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Intro - Who is Grant?

Grant Allen – @fuzzytwtr – fuzz@google.com

T h l P M & D t A hit t t G l• Technology Program Manager & Data Architect at Google

• Works with all manner of databases
(O SQ SQ S f S SQ• (Oracle, MySQL, Postgres, SQL Server, DB2, Informix, Sybase, SQLite,
BigTable and successors, HBase, MongoDB, Cassandra, etc. etc.)

• Talks regularly at conferences, universities, etc.Talks regularly at conferences, universities, etc.

• Writes about all sorts of things
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The Genesis of NoSQL
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The Genesis of NoSQL and “Big Data”

• The relational model is very successful

• Strong theoretical foundations – relational calculus and algebra
(Codd, Date, etc.)

• The relational model is infinitely scalable in theory 
(models are nice like that).

Not concerned with:
• Storage capacity

• Processing capacity

• Communication capacity

D i bl liti ACID t

5

• Desirable qualities, ACID, etc.



The Genesis of NoSQL and “Big Data”

• A model and its implementation are not the same, e.g.
• Computing resources are finite in various ways, and imperfectp g y , p

• Relational calculus/algebra does not cover all interesting cases
• SQL != Relational calculus/algebra, and is also not “complete”

• Should one pay the price for qualities/attributes that are unimportant or 
unused?

• What if I don’t care about consistency, isolation, etc.?

• Why bother with concurrency control for logically isolated work?

• Putting it another way, we’re looking at the difference between 
computer science vs computer (software) engineering
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computer science vs computer (software) engineering



The Genesis of NoSQL and “Big Data”

• Some examples

• Current approximate size of the internet (2013): 60* trillion pagesCurrent approximate size of the internet (2013): 60  trillion pages

• Internet use (2011): 3+ billion people

• Typical query: funniest cat video

• The relational approach can answer the query, in theory

• But consider

• Annual component failure rate in typical hardware (2007,2012): >0.5%

Time to read 60 trillion 1MB pages (60 E ab tes!!) ??• Time to read 60 trillion 1MB pages (60 Exabytes!!): ??

• While implementing concurrency: millions of locks, more time?
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• Can you answer the query before your hardware dies?



The Genesis of NoSQL and “Big Data”

• 60EB of data
• 20 million 3TB disks

• “Failure Trends in Large Disk Drive Populations” (2007)

• 18000 disks will fail every day

• 18000TB (18PB) of data will be lost (not just to your query)

• Not even beginning to worry about:
• Can I build a machine with 20 million disks?

• And power it?

Etc• Etc.
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The Genesis of NoSQL and “Big Data”

• Solutions
• Distribute the data to more realistic hardware

• Compensate for imperfect hardware with software fault tolerance

• Use software to bridge the distributed nature of the data

• Sacrifice/remove unneeded (or little needed) qualities
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The Genesis of NoSQL and “Big Data”

• Solutions
• Distribute the data to more realistic hardware

• Compensate for imperfect hardware with software fault tolerance

• Use software to bridge the distributed nature of the data

• Sacrifice/remove unneeded (or little needed) qualities

• Interesting consequences
• Fault tolerant software can work with all kinds of hardware

=> commodity hardware

• The software model can encompass more than just the “database”p j
=> bespoke filesystems, abandon generic platforms

• Distributed data challenges monolithic software engineering
=> massively parallel software matched to massively distributed data
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Architecture of NoSQL Databases
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Initial premise of NoSQL

• Solve the issues of very large data on imperfect machines

• Size of the data exceeds the technical limitations of relational databases 
• Not just one’s appetite for licencing costsNot just one s appetite for licencing costs

• Desirable properties of traditional databases hinder scaling
Wh t f l thi hi ith t d ff ?• What useful things can we achieve with tradeoffs?

• For some subset of applications, perfection is not necessarily a goal
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NoSQL-Style implementations

• Starting with Google, and encompassing others

• Google BigTable, GFS, (MapReduce) => Spanner, successors

• Hadoop HBase, HDFS

• Cassandra

• MongoDB

• CouchDB

• Others
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High-level conceptual design of NoSQL Databases

• High-level “database” layer
• Sparse row-column store (BigTable/Spanner, HBase)

• Key-value store (Cassandra)

• Document store (MongoDB)

• Others such as graph stores 

• Good for various “read” workloads, simple discrete “write” workloads.

• Poor for complex/large write workloads

• Low-level filesystem/storage layer
• Bespoke filesystem (GFS, HDFS, S3)

• POSIX style filesystem (EXTn XFS JFS NTFS etc )• POSIX-style filesystem (EXTn, XFS, JFS, NTFS etc.)

• “Bring/build your own query tools” – SQL-like tools absent or nascent
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• MapReduce, Dremmel



Technical Implementation Details
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The Anatomy of a NoSQL Database

• Using Google’s BigTable, GFS and MapReduce as an example

• Concepts applicable to almost all NoSQL databases
• 1:1 equivalence for Hadoop, etc.

• Distributed storage

• Replication

• Faults always happen
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BigTable

• Higher level API than a raw file system
o Somewhat like a database, but not as full-featured

• Useful for structured/semi-structured data
o URLs:o URLs:

• Contents, crawl metadata, links, anchors, pagerank, …

o Per-user data:
• User preference settings recent queries/search resultsUser preference settings, recent queries/search results, …

o Geographic data:
• Physical entities, roads, satellite imagery, annotations, …

• Scales to large amounts of data
o trillions of URLs, many versions/page (~20K/version)

billi f illi f /
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o billions of users, millions of q/sec
o PetaBytes+ of satellite image data



BigTable

• Distributed multi-dimensional sparse map

(row, column, timestamp) >>> cell contents(row, column, timestamp) cell contents

“ t t ” C l“contents:”

Rows

Columns

“www.cnn.com”
t3

t11
t17“<html>…”

Timestamps
17
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BigTable - Tablets

• Large tables broken into tablets at row boundaries
o Tablet holds contiguous range of rows

• Clients can often choose row keys to achieve locality
o Aim for ~100MB to 200MB of data per tablet

• Serving machine responsible for ~100 tablets
o Fast recovery:

• 100 machines each pick up 1 tablet from failed machine
o Fine-grained load balancing:

• Migrate tablets away from overloaded machine• Migrate tablets away from overloaded machine
• Master makes load-balancing decisions
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BigTable – Tablets and Splitting

“contents:”“language:”

“ ”

“cnn.com” “<html>…
”

EN 

“aaa.com”

…
Tablets

“cnn.com/sports.html”

…

…
“website.com”

…
“yahoo.com/kids.html”

“yahoo.com/kids.html\0”
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“zuppa.com/menu.html”
…



GFS – Google File System

• Why develop a bespoke file system?

• Working with large data has unique FS requirements
o Huge read/write bandwidth

Reliability over thousands of nodeso Reliability over thousands of nodes
o Mostly operating on large data blocks
o Need efficient distributed operationsp
o Scale - Unprecedented!!! 
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GFS – Architecture

M t data flowMasters Replicas data flow

control flow

Clients

C C C C CC0 C1

C2C5

C1

C3C5

C0

C2

C5
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GFS – Failure Scenarios

M t data flowMasters Replicas data flow

control flow

Clients

C C C C CC0 C1

C2C5

C1

C3C5

C0

C2

C5
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Chunkserver 1 Chunkserver NChunkserver 2



GFS – Software fault tolerance

• Typical forms of frequent failure (as already mentioned)
o Disks, servers, networks, software bugsg

• Basic strategies
Checksum everythingo Checksum everything 

o Replication to allow recovery

• Chunks are replicated on different chunkservers
o Default is 3x, but configurable
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MapReduce

There is no standard query language!

A i l i d l th t li t l lA simple programming model that applies to many large-scale 
computing problems

Evolving MapReduce libraries incorporate:Evolving MapReduce libraries incorporate:
• automatic parallelisation

• load balancing

• network and disk transfer optimization

• handling of machine and task failures
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Typical Problems Solved by MapReduce

• Read a lot of data

• Map: extract something you care about from each recordMap: extract something you care about from each record

• Shuffle and Sort

R d t i filt t f• Reduce: aggregate, summarize, filter, or transform

• Write the results

Outline stays the same,
map and reduce change to fit the problemmap and reduce change to fit the problem
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MapReduce More Formally

Programmer specifies two primary methods:
• map(k, v) → <k', v'>*
• reduce(k', <v'>*) → <k', v'>*

All v' with same k' are reduced together, in order.All v  with same k  are reduced together, in order.

Usually also specify:
• partition(k’, total partitions) -> partition for k’partition(k , total partitions)  partition for k
.often a simple hash of the key
.allows reduce operations for different k’ to be parallelised
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Typical Problems Solved by MapReduce

Feat re List Intersection List

Input Output

Feature List

1: <type=Road>, <intersections=(3)>, <geom>, …

2: <type=Road>, <intersections=(3)>, <geom>, … 

3: <type=Intersection>, <roads=(1,2,5)>, …

Intersection List

3: <type=Intersection>, <roads=(

1: <type=Road>, <geom>, <name>, …

2: <type=Road>, <geom>, <name>, …

4: <type=Road>, <intersections=(6)>, <geom>, 

5: <type=Road>, <intersections=(3,6)>, <geom>, …

6: <type=Intersection>, <roads=(5,6,7)>, …

7 type Road intersections (6) geom

5: <type=Road>, <geom>, <name>, …)>, … 

6: <type=Intersection>, <roads=(

4: <type=Road>, <geom>, <name>, … >

5: <type=Road>, <geom>, <name>, … >7: <type=Road>, <intersections=(6)>, <geom>, …

8: <type=Border>, <name>, <geom>, …

.

.

5: <type Road>, <geom>, <name>, … >

7: <type=Road>, <geom>, <name>, …)>, …

.

.1
7

. .

2

5
6

3
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Typical Problems Solved by MapReduce

Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items
y p p y

1: Road

2: Road

(3, 1: Road)

(3, 2: Road)

(3, 1: Road)

(3, 2: Road)

3 3: Intersection
1: Road,
2 d

3: Intersection

4: Road

5: Road

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

6

2: Road,
5: Road

6: Intersection
6: Intersection

7: Road

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

,

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

4: Road,
5: Road,
7: Road

1
7

63
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Typical Problems Solved by MapReduce

Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items
y p p y

1: Road

2: Road

(3, 1: Road)

(3, 2: Road)

(3, 1: Road)

(3, 2: Road)

3 3: Intersection
1: Road,
2 d

3: Intersection

4: Road

5: Road

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

6

2: Road,
5: Road

6: Intersection
6: Intersection

7: Road

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

,

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

4: Road,
5: Road,
7: Road

1
7

63
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Typical Problems Solved by MapReduce

Input Map Shuffle Reduce OutputInput Map Shuffle Reduce Output

Emit each to all 
overlapping latitude-
longitude rectangles

Sort by key
(key= Rect. Id)

Render tile using
data for all enclosed

features
Rendered tiles

Geographic
feature list

I-5

Lake Washington

WA-520

(N, I-5)

(N Lake Wash )

(S, I-5)

(N, I-5)

(N, Lake Wash.)

(N WA-520)

N

WA 520

I-90

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

(S, Lake Wash.)

(N, WA 520)

…

…

(S, I-90)

S (S, I-5)

(S, Lake Wash.)

…

…



NoSQL Implications
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Software Fault Tolerance

• At the “database” tier (BigTable, HBase), high availability/fault 
tolerance is almost always the result of redundant replicas, and 

ti ll id t t t koptionally idempotent tasks

• Replicas are not necessarily all at the same timestamp/transaction
• What view of the data is considered “consistent”? => Eventual consistency

• See also the previously mentioned timestamping of a given cell in BigTable, 
Hbase, etc.

• The loss of any one node or replica is considered normal
• Rebuild or redistribute responsibility

• The failure of any one Map/Reduce task is considered normal
• Restart / resume

33

Restart / resume



Eventual Consistency

ACIDACID
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Eventual Consistency

ACIDACID
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Eventual Consistency

ACIDACID
• Implications of Eventual Consistency

• Conflict resolution

• Data Ambiguity / PrecisionData Ambiguity / Precision

• Quorum-based certainty (e.g. CassandraDB)

• Skews suitability to “information retrieval” workloads where loss of 
precision is tolerable =>precision is tolerable =>

Good for finding most funny cat videos,
Bad for exactly managing bank accounts.
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The Future of NoSQL
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The Future of NoSQL

(You’re Going to Need a Bigger Boat)

38



The Future of NoSQL

• Evolving standards
• E.g. Dremel, a SQL-like declarative language and query client

• Traditional RDBMS vendors incorporating NoSQL concepts and capabilities 
• Akin to their encompassing of Java XML and other supposed paradigm-shiftersAkin to their encompassing of Java, XML and other supposed paradigm shifters

• Maturing understanding that NoSQL suits only a limited number of use cases
Th l ti l d l ill li d• The relational model will live on and grow.

• Maturing theoretical models for NoSQL
• CAP Theorem – Consistency, Availability, (Partition) Tolerance, choose any two.

• Advanced NoSQL Implementations evolving back into Relational DBMS!
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Advanced NoSQL Implementations evolving back into Relational DBMS!
• Google’s F1



Thank You
Q&AQ&A
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