Concurrent systems
Lecture 5: Concurrency without shared data; transactions

Dr Robert N. M. Watson

Reminder from last time

• Liveness properties
• Deadlock (requirements; resource allocation graphs; detection; prevention; recovery)

Concurrency is so hard!
If only there were some way that we could accomplish useful concurrent computation without...
(1) the hassles of shared memory concurrency
(2) blocking synchronisation primitives
This time

- Concurrency without shared data
 - Active objects
- Message passing; the actor model
 - Linda, occam, Erlang
- Composite operations
 - Transactions, ACID properties
 - Isolation and serialisability

This material has significant intellectual overlap with ideas from databases and distributed systems – but presented from a concurrent systems perspective

Concurrency without shared data

- The examples so far have involved threads which can arbitrarily read & write shared data
 - A key need for mutual exclusion has been to avoid race-conditions (i.e. ‘collisions’ on access to this data)
- An alternative approach is to have only one thread access any particular piece of data
 - Different threads can own distinct chunks of data
- Retain concurrency by allowing other threads to ask for operations to be done on their behalf
 - This ‘asking’ of course needs to be concurrency safe...

Fundamental design dimension: concurrent access via shared data vs. concurrent access via explicit communication
Example: Active Objects

- A monitor with an associated server thread
 - Exports an entry for each operation it provides
 - Other (client) threads ‘call’ methods
 - Call returns when operation is done
- All complexity bundled up in active object
 - Must manage mutual exclusion where needed
 - Must queue requests from multiple threads
 - May need to delay requests pending conditions
 - E.g. if a producer wants to insert but buffer is full

Observation: code running in exactly one thread, and the data only it accesses, experience protection similar to mutual exclusion

Producer-Consumer in Ada

```ada
task-body ProducerConsumer is
  ... loop
  SELECT
    when count < buffer-size
      ACCEPT insert(item) do
        // insert item into buffer
        end;
        count++;
    or
    when count > 0
      ACCEPT consume(item) do
        // remove item from buffer
        end;
        count--;
  end SELECT
end loop
```

- Clause is active only when condition is true
- ACCEPT dequeues a client request and performs the operation
- Single thread: no need for mutual exclusion
- Non-deterministic choice between a set of guarded ACCEPT clauses
Message passing

- Dynamic invocations between threads can be thought of as general message passing
 - Thread X can send a message to Thread Y
 - Contents of message can be arbitrary data
- Can be used to build **remote procedure call** (RPC)
 - Message includes name of operation to invoke along with any parameters
 - Receiving thread checks operation name, and invokes the relevant code
 - Return value(s) sent back as another message
- *(Called **remote method invocation** (RMI) in Java)*

We will discuss message passing and RPC in detail next term; a taster now, as these ideas apply to local, not just distributed, systems.

Message passing semantics

- Can conceptually view sending a message to be similar to sending an email:
 1. Sender prepares contents locally, and then sends
 2. System eventually delivers a copy to receiver
 3. Receiver checks for messages
- In this model, sending is **asynchronous**:
 - Sender doesn’t need to wait for message delivery
 - (but he may, of course, choose to wait for a reply)
- Receiving is also asynchronous:
 - Messages first delivered to a mailbox, later retrieved
 - Message is a copy of the data (i.e. no actual sharing)
Message passing advantages

• Copy semantics avoid race conditions
 – At least directly on the data
• Flexible API: e.g.
 – **Batching**: can send K messages before waiting; and can similarly batch a set of replies.
 – **Scheduling**: can choose when to receive, who to receive from, and which messages to prioritize
 – **Broadcast**: can send messages to many recipients
• Works both within and between machines
 – i.e. same design works for *distributed* systems
• Explicitly used as basis of some languages...

Example: Linda

• Concurrent programming language based on the abstraction of the **tuple space**
 – A [distributed] shared store which holds variable length typed tuples, e.g. “(‘tag’, 17, 2.34, ‘foo’)”
 – Allows asynchronous “pub sub” messaging
• Processes can create new tuples, read tuples, or read-and-remove tuples

  ```
  out(<tuple>); // publishes tuple in TS
  t = rd(<pattern>); // reads a tuple matching pattern
  t = in(<pattern>); // as above, but removes tuple
  ```
• Weird... and difficult to implement efficiently
Example: occam

• Language based on Hoare’s *Communicating Sequential Processes* (CSP) formalism
 – A “process algebra” for modeling concurrency
• Processes *synchronously* communicate via channels

```plaintext
<channel> ? <variable>    // an input process
<channel> ! <expression>  // an output process
```

• Build complex processes via SEQ, PAR and ALT, e.g.

```plaintext
ALT
  count1 < 100 & c1 ? Data
SEQ
  count1:= count1 + 1
  merged ! data
count2 < 100 & c2 ? Data
SEQ
  count2:= count2 + 1
  merged ! data
```

Example: Erlang

• Functional programming language designed in mid 80’s, made popular more recently
• Implements the *actor model*
• **Actors**: lightweight language-level processes
 – Can spawn() new processes very cheaply
• **Single-assignment**: each variable is assigned only once, and thereafter is immutable
 – But values can be sent to other processes
• **Guarded Receives** (as in Ada, occam)
 – Messages delivered in order to local mailbox

Proponents of Erlang argue that lack of synchronous message passing prevents deadlock. Why might this claim be misleading?
Producer-Consumer in Erlang

```erlang
-module(producerconsumer).
-export([start/0]).

start() ->
  spawn(fun() -> loop() end).

loop() ->
  receive
    {produce, item} ->
      enter_item(item),
      loop();
    {consume, Pid} ->
      Pid ! remove_item(),
      loop();
    stop ->
      ok
  end.
```

Invoking `start()` will spawn an actor…

Receive matches messages to patterns

Explicit tail-recursion is required to keep the actor alive…

… so if send ‘stop’, process will terminate.

Message passing: summary

- A way of sidestepping (at least some of) the issues with shared memory concurrency
 - No direct access to data => no race conditions
 - Threads choose actions based on message
- Explicit message passing can be awkward
 - Many weird and wonderful languages ;-)
- Can also use with traditional languages, e.g.
 - Transparent messaging via RPC/RMI
 - Scala, Kilim (actors on Java, or for Java), …

Although we have eliminated some of the issues associated with shared memory (at a cost), these are still concurrent programs potentially subject to deadlock, livelock, etc.
Composite operations

- So far have seen various ways to ensure safe concurrent access to a single object
 - e.g. monitors, active objects, message passing
- More generally want to handle **composite operations**:
 - i.e. build systems which act on multiple distinct objects
- As an example, imagine an internal bank system which allows account access via three method calls:

  ```
  int amount = getBalance(account);
  bool credit(account, amount);
  bool debit(account, amount);
  ```

- If each is thread-safe, is this sufficient?
 - Or are we going to get into trouble??

Composite operations

- Consider two concurrently executing client threads:
 - One wishes to transfer 100 quid from the savings account to the current account
 - The other wishes to learn the combined balance

  ```
  // thread 1: transfer 100  
  // from savings->current
  debit(savings, 100);
  credit(current, 100);
  ```

  ```
  // thread 2: check balance
  s = getBalance(savings);
  c = getBalance(current);
  tot = s + c;
  ```

- If we’re unlucky then:
 - Thread 2 could see balance that’s too small
 - Thread 1 could crash after doing debit() – ouch!
 - Server thread could crash at any point – ouch?
Problems with composite operations

• Two separate kinds of problem here

 1. Insufficient Isolation
 - Individual operations being atomic is not enough
 - e.g. want the credit & debit making up the transfer to happen as one operation
 - Could fix this particular example with a new transfer() method, but not very general ...

 2. Fault Tolerance
 - In the real-word, programs (or systems) can fail
 - Need to make sure we can recover safely

Transactions

• Want programmer to be able to specify that a set of operations should happen atomically, e.g.

```java
// transfer amt from A -> B
transaction {
    if (getBalance(A) > amt) {
        debit(A, amt);
        credit(B, amt);
        return true;
    } else return false;
}
```

• A transaction either executes correctly (in which case we say it commits), or has no effect at all (i.e. it aborts)
 • regardless of other transactions, or system crashes!
ACID Properties

• Want committed transactions to satisfy four properties:
 • **Atomicity**: either all or none of the transaction’s operations are performed
 – Programmer doesn’t need to worry about clean up
 • **Consistency**: a transaction transforms the system from one consistent state to another
 – Programmer must ensure e.g. conservation of money
 • **Isolation**: each transaction executes [as if] isolated from the concurrent effects of others
 – Can ignore concurrent transactions (or partial updates)
 • **Durability**: the effects of committed transactions survive subsequent system failures
 – If system reports success, must ensure this is recorded on disk

This is a different use of the word “atomic” than previously; we will just have to live with that, unfortunately.

ACID Properties

Can group these into two categories

1. **Atomicity & Durability** deal with making sure the system is safe even across failures
 – (A) No partially complete txactions
 – (D) Txactions previously reported as committed don’t disappear, even after a system crash

2. **Consistency & Isolation** ensure correct behavior even in the face of concurrency
 – (C) Can always code as if invariants in place
 – (I) Concurrently executing txactions are indivisible
Isolation

• To ensure a transaction executes in isolation could just have a server-wide lock... simple!

 // transfer amt from A -> B
 transaction { // acquire server lock
 if (getBalance(A) > amt) {
 debit(A, amt);
 credit(B, amt);
 return true;
 } else return false;
 } // release server lock

• But doesn’t allow any concurrency...
• And doesn’t handle mid-transaction failure (e.g. what if we are unable to credit the amount to B?)

Isolation – serializability

• The idea of executing transactions **serially** (one after the other) is a useful model
 – We want to run transactions concurrently
 – But the result should be **as if** they ran serially
• Consider two transactions, T1 and T2

T1 transaction {
 s = getBalance(S);
 c = getBalance(C);
 return (s + c);
}

T2 transaction {
 debit(S, 100);
 credit(C, 100);
 return true;
}

• If assume individual operations are atomic, then there are six possible ways the operations can interleave...
Isolation – serializability

- First case is serial and, as expected, all ok
- Second case is not serial ... but result is fine
 - Both of T1’s operations happen after T2’s update
 - This is a serializable schedule [as is first case]

- Neither of these two executions is ok
- T1 sees inconsistent values:
 - (top) sees updated version of C, but old version of S
 - (bottom) sees updated S, but original version of C
Summary + next time

- Concurrency without shared data (Active Objects)
- Message passing, actor model (Linda, occam, Erlang)
- Composite operations; transactions; ACID properties; isolation and serialisability

- Next time – more on transactions:
 - History graphs; good (and bad) schedules
 - Isolation vs. strict isolation; enforcing isolation
 - Two-phase locking; rollback
 - Timestamp ordering (TSO); optimistic concurrency control (OCC)
 - Isolation and concurrency summary