
NoSQL, Big Data, and all that
Alternatives to the relational model past present and futureAlternatives to the relational model – past, present and future

Grant  Allen – fuzz@google.com

Technology Program Manager Principal Architect GoogleTechnology Program Manager, Principal Architect, Google

University of Cambridge, February 2014

1



Agenda

• Ubiquitous Intro

Th G i f N SQL• The Genesis of NoSQL

• Architecture of NoSQL Databases

• Technical Implementation Details

• NoSQL ImplicationsNoSQL Implications

• The Future of NoSQL

2



Intro - Who is Grant?

Grant Allen – @fuzzytwtr – fuzz@google.com

T h l P M & D t A hit t t G l• Technology Program Manager & Data Architect at Google

• Works with all manner of databases
(O SQ SQ S f S SQ• (Oracle, MySQL, Postgres, SQL Server, DB2, Informix, Sybase, SQLite,
BigTable and successors, HBase, MongoDB, Cassandra, etc. etc.)

• Talks regularly at conferences, universities, etc.Talks regularly at conferences, universities, etc.

• Writes about all sorts of things

3



The Genesis of NoSQL

4



The Genesis of NoSQL and “Big Data”

• The relational model is very successful

• Strong theoretical foundations – relational calculus and algebra
(Codd, Date, etc.)

• The relational model is infinitely scalable in theory 
(models are nice like that).

Not concerned with:
• Storage capacity

• Processing capacity

• Communication capacity

D i bl liti ACID t

5

• Desirable qualities, ACID, etc.



The Genesis of NoSQL and “Big Data”

• A model and its implementation are not the same, e.g.
• Computing resources are finite in various ways, and imperfectp g y , p

• Relational calculus/algebra does not cover all interesting cases
• SQL != Relational calculus/algebra, and is also not “complete”

• Should one pay the price for qualities/attributes that are unimportant or 
unused?

• What if I don’t care about consistency, isolation, etc.?

• Why bother with concurrency control for logically isolated work?

• Putting it another way, we’re looking at the difference between 
computer science vs computer (software) engineering

6

computer science vs computer (software) engineering



The Genesis of NoSQL and “Big Data”

• Some examples

• Current approximate size of the internet (2013): 60* trillion pagesCurrent approximate size of the internet (2013): 60  trillion pages

• Internet use (2011): 3+ billion people

• Typical query: funniest cat video

• The relational approach can answer the query, in theory

• But consider

• Annual component failure rate in typical hardware (2007,2012): >0.5%

Time to read 60 trillion 1MB pages (60 E ab tes!!) ??• Time to read 60 trillion 1MB pages (60 Exabytes!!): ??

• While implementing concurrency: millions of locks, more time?

7

• Can you answer the query before your hardware dies?



The Genesis of NoSQL and “Big Data”

• 60EB of data
• 20 million 3TB disks

• “Failure Trends in Large Disk Drive Populations” (2007)

• 18000 disks will fail every day

• 18000TB (18PB) of data will be lost (not just to your query)

• Not even beginning to worry about:
• Can I build a machine with 20 million disks?

• And power it?

Etc• Etc.

8



The Genesis of NoSQL and “Big Data”

• Solutions
• Distribute the data to more realistic hardware

• Compensate for imperfect hardware with software fault tolerance

• Use software to bridge the distributed nature of the data

• Sacrifice/remove unneeded (or little needed) qualities

9



The Genesis of NoSQL and “Big Data”

• Solutions
• Distribute the data to more realistic hardware

• Compensate for imperfect hardware with software fault tolerance

• Use software to bridge the distributed nature of the data

• Sacrifice/remove unneeded (or little needed) qualities

• Interesting consequences
• Fault tolerant software can work with all kinds of hardware

=> commodity hardware

• The software model can encompass more than just the “database”p j
=> bespoke filesystems, abandon generic platforms

• Distributed data challenges monolithic software engineering
=> massively parallel software matched to massively distributed data

10

y p y



Architecture of NoSQL Databases

11



Initial premise of NoSQL

• Solve the issues of very large data on imperfect machines

• Size of the data exceeds the technical limitations of relational databases 
• Not just one’s appetite for licencing costsNot just one s appetite for licencing costs

• Desirable properties of traditional databases hinder scaling
Wh t f l thi hi ith t d ff ?• What useful things can we achieve with tradeoffs?

• For some subset of applications, perfection is not necessarily a goal

12



NoSQL-Style implementations

• Starting with Google, and encompassing others

• Google BigTable, GFS, (MapReduce) => Spanner, successors

• Hadoop HBase, HDFS

• Cassandra

• MongoDB

• CouchDB

• Others

13



High-level conceptual design of NoSQL Databases

• High-level “database” layer
• Sparse row-column store (BigTable/Spanner, HBase)

• Key-value store (Cassandra)

• Document store (MongoDB)

• Others such as graph stores 

• Good for various “read” workloads, simple discrete “write” workloads.

• Poor for complex/large write workloads

• Low-level filesystem/storage layer
• Bespoke filesystem (GFS, HDFS, S3)

• POSIX style filesystem (EXTn XFS JFS NTFS etc )• POSIX-style filesystem (EXTn, XFS, JFS, NTFS etc.)

• “Bring/build your own query tools” – SQL-like tools absent or nascent

14

• MapReduce, Dremmel



Technical Implementation Details

15



The Anatomy of a NoSQL Database

• Using Google’s BigTable, GFS and MapReduce as an example

• Concepts applicable to almost all NoSQL databases
• 1:1 equivalence for Hadoop, etc.

• Distributed storage

• Replication

• Faults always happen

16



BigTable

• Higher level API than a raw file system
o Somewhat like a database, but not as full-featured

• Useful for structured/semi-structured data
o URLs:o URLs:

• Contents, crawl metadata, links, anchors, pagerank, …

o Per-user data:
• User preference settings recent queries/search resultsUser preference settings, recent queries/search results, …

o Geographic data:
• Physical entities, roads, satellite imagery, annotations, …

• Scales to large amounts of data
o trillions of URLs, many versions/page (~20K/version)

billi f illi f /

17

o billions of users, millions of q/sec
o PetaBytes+ of satellite image data



BigTable

• Distributed multi-dimensional sparse map

(row, column, timestamp) >>> cell contents(row, column, timestamp) cell contents

“ t t ” C l“contents:”

Rows

Columns

“www.cnn.com”
t3

t11
t17“<html>…”

Timestamps
17

18



BigTable - Tablets

• Large tables broken into tablets at row boundaries
o Tablet holds contiguous range of rows

• Clients can often choose row keys to achieve locality
o Aim for ~100MB to 200MB of data per tablet

• Serving machine responsible for ~100 tablets
o Fast recovery:

• 100 machines each pick up 1 tablet from failed machine
o Fine-grained load balancing:

• Migrate tablets away from overloaded machine• Migrate tablets away from overloaded machine
• Master makes load-balancing decisions

19



BigTable – Tablets and Splitting

“contents:”“language:”

“ ”

“cnn.com” “<html>…
”

EN 

“aaa.com”

…
Tablets

“cnn.com/sports.html”

…

…
“website.com”

…
“yahoo.com/kids.html”

“yahoo.com/kids.html\0”

20

“zuppa.com/menu.html”
…



GFS – Google File System

• Why develop a bespoke file system?

• Working with large data has unique FS requirements
o Huge read/write bandwidth

Reliability over thousands of nodeso Reliability over thousands of nodes
o Mostly operating on large data blocks
o Need efficient distributed operationsp
o Scale - Unprecedented!!! 

21



GFS – Architecture

M t data flowMasters Replicas data flow

control flow

Clients

C C C C CC0 C1

C2C5

C1

C3C5

C0

C2

C5

22

Chunkserver 1 Chunkserver NChunkserver 2



GFS – Failure Scenarios

M t data flowMasters Replicas data flow

control flow

Clients

C C C C CC0 C1

C2C5

C1

C3C5

C0

C2

C5

23

Chunkserver 1 Chunkserver NChunkserver 2



GFS – Software fault tolerance

• Typical forms of frequent failure (as already mentioned)
o Disks, servers, networks, software bugsg

• Basic strategies
Checksum everythingo Checksum everything 

o Replication to allow recovery

• Chunks are replicated on different chunkservers
o Default is 3x, but configurable

24



MapReduce

There is no standard query language!

A i l i d l th t li t l lA simple programming model that applies to many large-scale 
computing problems

Evolving MapReduce libraries incorporate:Evolving MapReduce libraries incorporate:
• automatic parallelisation

• load balancing

• network and disk transfer optimization

• handling of machine and task failures

25



Typical Problems Solved by MapReduce

• Read a lot of data

• Map: extract something you care about from each recordMap: extract something you care about from each record

• Shuffle and Sort

R d t i filt t f• Reduce: aggregate, summarize, filter, or transform

• Write the results

Outline stays the same,
map and reduce change to fit the problemmap and reduce change to fit the problem

26



MapReduce More Formally

Programmer specifies two primary methods:
• map(k, v) → <k', v'>*
• reduce(k', <v'>*) → <k', v'>*

All v' with same k' are reduced together, in order.All v  with same k  are reduced together, in order.

Usually also specify:
• partition(k’, total partitions) -> partition for k’partition(k , total partitions)  partition for k
.often a simple hash of the key
.allows reduce operations for different k’ to be parallelised

27



Typical Problems Solved by MapReduce

Feat re List Intersection List

Input Output

Feature List

1: <type=Road>, <intersections=(3)>, <geom>, …

2: <type=Road>, <intersections=(3)>, <geom>, … 

3: <type=Intersection>, <roads=(1,2,5)>, …

Intersection List

3: <type=Intersection>, <roads=(

1: <type=Road>, <geom>, <name>, …

2: <type=Road>, <geom>, <name>, …

4: <type=Road>, <intersections=(6)>, <geom>, 

5: <type=Road>, <intersections=(3,6)>, <geom>, …

6: <type=Intersection>, <roads=(5,6,7)>, …

7 type Road intersections (6) geom

5: <type=Road>, <geom>, <name>, …)>, … 

6: <type=Intersection>, <roads=(

4: <type=Road>, <geom>, <name>, … >

5: <type=Road>, <geom>, <name>, … >7: <type=Road>, <intersections=(6)>, <geom>, …

8: <type=Border>, <name>, <geom>, …

.

.

5: <type Road>, <geom>, <name>, … >

7: <type=Road>, <geom>, <name>, …)>, …

.

.1
7

. .

2

5
6

3

28

2
4



Typical Problems Solved by MapReduce

Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items
y p p y

1: Road

2: Road

(3, 1: Road)

(3, 2: Road)

(3, 1: Road)

(3, 2: Road)

3 3: Intersection
1: Road,
2 d

3: Intersection

4: Road

5: Road

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

6

2: Road,
5: Road

6: Intersection
6: Intersection

7: Road

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

,

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

4: Road,
5: Road,
7: Road

1
7

63

29

2

5

4

6



Typical Problems Solved by MapReduce

Input Map Shuffle Reduce Output

Apply map() to each;
emit (key,val) pairs

Sort by key
Apply reduce() to list
of pairs with same key

New list of itemsList of items
y p p y

1: Road

2: Road

(3, 1: Road)

(3, 2: Road)

(3, 1: Road)

(3, 2: Road)

3 3: Intersection
1: Road,
2 d

3: Intersection

4: Road

5: Road

(3, 3: Intxn)

(6, 4: Road)

(3, 5: Road)

(3, 3: Intxn.)

(6, 4: Road)

(3, 5: Road)

6

2: Road,
5: Road

6: Intersection
6: Intersection

7: Road

(6, 5: Road)

(6, 6: Intxn)

(6, 7: Road)

,

(6, 5: Road)

(6, 6: Intxn.)

(6, 7: Road)

4: Road,
5: Road,
7: Road

1
7

63

30

2

5

4

6



Typical Problems Solved by MapReduce

Input Map Shuffle Reduce OutputInput Map Shuffle Reduce Output

Emit each to all 
overlapping latitude-
longitude rectangles

Sort by key
(key= Rect. Id)

Render tile using
data for all enclosed

features
Rendered tiles

Geographic
feature list

I-5

Lake Washington

WA-520

(N, I-5)

(N Lake Wash )

(S, I-5)

(N, I-5)

(N, Lake Wash.)

(N WA-520)

N

WA 520

I-90

(N, Lake Wash.)

(N, WA-520)

(S, I-90)

(S, Lake Wash.)

(N, WA 520)

…

…

(S, I-90)

S (S, I-5)

(S, Lake Wash.)

…

…



NoSQL Implications

32



Software Fault Tolerance

• At the “database” tier (BigTable, HBase), high availability/fault 
tolerance is almost always the result of redundant replicas, and 

ti ll id t t t koptionally idempotent tasks

• Replicas are not necessarily all at the same timestamp/transaction
• What view of the data is considered “consistent”? => Eventual consistency

• See also the previously mentioned timestamping of a given cell in BigTable, 
Hbase, etc.

• The loss of any one node or replica is considered normal
• Rebuild or redistribute responsibility

• The failure of any one Map/Reduce task is considered normal
• Restart / resume

33

Restart / resume



Eventual Consistency

ACIDACID

34



Eventual Consistency

ACIDACID

35



Eventual Consistency

ACIDACID
• Implications of Eventual Consistency

• Conflict resolution

• Data Ambiguity / PrecisionData Ambiguity / Precision

• Quorum-based certainty (e.g. CassandraDB)

• Skews suitability to “information retrieval” workloads where loss of 
precision is tolerable =>precision is tolerable =>

Good for finding most funny cat videos,
Bad for exactly managing bank accounts.

36



The Future of NoSQL

37



The Future of NoSQL

(You’re Going to Need a Bigger Boat)

38



The Future of NoSQL

• Evolving standards
• E.g. Dremel, a SQL-like declarative language and query client

• Traditional RDBMS vendors incorporating NoSQL concepts and capabilities 
• Akin to their encompassing of Java XML and other supposed paradigm-shiftersAkin to their encompassing of Java, XML and other supposed paradigm shifters

• Maturing understanding that NoSQL suits only a limited number of use cases
Th l ti l d l ill li d• The relational model will live on and grow.

• Maturing theoretical models for NoSQL
• CAP Theorem – Consistency, Availability, (Partition) Tolerance, choose any two.

• Advanced NoSQL Implementations evolving back into Relational DBMS!

39

Advanced NoSQL Implementations evolving back into Relational DBMS!
• Google’s F1



Thank You
Q&AQ&A

40


