NoSQL, Big Data, and all that

Alternatives to the relational model — past, present and future

Google

Grant Allen —fuzz@google.com
Technology Program Manager, Principal Architect, Google

University of Cambridge, February 2014

Agenda Google

* Ubiquitous Intro

* The Genesis of NoSQL

» Architecture of NoSQL Databases
« Technical Implementation Details
 NoSQL Implications

 The Future of NoSQL

Intro - Who is Grant? Google

Grant Allen — @fuzzytwtr — fuzz@google.com
« Technology Program Manager & Data Architect at Google

 Works with all manner of databases

(Oracle, MySQL, Postgres, SQL Server, DB2, Informix, Sybase, SQLite,
BigTable and successors, HBase, MongoDB, Cassandra, etc. etc.)

« Talks regularly at conferences, universities, etc.

« Writes about all sorts of things

- f-:'i;_

Oracle SQL '

- [3
Ak
I

':-tg:!

Beginning DB2

»

Beginning

Recipes
Android Web Apps T

Development

Corwed il Bt Bt
T fafn

The Genesis of NoSQL

The Genesis of NoSQL and “Big Data” Google

* The relational model is very successful

- Strong theoretical foundations — relational calculus and algebra
(Codd, Date, etc.)

« The relational model is infinitely scalable in theory
(models are nice like that).

Not concerned with:
Storage capacity
Processing capacity

Communication capacity

* Desirable qualities, ACID, etc.

The Genesis of NoSQL and “Big Data” Google

A model and its implementation are not the same, e.qg.

« Computing resources are finite in various ways, and imperfect

« Relational calculus/algebra does not cover all interesting cases

SQL != Relational calculus/algebra, and is also not “complete”

« Should one pay the price for qualities/attributes that are unimportant or
unused?

What if | don’t care about consistency, isolation, etc.?
Why bother with concurrency control for logically isolated work?

« Putting it another way, we're looking at the difference between
computer science vs computer (software) engineering

The Genesis of NoSQL and “Big Data” Google

Some examples
« Current approximate size of the internet (2013): 60* trillion pages
« Internet use (2011): 3+ billion people

- Typical query: funniest cat video

The relational approach can answer the query, in theory

But consider
« Annual component failure rate in typical hardware (2007,2012): >0.5%
« Time to read 60 trillion 1TMB pages (60 Exabytes!!): ??

« While implementing concurrency: millions of locks, more time?

Can you answer the query before your hardware dies?

The Genesis of NoSQL and “Big Data” Google

« G60EB of data
« 20 million 3TB disks
« “Failure Trends in Large Disk Drive Populations” (2007)
« 18000 disks will fail every day
« 18000TB (18PB) of data will be lost (not just to your query)

« Not even beginning to worry about:
« Can | build a machine with 20 million disks?
* And power it?
- Etc.

The Genesis of NoSQL and “Big Data” Google

« Solutions
« Distribute the data to more realistic hardware
« Compensate for imperfect hardware with software fault tolerance
« Use software to bridge the distributed nature of the data

« Sacrifice/remove unneeded (or little needed) qualities

The Genesis of NoSQL and “Big Data” Google

« Solutions
« Distribute the data to more realistic hardware
« Compensate for imperfect hardware with software fault tolerance
« Use software to bridge the distributed nature of the data

« Sacrifice/remove unneeded (or little needed) qualities

 Interesting consequences

« Fault tolerant software can work with all kinds of hardware
=> commodity hardware

« The software model can encompass more than just the “database”
=> bespoke filesystems, abandon generic platforms

« Distributed data challenges monolithic software engineering
=> massively parallel software matched to massively distributed data

10

Architecture of NoSQL Databases

Initial premise of NoSQL

Solve the issues of very large data on imperfect machines

- Not just one’s appetite for licencing costs

Desirable properties of traditional databases hinder scaling
- What useful things can we achieve with tradeoffs?

For some subset of applications, perfection is not necessarily a goal

Google

Size of the data exceeds the technical limitations of relational databases

12

NoSQL-Style implementations

« Starting with Google, and encompassing others

- Google BigTable, GFS, (MapReduce) => Spanner, successors
- Hadoop HBase, HDFS

- Cassandra

- MongoDB

- CouchDB

- Others

Google

13

High-level conceptual design of NoSQL Databases Google

« High-level “database” layer
- Sparse row-column store (BigTable/Spanner, HBase)
- Key-value store (Cassandra)
« Document store (MongoDB)
- Others such as graph stores
- Good for various “read” workloads, simple discrete “write” workloads.

- Poor for complex/large write workloads

« Low-level filesystem/storage layer
- Bespoke filesystem (GFS, HDFS, S3)
- POSIX-style filesystem (EXTn, XFS, JFS, NTFS etc.)

« “Bring/build your own query tools” — SQL-like tools absent or nascent
- MapReduce, Dremmel

14

Technical Implementation Details

The Anatomy of a NoSQL Database Google

* Using Google’s BigTable, GFS and MapReduce as an example

» Concepts applicable to almost all NoSQL databases
- 1:1 equivalence for Hadoop, etc.
- Distributed storage
- Replication
- Faults always happen

16

BigTable

® Higher level API than a raw file system
0 Somewhat like a database, but not as full-featured

® Useful for structured/semi-structured data

o URLs:
» Contents, crawl metadata, links, anchors, pagerank, ...
o Per-user data:

» User preference settings, recent queries/search results, ...

0 Geographic data:

» Physical entities, roads, satellite imagery, annotations, ...

® Scales to large amounts of data
o trillions of URLs, many versions/page (~20K/version)
o billions of users, millions of g/sec
0 PetaBytes+ of satellite image data

Google

17

BigTable Google

® Distributed multi-dimensional sparse map

(row, column, timestamp) >>> cell contents

“contents:” Columns

¥

Rows

“www.cnhn.com” ly1

!“<html> *—— t,

Timestamps

BigTable - Tablets Google

® Large tables broken into tablets at row boundaries
o Tablet holds contiguous range of rows
 Clients can often choose row keys to achieve locality
o Aim for ~100MB to 200MB of data per tablet

® Serving machine responsible for ~100 tablets
o Fast recovery:
* 100 machines each pick up 1 tablet from failed machine
o Fine-grained load balancing:
» Migrate tablets away from overloaded machine
» Master makes load-balancing decisions

19

BigTable — Tablets and Splitting

“language:”

Google

“contents:”

“aaa.com”

“chn.com” R -E-_N|

“cnn.com/sports.html”

Tablets

“‘website.com”

L

L 2

<bhiml|>

“yahoo.com/kids.html”

“yahoo.com/kids.htmI\O

“zuppa.com/menu.html

20

GFS — Google File System

® Why develop a bespoke file system?

® Working with large data has unique FS requirements
o0 Huge read/write bandwidth
o Reliability over thousands of nodes
0 Mostly operating on large data blocks
0 Need efficient distributed operations
0 Scale - Unprecedented!!!

Google

21

GFS — Architecture Google

Masters > Replicas data flow
. gt e
control flow
Clients
\ 4

O
D

Chunkserver 1 Chunkserver 2 Chunkserver N

22

GFS — Failure Scenarios Google

Replicas data flow

'- «>

control flow

Clients

Chunkserver 1 Chunkserver 2 Chunkserver N

23

GFS — Software fault tolerance

® Typical forms of frequent failure (as already mentioned)
o Disks, servers, networks, software bugs

® Basic strategies
0 Checksum everything
0 Replication to allow recovery

® Chunks are replicated on different chunkservers
o Default is 3x, but configurable

Google

24

MapReduce

There is no standard query language!

A simple programming model that applies to many large-scale
computing problems

Evolving MapReduce libraries incorporate:
« automatic parallelisation

* load balancing

« network and disk transfer optimization

« handling of machine and task failures

Google

25

Typical Problems Solved by MapReduce Google

* Read a lot of data

* Map: extract something you care about from each record
« Shuffle and Sort

» Reduce: aggregate, summarize, filter, or transform

 Write the results

Outline stays the same,
map and reduce change to fit the problem

26

MapReduce More Formally Google

Programmer specifies two primary methods:
* map(k, v) — <k', v'’>*
* reduce(k', <v'>*) — <k', v'>*

All v' with same k' are reduced together, in order.

Usually also specify:

« partition(k’, total partitions) -> partition for k’
«'often a simple hash of the key
<allows reduce operations for different k' to be parallelised

27

Typical Problems Solved by MapReduce

Input

Google

Feature List

1: <type=Road>, <intersections=(3)>, <geoms>,
2: <type=Road>, <intersections=(3)>, <geoms>,
3: <type=Intersection>, <roads=(1,2,5)>,

4: <type=Road>, <intersections=(6)>, <geom>,

5: <type=Road>, <intersections=(3,6)>,

6: <type=Intersection>, <roads=(5,6,7)>,

7: <type=Road>, <intersections=(6)>, <geom>,

8: <type=Border>, <name>, <geom>,

Intersection List

3: <type=Intersections,

<roads= (

1: <type=Road>, <geom>, <names,

2: <type=Road>, <geom>, <name>,

5: <type=Road>, <geom>, <name>,

6: <type=Intersections>,

<roads= (

4: <type=Road>, <geom>, <name>,

5: <type=Road>, <geom>, <name>,

7: <type=Road>, <geom>, <names>,

28

Typical Problems Solved by MapReduce

Input

List of items

Apply map() to each; to list

(key,val)

Apply reduce ()

Sort by k . .
oF Y Ry of pairs with same key

B: Intersecti

5: | Road
7: Road

on

3:

6 :

Google

Output

New list of items

Intersection
1l: Road,
2: Road,
5: Road

Intersection
4: Road,
5: Road,
7: Road

Typical Problems Solved by MapReduce

Input

List of items

Apply map() to each; to list

(key,val)

Apply reduce ()

Sort by k . .
oF Y Ry of pairs with same key

B: Intersecti

5: | Road
7: Road

on

3:

6 :

Google

Output

New list of items

Intersection
1l: Road,
2: Road,
5: Road

Intersection
4: Road,
5: Road,
7: Road

Typical Problems Solved by MapReduce Google

Input Map m Shuffle Reduce Output
Emi o 11 R i1 '
Sesgmaiic mit eéc to § Sonts by ey ender tile using :
. overlapping latitude- data for all enclosed Rendered tiles
feature list . (key= Rect. Id)
longitude rectangles features
4 |
.
. I =) |
I‘-. . 3 \L\— e .
| i el | | k
5 5 e = 'Il fl Ra-:enna
WA-520 fos] Laurelhusst]

Bl .“-.lallr.:;l_om

Ak

||
.

Clrs S I
| Washington . Medi

ol
I : 7 “-.Nh.
W [k
BASE]
Wit Bakar S iy
l_ \‘€olumbia
| i\
iy
TR
e e L | |
55 van Agsall T il

J 1 i
v ‘.'_\\'\.' -
R

NoSQL Implications

Software Fault Tolerance Google

« At the “database’ tier (BigTable, HBase), high availability/fault
tolerance is almost always the result of redundant replicas, and
optionally idempotent tasks

* Replicas are not necessarily all at the same timestamp/transaction
- What view of the data is considered “consistent”? => Eventual consistency

- See also the previously mentioned timestamping of a given cell in BigTable,
Hbase, etc.

* The loss of any one node or replica is considered normal

- Rebuild or redistribute responsibility

« The failure of any one Map/Reduce task is considered normal

- Restart / resume

33

Eventual Consistency

ACID

Google

34

Eventual Consistency

A

1D

Google

35

Eventual Consistency Google

ACID

 Implications of Eventual Consistency
- Conflict resolution
- Data Ambiguity / Precision
- Quorum-based certainty (e.g. CassandraDB)

- Skews suitability to “information retrieval” workloads where loss of
precision is tolerable =>
Good for finding most funny cat videos,
Bad for exactly managing bank accounts.

36

The Future of NoSQL

The Future of NoSQL Google

(You're Going to Need a Bigger Boat)

The Future of NoSQL Google

Evolving standards

- E.g. Dremel, a SQL-like declarative language and query client

Traditional RDBMS vendors incorporating NoSQL concepts and capabilities

- Akin to their encompassing of Java, XML and other supposed paradigm-shifters

Maturing understanding that NoSQL suits only a limited number of use cases

- The relational model will live on and grow.

Maturing theoretical models for NoSQL

- CAP Theorem — Consistency, Availability, (Partition) Tolerance, choose any two.

Advanced NoSQL Implementations evolving back into Relational DBMS!
- Google’s F1

39

Thank You

Q&A

