
˜ Topic VII ˜
Types in programming languages

References:

� Chapter 6 of Concepts in programming languages

by J. C. Mitchell. CUP, 2003.

� Sections 4.9 and 8.6 of Programming languages:

Concepts & constructs by R. Sethi (2ND EDITION).

Addison-Wesley, 1996.

163

/. -,
() *+Types in programming

� A type is a collection of computational entities that share

some common property.

� There are three main uses of types in programming

languages:

1. naming and organizing concepts,

2. making sure that bit sequences in computer memory

are interpreted consistently,

3. providing information to the compiler about data

manipulated by the program.

164

� Using types to organise a program makes it easier

for someone to read, understand, and maintain the

program. Types can serve an important purpose in

documenting the design and intent of the program.

� Type information in programs can be used for many

kinds of optimisations.

165

/. -,
() *+Type systems

A type system for a language is a set of rules for associating a

type with phrases in the language.

Terms strong and weak refer to the effectiveness with which

a type system prevents errors. A type system is strong if it

accepts only safe phrases. In other words, phrases that are

accepted by a strong type system are guaranteed to evaluate

without type error. A type system is weak if it is not strong.

166

/. -,
() *+Type safety

A programming language is type safe if no program is

allowed to violate its type distinctions.

Safety Example language Explanation

Not safe C, C++ Type casts,

pointer arithmetic

Almost safe Pascal Explicit deallocation;

dangling pointers

Safe LISP, SML, Smalltalk, Java Type checking

167

/. -,
() *+Type checking

A type error occurs when a computational entity is used in a

manner that is inconsistent with the concept it represents.

Type checking is used to prevent some or all type errors,

ensuring that the operations in a program are applied properly.

Some questions to be asked about type checking in a

language:

� Is the type system strong or weak?

� Is the checking done statically or dynamically?

� How expressive is the type system; that is, amongst safe

programs, how many does it accept?

168

/. -,
() *+Static and dynamic type checking

Run-time type checking: The compiler generates code

so that, when an operation is performed, the code

checks to make sure that the operands have the

correct types.

Examples: LISP, Smalltalk.

Compile-time type checking: The compiler checks the

program text for potential type errors.

Example: SML.

NB: Most programming languages use some combination

of compile-time and run-time type checking.

169

Static vs. dynamic type checking

Main trade-offs between compile-time and run-time checking:

Form of type Advantages Disadvantages

checking

Run-time Prevents type errors Slows program

execution

Compile-time Prevents type errors May restrict

Eliminates run-time programming

tests because tests

Finds type errors before are conservative

execution and run-time

tests

170

Type checking in ML
Idea

Given a context Γ , an expression e, and a type τ, decide

whether or not the expression e is of type τ in context Γ .

Examples:

�
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 orelse e2 : bool

TC(Γ, e1 orelse e2, τ)

=

TC(Γ, e1, bool)∧ TC(Γ, e2, bool) , if τ = bool

false , otherwise

171

�
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 ∗ τ2

TC(Γ, (e1, e2), τ)

=

TC(Γ, e1, τ1)∧ TC(Γ, e2, τ2) , if τ = τ1∗τ2
false , otherwise

172

/. -,
() *+Type equality

The question of type equality arises during type checking.

? What does it mean for two types to be equal!?

Structural equality. Two type expressions are structurally

equal if and only if they are equivalent under the

following three rules.

SE1. A type name is structurally equal to itself.

SE2. Two types are structurally equal if they are

formed by applying the same type constructor

to structurally equal types.

SE3. After a type declaration, say type n = T, the

type name n is structurally equal to T.

173

Name equality:

Pure name equality. A type name is equal to itself, but

no constructed type is equal to any other constructed

type.

Transitive name equality. A type name is equal to itself

and can be declared equal to other type names.

Type-expression equality. A type name is equal only to

itself. Two type expressions are equal if they are

formed by applying the same constructor to equal

expressions. In other words, the expressions have to

be identical.

174

Examples:

� Type equality in Pascal/Modula-2. Type equality was

left ambiguous in Pascal. Its successor, Modula-2,

avoided ambiguity by defining two types to be compatible if

1. they are the same name, or

2. they are s and t, and s = t is a type declaration, or

3. one is a subrange of the other, or

4. both are subranges of the same basic type.

� Type equality in C/C++. C uses structural equivalence

for all types except for records (structs). struct types

are named in C and C++ and the name is treated as a

type, equal only to itself. This constraint saves C from

having to deal with recursive types.

175

/. -,
() *+Type declarations

There are two basic forms of type declarations:

Transparent. An alternative name is given to a type that can

also be expressed without this name.

Opaque. A new type is introduced into the program that is

not equal to any other type.

176

/. -,
() *+Type inference

� Type inference is the process of determining the types

of phrases based on the constructs that appear in them.

� An important language innovation.

� A cool algorithm.

� Gives some idea of how other static analysis algorithms

work.

177

Type inference in ML
Idea

Typing rule:

Γ ⊢ x : τ
if x : τ in Γ

Inference rule:

Γ ⊢ x : γ
γ ≈ α if x : α in Γ

178

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f : α Γ ⊢ e : β

Γ ⊢ f(e) : γ
α ≈ β −> γ

179

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

Inference rule:

Γ, x : α ⊢ e : β

Γ ⊢ (fn x => e) : γ
γ ≈ α −> β

180

Example:

√

f : α1, x : α3 ⊢ f : α5

√

f : α1, x : α3 ⊢ f : α7

√

f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

Solution: α0 = (α3 −> α3)−> α3−> α3

181

/. -,
() *+Polymorphism

Polymorphism, which literally means “having multiple forms”,

refers to constructs that can take on different types as needed.

Forms of polymorphism in contemporary programming

languages:

Parametric polymorphism. A function may be applied to any

arguments whose types match a type expression involving

type variables.

Parametric polymorphism may be:

Implicit. Programs do not need to contain types; types

and instantiations of type variables are computed.

Example: SML.

182

Explicit. The program text contains type variables that

determine the way that a construct may be treated

polymorphically.

Explicit polymorphism often involves explicit

instantiation or type application to indicate how type

variables are replaced with specific types in the use

of a polymorphic construct.

Example: C++ templates.

Ad hoc polymorphism or overloading. Two or more

implementations with different types are referred to by

the same name.

Subtype polymorphism. The subtype relation between

types allows an expression to have many possible types.

183

let-polymorphism

� The standard sugaring

let val x = v in e end 7→ (fn x => e)(v)

does not respect ML type checking.

For instance

let val f = fn x => x in f(f) end

type checks, whilst

(fn f => f(f))(fn x => x)

does not.

� Type inference for let-expressions is involved, requiring

type schemes.

184

Polymorphic exceptions

Example: Depth-first search for finitely-branching trees.

datatype

’a FBtree = node of ’a * ’a FBtree list ;

fun dfs P (t: ’a FBtree)

= let

exception Ok of ’a;

fun auxdfs(node(n,F))

= if P n then raise Ok n

else foldl (fn(t,_) => auxdfs t) NONE F ;

in

auxdfs t handle Ok n => SOME n

end ;

val dfs = fn : (’a -> bool) -> ’a FBtree -> ’a option

185

When a polymorphic exception is declared, SML ensures

that it is used with only one type. The type of a top level

exception must be monomorphic and the type variables

of a local exception are frozen.

Consider the following nonsense:

exception Poly of ’a ; (*** ILLEGAL!!! ***)

(raise Poly true) handle Poly x => x+1 ;

186

