
Concurrent and distributed systems
Lecture 8: Concurrent systems case study

Dr Robert N. M. Watson

Kernel concurrency

• Open-source FreeBSD operating-system kernel

• Large: millions of lines of code

• Complex: thousands of subsystems, drivers, ...

• Extremely concurrent: supports 128+ HW threads

• Netapp, EMC, Panasas, Dell, Apple, Juniper, Cisco,
McAfee, Netflix, Verio NY Internet, Yahoo!, Verisign, …

• Used at CL (Capsicum, CHERI, TESLA, SOAAP, ...)

• Employs many of the principles we have talked about

2

 Brief history
• 1980s DARPA-funded Berkeley Standard Distribution (BSD)

• UNIX Fast File System (UFS/FFS), network sockets API, first
widely used TCP/IP stack, FTP, sendmail, cron, vi, BIND, ...

• FreeBSD open-source operating system roughly 20 years old

• 1993: FreeBSD 1.0 without support for multiprocessing

• 1998: FreeBSD 3.0 with giant-lock kernel

• 2003: FreeBSD 5.0 with fine-grained locking

• 2005: FreeBSD 6.0 with mature fine-grained locking

• 2012: FreeBSD 9.0 with TCP scalability beyond 32 cores

• 2013*: FreeBSD 10.0 with non-uniform memory (NUMA)

3 * Or perhaps early 2014?

Before multiprocessing
• Preemptive multitasking and multithreading for user processes

• Kernel internally multithreaded

• Represent user threads “in kernel” during system calls/page faults

• Kernel services utilise threads (e.g., VM, file system, …)

• Most kernel code runs under mutual exclusion

• Implied condition variables associated with every kernel address

• struct foo x;

• sleep(&x, secs), wakeup(&x)

• lockmgr reader-writer lock can be held over blocking I/O

• Sleeping with lockmgr or sleep triggers context switching

• Critical sections prevent untimely preemption by interrupts

4

Pre-multiprocessor scheduling

5

CPU 0

CPU 1

sshd sshd (k) netisr sshd (k) sshdidle apache (k) apacheapache apache (k)

Lots of unexploited parallelism!

CPU-level synchronisation

• Late1990s: commodity multi-CPU hardware available from Intel, others

• Architecture-specific atomic operations

• Compare-and-swap

• Test-and-set

• Load linked/store conditional

• Inter-processor interrupts (IPIs)

• One CPU can trigger an interrupt on another, running handler

• Vendor-specific extensions

• MIPS inter-thread message passing

• Intel TM support

6

Giant locking the kernel
• FreeBSD follows in the footsteps of Cray, Sun, etc.

• Parallel user programs with non-parallel kernel

• “Giant” spinlock around kernel

• Acquire on syscall/trap to kernel

• Drop on return

• Kernel “migrates” between CPUs on demand

• Interrupts

• If interrupt delivered on CPU X while kernel is running
on CPU Y, forward interrupt to Y

7

Giant-locked scheduling

8

CPU 0

CPU 1

sshd sshd (k) netisr sshd (k) sshdidle apache (k) apacheapache apache (k)

CPU 0

CPU 1

sshd sshd (k)

apache apache (k)

idle

idlenetisr sshd (k) apache (k)

sshd

apache

idle

idlespin

User-user
parallelism

Kernel-user parallelism

Kernel giant-lock contention

Serial kernel execution;
parallelism opportunity missed

Fine-grained locking

9

• Giant-locked kernels good for parallel user programs

• But kernel-centred workloads trigger Giant contention

• E.g., heavy TCP use in web-server workloads

• Motivates move to fine-grained locking

• FreeBSD adopts pthreads-like model for the kernel

• Familiar multi-threading environment

• Mutexes/condition variables rather than semaphores

• Why? Among other things: priority inheritance

Fine-grained scheduling

10

CPU 0

CPU 1

sshd sshd (k) netisr sshd (k) sshdidle apache (k) apacheapache apache (k)

CPU 0

CPU 1

sshd sshd (k)

apache apache (k)

idle

idlenetisr sshd (k) apache (k)

sshd

apache

idle

idlespin

CPU 0

CPU 1

sshd sshd (k)

apache apache (k)

idle

idlenetisr

sshd (k)

apache (k)

sshd

apache

idle

idle

True kernel-kernel parallelism

Software synchronisation
• Spin locks

• Sleepable locks with different use cases/optimisations

• Mutexes, reader-writer (RW), read-mostly (RM) locks

• Will sleep for only a bounded period of time

• Shared-exclusive (SX) locks

• May sleep for an unbounded period of time

• Implied lock order: unbounded- before bounded-period locks

• Most lock types support priority propagation

• Condition variables, usable with all lock types

11

Why? Mutexes are used
only for “short” waits, so

safe to use them (and wait
on them) implementing

“long” waits -- e.g., disk I/O

Spinlocks
• Synchronisation internal to the scheduler, interrupts

• E.g., protect sleep queues for mutexes and condition variables

• Spinlock acquire:

• Disable interrupts

• Spin on test-and-set to replace MTX_UNOWNED with thread ID

• Spinlock release:

• Set lock to MTX_UNOWNED

• Enable interrupts

• More complicated cases involve lock recursion

12

Interrupt handlers borrow (preempt) contexts
synchronously. If a handler tries to acquire a spinlock

held by the context it has preempted, deadlock!

Mutexes, RW locks

13

• Like semaphores, sleep rather than [always] spinning

• Unlike spinlocks, mutexes allow interrupts + preemption

• Implement priority inheritance

• Sleeping is really expensive (scheduler-internal spinlocks)

• Adaptive mutexes address common-case contention

• Spin if the holder of the lock executing on another CPU

• rwlocks are a variation supporting read locking

• Mutexes, rwlocks for most in-kernel synchronisation

Mutex KPIs
• Very similar to pthread mutexes in every way

• struct mtx m;

• void mtx_init(m, name, type, opts)

• void mtx_destroy(m)

• void mtx_lock(m)

• void mtx_unlock(m)

• int mtx_trylock(m)

• void mtx_assert(m)

14

Name and type used
by WITNESS lock

order verifier - more
on that later

Notice: no confusing error values
from lock and unlock!

Condition variables

15

• Pretty much as we talked about for POSIX - condition variables are
used with locks, but not bound to specific monitors

• void cv_init(cv, desc)

• void cv_destroy(cv)

• void cv_wait(cv, lo)

• void cv_wait_sig(cv, lo)

• int cv_timedwait(cv, lo)

• int cv_timedwait_sig(cv, lo)

• void cv_signal(cv)

• void cv_broadcast(cv)

String description allows ps to
show what CV thread is waiting

on - useful for debugging!

Timed waits for I/O
timeouts; _sig variants

interruptible by UNIX signals

lo can be any type of lock object,
including mutexes, rwlocks, etc.

Scalability

16

Key idea:
speedup

As we add more
parallelism, we would like
the system to get faster.

Another key idea:
performance collapse

Sometimes parallelism
hurts performance more
than it helps due to work
distribution overheads,

contention

What might we
expect here if we

didn’t hit contention?

?

WITNESS
• FreeBSD kernel relies (almost) entirely on lock order to prevent deadlock

• WITNESS is a lock order debugging tool

• Warns when a deadlock might have occurred due to cycles

• Enabled only in debugging kernels due to expense (~15%+)

• Tracks both statically declared and dynamic lock orders

• Static orders most commonly intra-module

• Dynamic orders most commonly inter-module

• FreeBSD rarely experiences lock-related deadlocks due to partial order

• However, I/O and sleep deadlocks are harder to detect/debug

• Condition variables make it hard to know what thread is waited on

17

WITNESS
global lock order graph*

18

* Turns out that the global lock
order is pretty complicated

19

* Commentary on WITNESS total lock-order
graph complexity; courtesy Scott Long, Netflix

*

Excerpt from global lock
order graph*

20

* Turns out that local lock
order is pretty complicated too

UMA zone lock implicitly
or explicitly follows most
other locks in the system,

since almost all
components depend on

memory allocation

Network interface
locks: “transmit”
tends to occur at
the bottom of call
stacks via many

layers holding locks

Local clusters: e.g., a set
of closely related locks

from the pf firewall; two
are leaf nodes; one is held

over calls to another
subsystem

This bit of the graph
largely relates to

networking

WITNESS debug output

21

1st 0xffffff80025207f0 run0_node_lock (run0_node_lock) @ /usr/src/sys/net80211/ieee80211_ioctl.c:1341
 2nd 0xffffff80025142a8 run0 (network driver) @ /usr/src/sys/modules/usb/run/../../../dev/usb/wlan/
if_run.c:3368
KDB: stack backtrace:
db_trace_self_wrapper() at db_trace_self_wrapper+0x2a
kdb_backtrace() at kdb_backtrace+0x37
_witness_debugger() at _witness_debugger+0x2c
witness_checkorder() at witness_checkorder+0x853
_mtx_lock_flags() at _mtx_lock_flags+0x85
run_raw_xmit() at run_raw_xmit+0x58
ieee80211_send_mgmt() at ieee80211_send_mgmt+0x4d5
domlme() at domlme+0x95
setmlme_common() at setmlme_common+0x2f0
ieee80211_ioctl_setmlme() at ieee80211_ioctl_setmlme+0x7e
ieee80211_ioctl_set80211() at ieee80211_ioctl_set80211+0x46f
in_control() at in_control+0xad
ifioctl() at ifioctl+0xece
kern_ioctl() at kern_ioctl+0xcd
sys_ioctl() at sys_ioctl+0xf0
amd64_syscall() at amd64_syscall+0x380
Xfast_syscall() at Xfast_syscall+0xf7
--- syscall (54, FreeBSD ELF64, sys_ioctl), rip = 0x800de7aec, rsp = 0x7fffffffd848, rbp =
 0x2a ---

Lock names and source
code locations of two

acquisitions

Stack trace to acquisition
that triggered cycle

So how is all this used?

22

• Kernel is heavily multi-threaded

• Each user thread has a corresponding kernel thread

• Represents user thread when in syscall, page fault, etc.

• Many kernel services rely on/execute in asynchronous threads

• Interrupts, timers, I/O, networking, etc.

• Therefore extensive synchronisation

• Locking model is almost always data-oriented

• Think monitors rather than critical sections

• Reference counting or reader-writer locks used for stability

23

robert@lemongrass-freebsd64:~> procstat -at
 PID TID COMM TDNAME CPU PRI STATE WCHAN
 0 100000 kernel swapper 1 84 sleep sched
 0 100009 kernel firmware taskq 0 108 sleep -
 0 100014 kernel kqueue taskq 0 108 sleep -
 0 100016 kernel thread taskq 0 108 sleep -
 0 100020 kernel acpi_task_0 1 108 sleep -
 0 100021 kernel acpi_task_1 1 108 sleep -
 0 100022 kernel acpi_task_2 1 108 sleep -
 0 100023 kernel ffs_trim taskq 1 108 sleep -
 0 100033 kernel em0 taskq 1 8 sleep -
 1 100002 init - 0 152 sleep wait
 2 100027 mpt_recovery0 - 0 84 sleep idle
 3 100039 fdc0 - 1 84 sleep -
 4 100040 ctl_thrd - 0 84 sleep ctl_work
 5 100041 sctp_iterator - 0 84 sleep waiting_
 6 100042 xpt_thrd - 0 84 sleep ccb_scan
 7 100043 pagedaemon - 1 84 sleep psleep
 8 100044 vmdaemon - 1 84 sleep psleep
 9 100045 pagezero - 1 255 sleep pgzero
 10 100001 audit - 0 84 sleep audit_wo
 11 100003 idle idle: cpu0 0 255 run -
 11 100004 idle idle: cpu1 1 255 run -
 12 100005 intr swi4: clock 1 40 wait -
 12 100006 intr swi4: clock 0 40 wait -
 12 100007 intr swi3: vm 0 36 wait -
 12 100008 intr swi1: netisr 0 1 28 wait -
 12 100015 intr swi5: + 0 44 wait -
 12 100017 intr swi6: Giant task 0 48 wait -
 12 100018 intr swi6: task queue 0 48 wait -
 12 100019 intr swi2: cambio 1 32 wait -
 12 100024 intr irq14: ata0 0 12 wait -
 12 100025 intr irq15: ata1 1 12 wait -
 12 100026 intr irq17: mpt0 1 12 wait -
 12 100028 intr irq18: uhci0 0 12 wait -
 12 100034 intr irq16: pcm0 0 4 wait -
 12 100035 intr irq1: atkbd0 1 16 wait -
 12 100036 intr irq12: psm0 0 16 wait -
 12 100037 intr irq7: ppc0 0 16 wait -
 12 100038 intr swi0: uart uart 0 24 wait -
 13 100010 geom g_event 0 92 sleep -
 13 100011 geom g_up 1 92 sleep -
 13 100012 geom g_down 1 92 sleep -
 14 100013 yarrow - 1 84 sleep -
 15 100029 usb usbus0 0 32 sleep -
 15 100030 usb usbus0 0 28 sleep -
 15 100031 usb usbus0 0 32 sleep USBWAIT
 15 100032 usb usbus0 0 32 sleep -
 16 100046 bufdaemon - 0 84 sleep psleep
 17 100047 syncer - 1 116 sleep syncer
 18 100048 vnlru - 1 84 sleep vlruwt
 19 100049 softdepflush - 1 84 sleep sdflush

 104 100055 adjkerntz - 1 152 sleep pause
 615 100056 dhclient - 0 139 sleep select
 667 100075 dhclient - 1 120 sleep select
 685 100068 devd - 1 120 sleep wait
 798 100065 syslogd - 0 120 sleep select
 895 100076 sshd - 0 120 sleep select
 934 100052 login - 1 120 sleep wait
 935 100070 getty - 0 152 sleep ttyin
 936 100060 getty - 0 152 sleep ttyin
 937 100064 getty - 0 152 sleep ttyin
 938 100077 getty - 1 152 sleep ttyin
 939 100067 getty - 1 152 sleep ttyin
 940 100072 getty - 1 152 sleep ttyin
 941 100073 getty - 0 152 sleep ttyin
29074 100138 csh - 0 120 sleep ttyin
33023 100207 ssh-agent - 1 120 sleep select
33556 100231 sh - 0 123 sleep piperd
33558 100216 sh - 1 124 sleep wait
33559 100145 sh - 0 122 sleep vmo_de
33560 100058 sh - 0 123 sleep piperd
33588 100176 sshd - 0 122 sleep select
33590 101853 sshd - 1 122 run -
33591 100069 tcsh - 0 152 sleep pause
33596 100172 procstat - 0 172 run -

 PID TID COMM TDNAME CPU PRI STATE WCHAN
 0 100033 kernel em0 taskq 1 8 sleep -
 11 100003 idle idle: cpu0 0 255 run -
 12 100008 intr swi1: netisr 0 1 28 wait -
33588 100176 sshd - 0 122 sleep select

Vast hoards of kernel
threads represent

concurrent kernel activities

And some userspace
threads too!

Device driver interrupt code represented as threads in kernel process

Idle CPUs are occupied by an idle thread … why?

Asynchronous packet processing occurs in a netisr “soft” ithread

Familiar userspace thread: sshd, blocked in network I/O

Kernel-internel concurrency is represented using a
familiar shared memory threading model

Case study: network stack

• First, make it safe without the Giant lock

• Lots of data structures require locks

• Process synchronisation already exists but will be added to

• Establish key work flows, lock orders

• Then, optimise

• Especially locking primitives themselves

• As hardware becomes more parallel, identify and exploit
further concurrency opportunities

• Add more threads and distributing more work

24

Network-stack work flow

25

• Don’t need to understand details of networking:

• Applications send and receive data on sockets

• Packets go in and out of network interface

• The middle bit of that picture is full of layers

• Processing occurs in layers: decapsulation, lookup, reassembly, ...

• Layers are sometimes directly dispatched and sometimes
involve a producer-consumer queue to a second thread

• In latter case, we experience concurrency (even parallelism)

• Send and receive paths also (largely) concurrent

send()

System call layer

Socket layer

TCP layer

Application

Link layer

Device driver

send()

sosend()
sbappend()

tcp_send()
tcp_output()

ether_output()

em_start()
em_entr()

recv()

recv()

sorecieve()
sbappend()

tcp_reass()
tcp_input()

ether_input()

em_intr()

IP layer ip_putput() ip_input()

Network stack work flows

26

Packets come in …

… and packets go out.

Applications
send and

receive data
on sockets

Packets
enqueued at

various
potential

dispatch or
buffering
points

What to lock and how? (1)

• Fine-grained locking overhead vs. coarse-grained contention

• Some contention is inevitable: reflects actual communication

• Other contention is effectively false sharing

• Principle: data locks rather than critical sections

• Key structures: network interfaces, sockets, work queues

• Independent instances should be parallelisable

• Different locks at different layers (sockets vs. control blocks)

• Parallelism at the same layer (receive vs. send socket buffers)

• Things not to lock: mbufs (“work”)

27

Example: universal
memory allocator (UMA)

• Key low-level kernel component

• Slab allocator (Bonwick 1994)

• Object-oriented memory model:
init/destroy, alloc/free

• Per-CPU caches

• Protected by critical sections

• Encourage locality by allocating
memory where last freed

• Avoid zone lock contention

28

Memory consumers (mbufs, sockets, ...)

UMA zone

Virtual memory

Zone Cache

CPU 0 Cache CPU 1 Cache

Alloc bucket

Free bucket

Alloc bucket

Free bucket

Bucket BucketBucket

CPU 0
Consumer

CPU 1
Consumer

Work distribution

• Packets are units of work

• Parallel work requires distribution to multiple threads

• Must keep packets ordered -- or TCP gets very upset!

• This requires a strong notion of per-flow serialisation

• I.e., no generalised producer-consumer/round robin

• Various strategies to keep work ordered – process in a
single thread, or multiple threads linked by a queue, etc.

• Establish flow-CPU affinity – utilise caches well

29

TCP input path

30

Hardware UserspaceKernel

ithread netisr software ithread user thread

Device Application
Linker layer

+ driver
IP TCP + Socket Socket

Data stream
to

application

Validate
checksum,

strip IP
header

Validate
checksum, strip

TCP header

Reassemble
segments,
deliver to

socket

Interpret and
strips link

layer header

Kernel copies
out mbufs +

clusters

Receive,
validate

checksum

Look up
socket

Potential dispatch points

A more recent trend:
multiqueue NICs

31

• Key source of OS
contention: locks around
access to hardware devices

• Parallelism for hardware
interface: each NIC has N
input and output queues

• Flow order maintained by
hashing 2- and 4-tuples in
TCP/IP headers

• Each input queue assigned its
own thread to process

Complex interactions
between scheduling and work

32

Varying dispatch strategy − bandwidth

Net bandwidth in Gb/s

Pr
oc

es
se

s

1
2
3
4
5
6
7
8

1 2 3 4

●

●

●

●

●

●

●

●

1 − multi
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

2 − single_link_proto
1
2
3
4
5
6
7
8

●

●

●

●

●

●

●

●

●

3 − singleSingle-threaded
processing caps
out a bit over
1Gb/s on this

hardware

Software work
distribution to

multiple threads
gets close to

4Gb/s
Hardware work
distribution to

multiple threads
is a little higher,

but more
importantly, has
lower variance

Notice shapes of
curves: parallelism

helps, but
saturation hurts

Changes in hardware motivate
changes in concurrency strategy

• Counting instructions ➞ cache misses

• Lock contention ➞ cache line contention

• Locking ➞ find parallelism opportunities

• Work ordering, classification, distribution

• NIC offload of even more protocol layers

• Vertically integrate distribution/affinity

33

Longer-term strategies

• Optimise for contention: communication is inevitable

• Increase use of lockless primitives: e.g., stats, queues

• Use optimistic techniques for infrequent writes: rmlocks

• Replicate data structures; perhaps with weak consistency

• E.g., per-CPU statistics, per-CPU memory caches

• Use distribution/affinity strategies minimising contention

• Address not just parallelism, but NUMA and I/O affinity

34

Conclusion
• FreeBSD employs many of techniques we’ve discussed

• Mutual exclusion, process synchronisation

• Producer-consumer

• Lockless primitives

• Transaction-like notions ‒ e.g., file system journaling

• But real-world systems are really complicated

• Hopefully you will mostly consume, rather than produce,
concurrency primitives like these

• See you in distributed systems!

35

