riak
•  Redis
•  BerkeleyDB

•  Column-oriented databases
•  BigTable,
•  Cassandra
•  Hbase (build on Hadoop)

•  Document-oriented
•  MongoDB
•  CouchDB

Often overlooked in the
business-oriented hoopla:
This is making BigAnalytics
affordable for many scientific
efforts (bioinformatics, astronomy,
physics, economics,…)

This classification is not
Complete and is a bit
fuzzy-wuzzy. For example,
drawing a clear distinction between
Key-value stores and
Document-oriented databases
is not always easy. And this is
Rapidly evolving with a lot of
cross-fertilization.

The emerging world of databases

•  Relational
•  Postgres
•  MySQL

•  Graph databases
•  Neo4j
•  VertexDB

•  Key-Value stores
•  Riak
•  Redis
•  BerkeleyDB

•  Column-oriented databases
•  BigTable,
•  Cassandra
•  Hbase (build on Hadoop)

•  Document-oriented
•  MongoDB
•  CouchDB

Aggregate-oriented,
Eventual consistency

Attribute-oriented,
ACID

Aggregates
as a natural
unit of
update

Martin Fowler : “Welcome to the
world of polyglot persistence”

More and more we will see data-oriented systems do and will
combine traditional Relational DBMS technology with NoSQL
technology.
•  Must understand what problems each technology solves
•  Use right tool for the job

This lecture : I will put emphasis on applications of the form

Traditional RDBMs
(normalized/ACID)

Extract
Aggregate-oriented
data stores. NoSQL
technology

Key-Value Stores

•  Mapping Key to blob-of-byte that application must “parse”
•  Example : Riak (modeled on Dynamo, eventual consistency), Cassandra
•  Typically no “query-language” for values

•  Mapping Key to “semi-structured” value
•  Example: Redis

Huge advantage: can design data representation so that all
data needed for a given update is present on a single machine.
Data can easily be partitioned (say by key ranges) over
many machines. Map-reduce initiated from set of keys . . .

Disadvantage: Data retrieved by key only. And it is hard to enforce relationships
between different values. If this is important for your applications, then perhaps
Look elsewhere …

Tables require joins

S(A, B, C) R(C, D, E) T(E, F) (FK = Foreign Key)
FK FK

A B C D E F
A1 B1 C1 D1 E1 F1
A1 B1 C1 D2 E2 F2
A1 B1 C1 D3 E3 F3
A2 B2 C2 D4 E4 F4
A2 B2 C2 D5 E5 F5
.
. . .

•  How could
tables be
partitioned over
multiple
servers?

•  Enforcing
referential
integrity is
VERY difficult in
a distributed
database

The Key-value approach

S(A, B, C) R(C, D, E) T(E, F) (FK = Foreign Key)
FK FK

A B C D E F
A1 B1 C1 D1 E1 F1
A1 B1 C1 D2 E2 F2
A1 B1 C1 D3 E3 F3
A2 B2 C2 D4 E4 F4
A2 B2 C2 D5 E5 F5
.
. . .

{A : A1,
 B : B1,
 stuff : [
 {D : D1, F: F1},
 {D : D2, F: F2},
 {D : D3, F: F3}
]
}

The collection of JSON objects (keyed on A) is horizontally partitioned
(sharded) across many servers. When accessed, all of the application’s
data is in one object.

Use this instead

Example from Lecture 1

13

Document-oriented systems can be to
manage the RDBMS “Publishing Problem”

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4

Exports Excel

Exports HTML

Exports printed
documents

Exports Word Documents

Exports .txt files
in ad hoc format

Exports .txt files
in ad hoc format

Need to share data without exposing internal details of your database.

Lack of standard
exchange formats
requires the
implementation of
many ad hoc
translators

14

XML (or JSON) as a data
exchange format

DB 2

DB 2

DB 1

DB 3

DB 5

DB 4
Exports XML

Exports XML

Exports XML

Exports XML

Exports XML

Exports XML XML/JSON conforming to
agreed upon
semantics

Using
document-
oriented
NoSQL
software for
data exchange
is an attractive
option.

15

Examples of domain specific
XML DTDs (similar

developments with JSON)
•  There are now lots of DTDs that have been

agreed by groups, including
–  WML: Wireless markup language (WAP)
–  OFX: Open financial exchange
–  CML: Chemical markup language
–  AML: Astronomical markup language
–  MathML: Mathematics markup language
–  SMIL: Synchronised Multimedia Integration Language
–  ThML: Theological markup language

Fallacies of Distributed
Computing (Peter Deutsch)

https://blogs.oracle.com/jag/resource/Fallacies.html

Essentially everyone, when they first build a distributed application,
makes the following eight assumptions. All prove to be false in the
long run and all cause big trouble and painful learning experiences.
1. The network is reliable
2. Latency is zero
3. Bandwidth is infinite
4. The network is secure
5. Topology doesn't change
6. There is one administrator
7. Transport cost is zero
8. The network is homogeneous

Brewer’s CAP conjecture (2000)

•  Consistency
•  Availability
•  Partition tolerance

Conjecture :
 You can have at most two.

Nancy Lynch and Seth Gilbert,
“Brewer's conjecture and the feasibility
of consistent, available, partition-tolerant web services”,
ACM SIGACT News, Volume 33 Issue 2 (2002), pg. 51-59.

A formal proof:

But what do the CAP terms really mean?
There seems to be no consensus . . .

•  Consistency
•  The system can guarantee that once you store a state in the

system, it will report the same state in every subsequent operation
until the state is explicitly changed by something outside the
system.

•  Is equivalent to having a single up-to-date copy of the data
•  Availability

•  All clients can find some replica of the data, even in the presence of
failures

•  A guarantee that every request receives a response about whether
it was successful or failed

•  Partition tolerance
•  The system properties hold even when the system is partitioned
•  The system continues to operate despite arbitrary message loss or

failure of part of the system

Random samples of various definitions found in the literature …

Pick any two? A better
formulation.

Suppose you
have a highly
distributed system

then you must engineer
trade-offs between

 Consistency

 Availability

