
˜ Topic V ˜
Object-oriented languages : Concepts and origins

SIMULA and Smalltalk

References:

⋆ Chapters 10 and 11 of Concepts in programming

languages by J. C. Mitchell. CUP, 2003.

� Chapters 8, and 12(§§2 and 3) of Programming

languages: Design and implementation (3RD EDITION)

by T. W. Pratt and M. V. Zelkowitz. Prentice Hall, 1999.

112

� Chapter 7 of Programming languages: Concepts &

constructs by R. Sethi (2ND EDITION). Addison-Wesley,

1996.

� Chapters 14 and 15 of Understanding programming

languages by M Ben-Ari. Wiley, 1996.

⋆ B. Stroustrup. What is “Object-Oriented Programming”?

(1991 revised version). Proc. 1st European Conf. on

Object-Oriented Programming. (Available on-line from

<http://public.research.att.com/~bs/papers.html>.)

113

Objects in ML !?
exception Empty ;

fun newStack(x0)

= let val stack = ref [x0]

in ref{ push = fn(x)

=> stack := (x :: !stack) ,

pop = fn()

=> case !stack of

nil => raise Empty

| h::t => (stack := t; h)

}end ;

exception Empty

val newStack = fn :

’a -> {pop:unit -> ’a, push:’a -> unit} ref

114

val BoolStack = newStack(true) ;

val BoolStack = ref {pop=fn,push=fn}

: {pop:unit -> bool, push:bool -> unit} ref

val IntStack0 = newStack(0) ;

val IntStack0 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref

val IntStack1 = newStack(1) ;

val IntStack1 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref

115

IntStack0 := !IntStack1 ;

val it = () : unit

#pop(!IntStack0)() ;

val it = 1 : int

#push(!IntStack0)(4) ;

val it = () : unit

116

map (#push(!IntStack0)) [3,2,1] ;

val it = [(),(),()] : unit list

map (#pop(!IntStack0)) [(),(),(),()] ;

val it = [1,2,3,4] : int list

NB:

� ! The stack discipline for activation records fails!

� ? Is ML an object-oriented language?

! Of course not!

? Why?

117

Basic concepts in
object-oriented languagesa

Four main language concepts for object-oriented

languages:

1. Dynamic lookup.

2. Abstraction.

3. Subtyping.

4. Inheritance.

aNotes from Chapter 10 of Concepts in programming languages

by J. C.Mitchell. CUP, 2003.

118

/. -,
() *+Dynamic lookup

� Dynamic lookup means that when a message is sent to an

object, the method to be executed is selected dynamically,

at run time, according to the implementation of the object

that receives the message. In other words, the object

“chooses” how to respond to a message.

The important property of dynamic lookup is that different

objects may implement the same operation differently, and

so may respond to the same message in different ways.

119

� Dynamic lookup is sometimes confused with

overloading, which is a mechanism based on

static types of operands. However, the two are

very different. ? Why?

120

/. -,
() *+Abstraction

� Abstraction means that implementation details are hidden

inside a program unit with a specific interface. For objects,

the interface usually consists of a set of methods that

manipulate hidden data.

� Abstraction based on objects is similar in many ways to

abstraction based on abstract data types: Objects and

abstract data types both combine functions and data, and

abstraction in both cases involves distinguishing between

a public interface and private implementation.

Other features of object-oriented languages, however,

make abstraction in object-oriented languages more

flexible than abstraction with abstract data types.

121

/. -,
() *+Subtyping

� Subtyping is a relation on types that allows values of

one type to be used in place of values of another.

Specifically, if an object a has all the functionality of

another object b, then we may use a in any context

expecting b.

� The basic principle associated with subtyping is

substitutivity: If A is a subtype of B, then any expression

of type A may be used without type error in any context

that requires an expression of type B.

122

� The primary advantage of subtyping is that it permits

uniform operations over various types of data.

For instance, subtyping makes it possible to have

heterogeneous data structures that contain objects that

belong to different subtypes of some common type.

� Subtyping in an object-oriented language allows

functionality to be added without modifying general parts

of a system.

123

/. -,
() *+Inheritance

� Inheritance is the ability to reuse the definition of one

kind of object to define another kind of object.

� The importance of inheritance is that it saves the effort

of duplicating (or reading duplicated) code and that,

when one class is implemented by inheriting from

another, changes to one affect the other. This has a

significant impact on code maintenance and

modification.

124

Inheritance is not subtyping

Subtyping is a relation on interfaces,

inheritance is a relation on implementations.

One reason subtyping and inheritance are often confused is

that some class mechanisms combine the two. A typical

example is C++, in which A will be recognized by the compiler

as a subtype of B only if B is a public base class of A.

Combining subtyping and inheritance is an elective design

decision.

125

History of objects
SIMULA and Smalltalk

� Objects were invented in the design of SIMULA and

refined in the evolution of Smalltalk.

� SIMULA: The first object-oriented language.

The object model in SIMULA was based on procedures

activation records, with objects originally described as

procedures that return a pointer to their own activation

record.

� Smalltalk: A dynamically typed object-oriented language.

Many object-oriented ideas originated or were

popularised by the Smalltalk group, which built on Alan

Kay’s then-futuristic idea of the Dynabook.

126

SIMULA

� Extremely influential as the first language with classes

objects, dynamic lookup, subtyping, and inheritance.

� Originally designed for the purpose of simulation by

O.-J. Dahl and K. Nygaard at the Norwegian Computing

Center, Oslo, in the 1960s.

� SIMULA was designed as an extension and modification

of Algol 60. The main features added to Algol 60 were:

class concepts and reference variables (pointers to

objects); pass-by-reference; input-output features;

coroutines (a mechanism for writing concurrent programs).

127

� A generic event-based simulation program

Q := make_queue(initial_event);

repeat

select event e from Q

simulate event e

place all events generated by e on Q

until Q is empty

naturally requires:

� A data structure that may contain a variety of kinds

of events. ❀ subtyping

� The selection of the simulation operation according to

the kind of event being processed. ❀ dynamic lookup

� Ways in which to structure the implementation of

related kinds of events. ❀ inheritance

128

Objects in SIMULA

Class: A procedure returning a pointer to its activation

record.

Object: An activation record produced by call to a class,

called an instance of the class. ❀ a SIMULA object

is a closure

� SIMULA implementations place objects on the heap.

� Objects are deallocated by the garbage collector (which

deallocates objects only when they are no longer

reachable from the program that created them).

129

SIMULA
Object-oriented features

� Objects: A SIMULA object is an activation record

produced by call to a class.

� Classes: A SIMULA class is a procedure that returns

a pointer to its activation record. The body of a class

may initialise the objects it creates.

� Dynamic lookup: Operations on an object are selected

from the activation record of that object.

130

� Abstraction: Hiding was not provided in SIMULA 67 but

was added later and used as the basis for C++.

SIMULA 67 did not distinguish between public and private

members of classes.

A later version of the language, however, allowed

attributes to be made “protected”, which means that they

are accessible for subclasses (but not for other classes),

or “hidden”, in which case they are not accessible to

subclasses either.

131

� Subtyping: Objects are typed according to the classes

that create them. Subtyping is determined by class

hierarchy.

� Inheritance: A SIMULA class may be defined, by class

prefixing, as an extension of a class that has already

been defined including the ability to redefine parts of a

class in a subclass.

132

SIMULA
Further object-related features

� Inner, which indicates that the method of a subclass

should be called in combination with execution of

superclass code that contains the inner keyword.

� Inspect and qua, which provide the ability to test the type

of an object at run time and to execute appropriate code

accordingly. (inspect is a class (type) test, and qua is a

form of type cast that is checked for correctness at run

time.)

133

SIMULA
Sample code

a

CLASS POINT(X,Y); REAL X, Y;

COMMENT***CARTESIAN REPRESENTATION

BEGIN

BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN

EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;

IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT((X-P.X)**2 + (Y-P.Y)**2);

END***POINT***
aSee Chapter 4(§1) of SIMULA begin (2nd edition) by G.Birtwistle,

O.-J. Dahl, B.Myhrhug, and K.Nygaard. Chartwell-Bratt Ltd., 1980.

134

CLASS LINE(A,B,C); REAL A,B,C;

COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN

BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN

PARALLELTO := ABS(A*L.B - B*L.A) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;

BEGIN REAL T;

IF L =/= NONE and ~PARALLELTO(L) THEN

BEGIN

...

MEETS :- NEW POINT(...,...);

END;

END;***MEETS***

135

COMMENT*** INITIALISATION CODE

REAL D;

D := SQRT(A**2 + B**2)

IF D = 0.0 THEN ERROR ELSE

BEGIN

D := 1/D;

A := A*D; B := B*D; C := C * D;

END;

END***LINE***

136

SIMULA
Subclasses and inheritance

SIMULA syntax for a class C1 with subclasses C2 and C3 is

CLASS C1

<DECLARATIONS1>;

C1 CLASS C2

<DECLARATIONS2>;

C1 CLASS C3

<DECLARATIONS3>;

When we create a C2 object, for example, we do this by first

creating a C1 object (activation record) and then appending a

C2 object (activation record).

137

Example:

POINT CLASS COLOREDPOINT(C); COLOR C;

BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOREDPOINT) Q;

...;

END***COLOREDPOINT**

REF(POINT) P; REF(COLOREDPOINT) CP;

P :- NEW POINT(1.0,2.5);

CP :- NEW COLOREDPOINT(2.5,1.0,RED);

NB: SIMULA 67 did not hide fields. Thus,

CP.C := BLUE;

changes the color of the point referenced by CP.

138

SIMULA
Object types and subtypes

� All instances of a class are given the same type. The

name of this type is the same as the name of the class.

� The class names (types of objects) are arranged in a

subtype hierarchy corresponding exactly to the subclass

hierarchy.

139

Examples:

1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is

***a subclass of A

...

b :- a; COMMENT***also legal, but checked at

***run time to make sure that

***a points to a B object, so

***as to avoid a type error

2. inspect a

when B do b :- a

otherwise ...

140

3. An error in the original SIMULA type checker

surrounding the relationship between subtyping

and inheritance:

CLASS A; A CLASS B;

SIMULA subclassing produces the subtype relation

B<:A.

141

REF(A) a; REF(B) b;

SIMULA also uses the semantically incorrect principle

that, if B<:A then REF(B)<:REF(A).

So: this code . . .

PROCEDURE ASSIGNa(REF(A) x)

BEGIN x :- a END;

ASSIGNa(b);

. . . will statically type check, but may cause a type error

at run time.

P.S. The same type error occurs in the original

implementation of Eiffel. A similar problem occurs in

Java’s covariant arrays (see later).

142

Smalltalk

� Developed at XEROX PARC in the 1970s.

� Major language that popularised objects; very flexible and

powerful.

� The object metaphor was extended and refined.

� Used some ideas from SIMULA; but it was a

completely new language, with new terminology and

an original syntax.

� Abstraction via private instance variables (data

associated with an object) and public methods (code

for performing operations).

� Everything is an object; even a class. All operations

are messages to objects.

143

Smalltalk
Motivating application : Dynabook

� Concept developed by Alan Kay.

� Influence on Smalltalk:

� Objects and classes as useful organising concepts

for building an entire programming environment

and system.

� Language intended to be the operating system

interface as well as the programming language for

Dynabook.

� Syntax designed to be used with a special-purpose

editor.

� The implementation emphasised flexibility and

ease of use over efficiency.

144

Smalltalk
Terminology

� Object: A combination of private data and functions. Each

object is an instance of some class.

� Class: A template defining the implementation of a set of

objects.

� Subclass: Class defined by inheriting from its superclass.

� Selector: The name of a message (analogous to a

function name).

� Message: A selector together with actual parameter

values (analogous to a function call).

� Method: The code in a class for responding to a message.

� Instance variable: Data stored in an individual

object (instance class).

145

Smalltalk
Classes and objects

class name Point

super class Object

class var pi

instance var x, y

class messages and methods

<. . . names and codes for methods . . . >

instance messages and methods

<. . . names and codes for methods . . . >

Definition of Point class

146

A class message and method for point objects

newX:xvalue Y:yvalue ||

^ self new x: xvalue y: yvalue

A new point at coordinates (3, 4) is created when the message

newX:3 Y:4

is sent to the Point class.

For instance:

p <- Point newX:3 Y:4

147

Some instance messages and methods

x || ^x

y || ^y

moveDx: dx Dy: dy ||

x <- x+dx

y <- y+dy

Executing the following code

p moveDX:2 Y:1

the value of the expressions p x and p y is the object 5.

148

Smalltalk
Inheritance

class name ColoredPoint

super class Point

class var

instance var color

class messages and methods

newX:xv Y:yv C:cv <. . . code . . . >

instance messages and methods

color ||^color

draw <. . . code . . . >

Definition of ColoredPoint class

149

� ColoredPoint inherits instance variables x and y,

methods x, y, moveDX:Dy:, etc.

� ColoredPoint adds an instance variable color and a

method color to return the color of a ColoredPoint.

� The ColoredPoint draw method redefines (or

overrides) the one inherited from Point.

� An option available in Smalltalk is to specify that a

superclass method should be undefined on a subclass.

150

Example: Consider

newX:xv Y:yv C:cv ||

^ self new x:xv y:yv color:cv

cp <- ColoredPoint newX:1 Y:2 C:red

cp moveDx:3 Dy:4

The value of cp x is the object 4, and the value of the

expression cp color is the object red.

Note that even though moveDx:Dy: is an inherited method,

defined originally for points without color, the result of moving

a ColoredPoint is again a ColoredPoint.

151

Smalltalk
Abstraction

Smalltalk rules:

� Methods are public.

Any code with a pointer to an object may send any

message to that object. If the corresponding method

is defined in the class of the object, or any superclass,

the method will be invoked. This makes all methods of

an object visible to any code that can access the object.

� Instance variables are protected.

The instance variables of an object are accessible only

to methods of the class of the object and to methods of

its subclasses.

152

Smalltalk
Dynamic lookup

The run-time structures used for Smalltalk classes and objects

support dynamic lookup in two ways.

1. Methods are selected through the receiver object.

2. Method lookup starts with the method dictionary of the

class of the receiver and then proceeds upwards through

the class hierarchy.

153

Example: A factorial method

factorial ||

self <= 1

ifTrue: [^1]

ifFalse: [^ (self-1) factorial * self]

in the Integer class for

Integer

SmallInt

♣♣♣♣♣♣♣♣♣♣♣

LargeInt

◆◆◆◆◆◆◆◆◆◆◆

154

Smalltalk
Interfaces as object types

Although Smalltalk does not use any static type checking,

there is an implicit form of type that every Smalltalk

programmer uses in some way.

The type of an object in Smalltalk is its interface, i.e. the set of

messages that can be sent to the object without receiving the

error “message not understood”.

The interface of an object is determined by its class, as a class

lists the messages that each object will answer. However,

different classes may implement the same messages, as there

are no Smalltalk rules to keep different classes from using the

same selector names.

155

Smalltalk
Subtyping

Type A is a subtype of type B if any context

expecting an expression of type B may take any

expression of type A without introducing a type error.

Semantically, in Smalltalk, it makes sense to associate

subtyping with the superset relation on class interfaces.

? Why?

156

� In Smalltalk, the interface of a subclass is often a subtype

of the interface of its superclass. The reason being that a

subclass will ordinarily inherit all of the methods of its

superclass, possibly adding more methods.

� In general, however, subclassing does not always lead to

subtyping in Smalltalk.

1. Because it is possible to delete a method from a

superclass in a subclass, a subclass may not produce

a subtype.

2. On the other hand, it is easy to have subtyping without

inheritance.

157

Smalltalk
Object-oriented features

� Objects: A Smalltalk object is created by a class.

At run time, an object stores its instance variables

and a pointer to the instantiating class.

� Classes: A Smalltalk class defines variables, class

methods, and the instance methods that are shared

by all objects of the class.

At run time, the class data structure contains pointers

to an instance variable template, a method dictionary,

and the superclass.

158

� Abstraction: Abstraction is provided through protected

instance variables. All methods are public but instance

variables may be accessed only by the methods of the

class and methods of subclasses.

� Subtyping: Smalltalk does not have a compile-time type

system. Subtyping arises implicitly through relations

between the interfaces of objects. Subtyping depends on

the set of messages that are understood by an object, not

the representation of objects or whether inheritance is

used.

� Inheritance: Smalltalk subclasses inherit all instance

variables and methods of their superclasses. Methods

defined in a superclass may be redefined in a subclass or

deleted.

159

