Computer Networking

Lent Term M/W/F 11-midday LT1 in Gates Building

Slide Set 3

Andrew W. Moore

andrew.moore@cl.cam.ac.uk January 2014

Topic 4: Network Layer

Our goals:

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing (versus switching)
 - how a router works
 - routing (path selection)
 - IPv6
- For the most part, the Internet is our example – again.

Name: a something
Address: Where a something is
Routing: How do I get to the
something

Addressing (at a conceptual level)

- · Assume all hosts have unique IDs
- No particular structure to those IDs
- Later in topic I will talk about real IP addressing
- Do I route on location or identifier?
- · If a host moves, should its address change?
 - If not, how can you build scalable Internet?
 - If so, then what good is an address for identification?

Packets (at a conceptual level)

• Assume packet headers contain:

- Source ID, Destination ID, and perhaps other information

Destination Identifier

Source Identifier

Payload

Switches/Routers

• Multiple ports (attached to other switches or hosts)

• Ports are typically duplex (incoming and outgoing)

6

A Variety of Networks

- · ISPs: carriers
 - Backbone
 - Edge
- Border (to other ISPs)
- Enterprises: companies, universities
 - Core
 - Edge
 - Border (to outside)
- Datacenters: massive collections of machines
 - Top-of-Rack
 - Aggregation and Core
 - Border (to outside)

Forwarding Decisions

- · When packet arrives..
 - Must decide which outgoing port to use
 - In single transmission time
 - Forwarding decisions must be simple
- Routing state dictates where to forward packets
 - Assume decisions are deterministic
- Global routing state means collection of routing state in each of the routers
 - Will focus on where this routing state comes from
 - But first, a few preliminaries....

Forwarding vs Routing

- Forwarding: "data plane"
 - Directing a data packet to an outgoing link
 - Individual router using routing state
- Routing: "control plane"
 - Computing paths the packets will follow
 - Routers talking amongst themselves
 - Jointly creating the routing state
- Two very different timescales....

10

Routing Protocols

- Routing protocols implement the core function of a network
 - Establish paths between nodes
 - Part of the network's "control plane"
- Network modeled as a graph
 - Routers are graph vertices
 - Links are edges
 - Edges have an associated "cost"
 - e.g., distance, loss

- "good" usually means the shortest (least cost) path

Internet Routing

- Internet Routing works at two levels
- Each AS runs an intra-domain routing protocol that establishes routes within its domain
 - (AS -- region of network under a single administrative entity)
 - Link State, e.g., Open Shortest Path First (OSPF)
 - Distance Vector, e.g., Routing Information Protocol (RIP)
- Asses participate in an inter-domain routing protocol that establishes routes between domains
 - Path Vector, e.g., Border Gateway Protocol (BGP)

1.0

Addressing (for now)

- Assume each host has a unique ID (address)
- No particular structure to those IDs
- Later in course will talk about real IP addressing

15

Outline

- · Link State
- Distance Vector
- Routing: goals and metrics (if time)

16

Link-State

17

Link State Routing • Each node maintains its local "link state" (LS) – i.e., a list of its directly attached links and their costs (N1,N2) (N1,N3) (N1,N4) (N1,N4)

Dijkstra's Shortest Path Algorithm

- INPUT:
 - Network topology (graph), with link costs
- OUTPUT:
 - Least cost paths from one node to all other nodes
- Iterative: after *k* iterations, a node knows the least cost path to its *k* closest neighbors

21

Issue #1: Scalability How many messages needed to flood link state messages? O(N x E), where N is #nodes; E is #edges in graph Processing complexity for Dijkstra's algorithm? O(N²), because we check all nodes w not in S at each iteration and we have O(N) iterations more efficient implementations: O(N log(N)) How many entries in the LS topology database? O(E) How many entries in the forwarding table? O(N)

Distance Vector

Learn-By-Doing

Let's try to collectively develop distance-vector routing from first principles

Experiment

- Your job: find the (route to) the youngest person in the room
- · Ground Rules
 - You may not leave your seat, nor shout loudly across the class
 - You may talk with your immediate neighbors (N-S-E-W only)

(hint: "exchange updates" with them)

- At the end of 5 minutes, I will pick a victim and ask:
 - who is the youngest person in the room? (date&name)
 - which one of your neighbors first told you this info.?

Go!

Distance-Vector

Distance Vector Routing

- · Each router knows the links to its neighbors
- Does not flood this information to the whole network Each router has provisional "shortest path" to every other router
 - E.g.: Router A: "I can get to router B with cost 11"
- Routers exchange this distance vector information with their neighboring routers Vector because one entry per destination
- Routers look over the set of options offered by their neighbors and select the best one
- Iterative process converges to set of shortest paths

A few other inconvenient aspects

- · What if we use a non-additive metric?
 - E.g., maximal capacity
- What if routers don't use the same metric?
 - I want low delay, you want low loss rate?
- · What happens if nodes lie?

Can You Use Any Metric?

- I said that we can pick any metric. Really?
- · What about maximizing capacity?

What Happens Here? Problem: "cost" does not change around loop Additive measures avoid this problem!

No agreement on metrics?

- If the nodes choose their paths according to different criteria, then bad things might happen
- Example
 - Node A is minimizing latency
 - Node B is minimizing loss rate
 - Node C is minimizing price
- · Any of those goals are fine, if globally adopted - Only a problem when nodes use different criteria
- Consider a routing algorithm where paths are described by delay, cost, loss

Must agree on loop-avoiding metric

- When all nodes minimize same metric
- · And that metric increases around loops
- Then process is guaranteed to converge

49

What happens when routers lie?

- What if a router claims a 1-hop path to everywhere?
- All traffic from nearby routers gets sent there
- · How can you tell if they are lying?
- Can this happen in real life?
 - It has, several times....

50

Link State vs. Distance Vector

- · Core idea
 - LS: tell all nodes about your immediate neighbors
 - DV: tell your immediate neighbors about (your least cost distance to) all nodes

51

Link State vs. Distance Vector

- LS: each node learns the complete network map; each node computes shortest paths independently and in parallel
- DV: no node has the complete picture; nodes cooperate to compute shortest paths in a distributed manner
 - →LS has higher messaging overhead
 - →LS has higher processing complexity
 - →LS is less vulnerable to looping

Link State vs. Distance Vector

Message complexity

- LS: O(NxE) messages;
 N is #nodes; E is #edges
- DV: O(#Iterations x E)
 - where #Iterations is ideally
 O(network diameter) but varies due
 to routing loops or the
 count-to-infinity problem

Processing complexity

- LS: O(N²)
- DV: O(#Iterations x N)

Robustness: what happens if router malfunctions?

- LS:
 - node can advertise incorrect link cost
 - each node computes only its own
- DV:
 - node can advertise incorrect path
 - each node's table used by others; error propagates through network

53

Routing: Just the Beginning

- Link state and distance-vector are the deployed routing paradigms for intra-domain routing
- Inter-domain routing (BGP)
 - more Part II (Principles of Communications)
 - A version of DV

54

What are desirable goals for a routing solution?

- "Good" paths (least cost)
- Fast convergence after change/failures
 - no/rare loops
- Scalable
 - #messages
 - table size
 - processing complexity
- Secure
- Policy
- · Rich metrics (more later)

Delivery models

- What if a node wants to send to more than one destination?
 - broadcast: send to all
 - multicast: send to all members of a group
 - anycast: send to any member of a group
- What if a node wants to send along more than one path?

Metrics

- · Propagation delay
- Congestion
- Load balance
- Bandwidth (available, capacity, maximal, bbw)
- Price
- Reliability
- Loss rate
- · Combinations of the above

In practice, operators set abstract "weights" (much like our costs); how exactly is a bit of a black art

From Routing back to Forwarding

- Routing: "control plane"
- Computing paths the packets will follow
 - Routers talking amongst themselves
 - Jointly creating the routing state
- · Forwarding: "data plane"
 - Directing a data packet to an outgoing link
 - Individual router using routing state
- Two very different timescales....

58

Basic Architectural Components of an IP Router Management & CLI Routing Protocols Routing Table Powerding Table Datapath per-packet processing

Per-packet processing in an IP Router

- 1. Accept packet arriving on an incoming link.
- 2. Lookup packet destination address in the forwarding table, to identify outgoing port(s).
- 3. Manipulate packet header: e.g., decrement TTL, update header checksum.
- 4. Send packet to the outgoing port(s).
- 5. Buffer packet in the queue.
- 6. Transmit packet onto outgoing link.

60

Switching Via An Interconnection Network

- · overcome bus bandwidth limitations
- Banyan networks, other interconnection nets initially developed to connect processors in multiprocessor
- advanced design: fragmenting datagram into fixed length cells, switch cells through the fabric.
- Cisco 12000: switches 60 Gbps through the interconnection network

Output Ports

witch queuing: data link processing (protocol, decapsulation)

• Buffering required when datagrams arrive from fabric faster than the transmission rate

• Scheduling discipline chooses among queued datagrams for transmission

→ Who goes next?

(Packet) Network Tasks One-by-One

- Read packet correctly
- Get packet to the destination
- Get responses to the packet back to source
- Carry data
- Tell host what to do with packet once arrived
- Specify any special network handling of the packet
- Deal with problems that arise along the path

Reading Packet Correctly

- · Version number (4 bits)
 - Indicates the version of the IP protocol
 - Necessary to know what other fields to expect
 - Typically "4" (for IPv4), and sometimes "6" (for IPv6)
- Header length (4 bits)
 - Number of 32-bit words in the header
 - Typically "5" (for a 20-byte IPv4 header)
- Can be more when IP option
- Total length (16 bits)
 Number of bytes in the packet

 - Maximum size is 65,535 bytes (2¹⁶-1)
 ... though underlying links may impose smaller limits

Getting Packet to Destination and Back

- · Two IP addresses
 - Source IP address (32 bits)
 - Destination IP address (32 bits)
- Destination address
 - Unique identifier/locator for the receiving host
 - Allows each node to make forwarding decisions
- · Source address
 - Unique identifier/locator for the sending host
 - Recipient can decide whether to accept packet
 - Enables recipient to send a reply back to source

Telling Host How to Handle Packet

- Protocol (8 bits)
 - Identifies the higher-level protocol
 - Important for demultiplexing at receiving host
- Most common examples
 - − E.g., "6" for the Transmission Control Protocol (TCP)
 - E.g., "17" for the User Datagram Protocol (UDP)

IP header TCP header

IP header UDP header

Special Handling

- Type-of-Service (8 bits)
 - Allow packets to be treated differently based on needs
 - E.g., low delay for audio, high bandwidth for bulk transfer
 - Has been redefined several times
- Options

Potential Problems

- Header Corrupted: Checksum
- Loop: TTL
- Packet too large: Fragmentation

Header Corruption

- Checksum (16 bits)
 - Particular form of checksum over packet header
- If not correct, router discards packets
 - So it doesn't act on bogus information
- · Checksum recalculated at every router
 - Why?
 - Why include TTL?
- Why only header?

- Fragmentation: when forwarding a packet, an Internet router can split it into multiple pieces ("fragments") if too big for next hop link
- Must reassemble to recover original packet
 - Need fragmentation information (32 bits)
 - Packet identifier, flags, and fragment offset

92

IP Fragmentation & Reassembly

• network links have MTU
(max.transfer size) - largest
possible link-level frame.

- different link types, different
MTUs

• large IP datagram divided
("fragmented") within net

- one datagram becomes several
datagrams

- "reassembled" only at final
destination

- IP header bits used to identify,
order related fragments

• IPv6 does things differently...

Fragmentation Details Identifier (16 bits): used to tell which fragments belong together Flags (3 bits): Reserved (RF): unused bit Don't Fragment (DF): instruct routers to not fragment the packet even if it won't fit Instead, they drop the packet and send back a "Too Large" ICMP control message Forms the basis for "Path MTU Discovery" More (MF): this fragment is not the last one Offset (13 bits): what part of datagram this fragment covers in 8-byte units Pop quiz question: Why do frags use offset and not a frag number?

IP addresses: how to get one?

Q: How does a host get IP address?

hard-coded by system admin in a file

Windows: control-panel->network->configuration->tcp/ip->properties

UNIX: /etc/rc.config

DHCP: Dynamic Host Configuration Protocol: dynamically get address from as server

"plug-and-play"

IP addressing: the last word...

Q: How does an ISP get block of addresses?

<u>A:</u> ICANN: Internet Corporation for Assigned Names and Numbers

- allocates addresses
- manages DNS
- assigns domain names, resolves disputes

104

NAT: Network Address Translation

- Motivation: local network uses just one IP address as far as outside world is concerned:
 - range of addresses not needed from ISP: just one IP address for all devices
 - can change addresses of devices in local network without notifying outside world
 - can change ISP without changing addresses of devices in local network
 - devices inside local net not explicitly addressable, visible by outside world (a security plus).

106

NAT: Network Address Translation Implementation: NAT router must: - outgoing datagrams: replace (source IP address, port #) of every outgoing datagram to (NAT IP address, new port #) ... remote clients/servers will respond using (NAT IP address, new port #) as destination addr. - remember (in NAT translation table) every (source IP address, port #) to (NAT IP address, new port #) translation pair - incoming datagrams: replace (NAT IP address, new port #) in dest fields of every incoming datagram with corresponding (source IP address, port #) stored in NAT table

NAT: Network Address Translation 1: host 10.0.0.1 WAN side add sends datagram to 128.119.40.186, 80 anges datagram 10.0.0.1, 3345 ource addr from 10.0.0.1, 3345 to 138.76.29.7, 5001 pdates table 10.0.0.1 10.0.0.4 10.0.0.2 138 76 29 7 S: 128.119.40.186, D: 10.0.0.1, 3345 S: 128.119.40.186, 80 /_J D: 138.76.29.7, 5001 4: NAT router 10.0.0.3 3: Reply arrives dest addr from 138.76.29.7. 5001 138.76.29.7. 5001 to 10.0.0.1. 3345

NAT: Network Address Translation

- 16-bit port-number field:
 - 60,000 simultaneous connections with a single LAN-side address!
- NAT is controversial:
 - routers should only process up to layer 3
 - violates end-to-end argument (?)
 - NAT possibility must be taken into account by app designers, eg, P2P applications
 - address shortage should instead be solved by IPv6

.09

NAT traversal problem • solution 2: Universal Plug and Play (UPnP) Internet Gateway Device (IGD) Protocol. Allows NATted host to: • learn public IP address (138.76.29.7) • add/remove port mappings (with lease times) i.e., automate static NAT port map configuration

Traceroute and ICMP When ICMP message arrives, Source sends series of UDP segments to dest source calculates RTT - First has TTL =1 · Traceroute does this 3 times Second has TTL=2, etc. Stopping criterion - Unlikely port number · UDP segment eventually arrives When nth datagram arrives to nth at destination host router: • Destination returns ICMP "host - Router discards datagram unreachable" packet (type 3, code 3) And sends to source an ICMP message (type 11, code 0) When source gets this ICMP, - Message includes name of stops. router& IP address

IPv6

- · Motivated (prematurely) by address exhaustion
 - Address field *four* times as long
- Steve Deering focused on simplifying IP
 - Got rid of all fields that were not absolutely necessary
 - "Spring Cleaning" for IP
- Result is an elegant, if unambitious, protocol

110

Summary of Changes

- Eliminated fragmentation (why?)
- Eliminated header length (why?)
- Eliminated checksum (why?)
- New options mechanism (next header) (why?)
- Expanded addresses (why?)
- Added Flow Label (why?)

118

Philosophy of Changes

- · Don't deal with problems: leave to ends
 - Eliminated fragmentation
 - Eliminated checksum
 - Why retain TTL?
- · Simplify handling:
 - New options mechanism (uses next header approach)
 - Eliminated header length
- Provide general flow label for packet
 - Not tied to semantics
 - Provides great flexibility

12

Transition From IPv4 To IPv6

- Not all routers can be upgraded simultaneous
 - no "flag days"
 - How will the network operate with mixed IPv4 and IPv6 routers?
- Tunneling: IPv6 carried as payload in IPv4 datagram among IPv4 routers

Improving on IPv4 and IPv6?

- Why include unverifiable source address?
 - Would like accountability and anonymity (now neither)
- Return address can be communicated at higher layer
- Why packet header used at edge same as core?
 - Edge: host tells network what service it wants Core: packet tells switch how to handle it
 One is local to host, one is global to network
- Some kind of payment/responsibility field?
 - Who is responsible for paying for packet delivery?
- Source, destination, other?
- · Other ideas?

Gluing it together: How does my Network (address) interact with my Data-Link (address)?

MAC Addresses (and ARP)

or How do I glue my network to my data-link?

- · 32-bit IP address:
 - network-layer address
 - used to get datagram to destination IP subnet
- MAC (or LAN or physical or Ethernet) address:
 - function: get frame from one interface to another physically-connected interface (same network)
 - 48 bit MAC address (for most LANs)
 - burned in NIC ROM, also (commonly) software settable

128

Address Resolution Protocol

- Every node maintains an ARP table
 - <IP address, MAC address> pair
- Consult the table when sending a packet
 - Map destination IP address to destination MAC address
 - Encapsulate and transmit the data packet
- But: what if IP address not in the table?
 - Sender broadcasts: "Who has IP address 1.2.3.156?"
 - Receiver responds: "MAC address 58-23-D7-FA-20-B0"
 - Sender caches result in its ARP table

130

Host A Decides to Send Through R Host A constructs an IP packet to send to B Source 111.111.111.111, destination 222.222.222.222 Host A has a gateway router R Used to reach destinations outside of 111.111.111.0/24 Address 111.111.111.110 for R learned via DHCP/config Host A has a gateway router R Local Procedure of the service of the service

222.222.2

111.111.111.110

R

Host A Sends Packet Through R • Host A learns the MAC address of R's interface — ARP request: broadcast request for 111.111.111.110 — ARP response: R responds with E6-E9-00-17-BB-4B • Host A encapsulates the packet and sends to R 74-20-90-E8-FF-56 — B-E9-00-17-BB-4B — 111.111.111.11 — ROUTED - 10-09 — 111.111.111.11 — ABD-DD-2-07-69-2A — 111.111.111.11 — ABD-DD-2-07-69-2A — 111.111.111.11 — ABD-DD-2-07-69-2A — 111.111.111.11 — 111.111.11 — 1

Security Analysis of ARP

222.222.222.222

C7-58-24

В

- Impersonation
 - $-\operatorname{\mathsf{Any}}$ node that hears request can answer ...
 - ... and can say whatever they want
- Actual legit receiver never sees a problem
 - Because even though later packets carry its IP address, its NIC doesn't capture them since not its MAC address

127

Key Ideas in Both ARP and DHCP

- Broadcasting: Can use broadcast to make contact
 - Scalable because of limited size
- Caching: remember the past for a while
 - Store the information you learn to reduce overhead
 - Remember your own address & other host's addresses
- Soft state: eventually forget the past
 - Associate a time-to-live field with the information
 - ... and either refresh or discard the information
 - Key for robustness in the face of unpredictable change

138

Why Not Use DNS-Like Tables?

- When host arrives:
 - Assign it an IP address that will last as long it is present
 - Add an entry into a table in DNS-server that maps MAC to IP addresses
- Answer:
 - Names: explicit creation, and are plentiful
 - Hosts: come and go without informing network
 - Must do mapping on demand
 - Addresses: not plentiful, need to reuse and remap
 - Soft-state enables dynamic reuse

Summary Network Layer

- understand principles behind network layer services:
 - network layer service models
 - forwarding versus routing (versus switching)

 - how a router worksrouting (path selection)IPv6
- Algorthims
 - Two routing approaches (LS vs DV)
 One of these in detail (LS)