
Computer Graphics &
Image Processing

Computer Laboratory

Computer Science Tripos Part IB

Neil Dodgson & Peter Robinson

Michaelmas Term 2013

William Gates Building
15 JJ Thomson Avenue
Cambridge
CB3 0FD

http://www.cl.cam.ac.uk/

This handout includes copies of the slides that will be used in lectures together with some suggested
exercises for supervisions. These notes do not constitute a complete transcript of all the lectures and
they are not a substitute for text books. They are intended to give a reasonable synopsis of the subjects
discussed, but they give neither complete descriptions nor all the background material.

Material is copyright © Neil A Dodgson & Peter Robinson, 1996-2013, except where otherwise noted.
All other copyright material is made available under the University’s licence.
All rights reserved.

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 1

1

Computer Graphics & Image Processing

Sixteen lectures for Part IB CST
 Introduction
 2D computer graphics
 3D computer graphics
 Colour and displays Colour and displays
 Image processing

Two exam questions on Paper 4

©1996–2013 Neil A Dodgson & Peter Robinson
http://www.cl.cam.ac.uk/~{nad,pr}/

2
What are Computer Graphics &

Image Processing?

Scene
description

Computer
graphics

Image analysis &
computer vision

Digital
image

Image processing

Image
capture

Image
display

3

Why bother with CG & IP?
All visual computer output depends on CG

 printed output (laser/ink jet/phototypesetter)
 monitor (CRT/LCD/plasma/DMD)
 all visual computer output consists of real images generated

by the computer from some internal digital image

Much other visual imagery depends on CG & IP
 TV & movie special effects & post-production
 most books, magazines, catalogues,

flyers, brochures, junk mail,
newspapers, packaging, posters

4

What are CG & IP used for?

 2D computer graphics
 graphical user interfaces: Mac, Windows, X,…
 graphic design: posters, cereal packets,…
 typesetting: book publishing, report writing,…

 Image processing
 photograph retouching: publishing posters photograph retouching: publishing, posters,…
 photocollaging: satellite imagery,…
 art: new forms of artwork based on digitised images

 3D computer graphics
 visualisation: scientific, medical, architectural,…
 Computer Aided Design (CAD)
 entertainment: special effect, games, movies,…

5

Course Structure
Background [3L]

 images, human vision, colour, displays

2D computer graphics [4L]
 lines, curves, clipping, polygon filling,

transformations

3D computer graphics [7L] 2D CG IP

3D CG

3D computer graphics [7L]
 polygons, transformations, projection

(3D2D), surfaces, clipping, lighting, filling,
texture mapping, OpenGL, graphics cards

Image processing [2L]
 filtering, compositing, half-toning, dithering,

encoding,

Background

6

Course books
 Fundamentals of Computer Graphics

 Shirley & Marschner
CRC Press 2009 (3rd edition)

 Computer Graphics: Principles & Practice
 Hughes, van Dam, McGuire, Skalar, Foley, Feiner & Akeley

Addison-Wesley 2013 (3rd edition)

 Computer Graphics & Virtual Environments Computer Graphics & Virtual Environments
 Slater, Steed, & Chrysanthou

Addison Wesley 2001

 Digital Image Processing
 Gonzalez & Woods

Prentice Hall 2007 (3rd edition)

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 2

7

Background
what is a digital image?

 what are the constraints on digital images?

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

what hardware do we use?

2D CG IP

3D CG

Background

what hardware do we use?

Later on in the course we will ask:
how do we represent colour?
how do displays & printers work?

 how do we fool the human eye into seeing what we want it to
see?

8

What is an image?

two dimensional function
value at any point is an intensity or colour
not digital!

9

What is a digital image?

a contradiction in terms
 if you can see it, it’s not digital
 if it’s digital, it’s just a collection of numbers

a sampled and quantised version of a real image
a rectangular array of intensity or colour valuesa rectangular array of intensity or colour values

10

Image capture
a variety of devices can be used

 scanners
 line CCD (charge coupled device) in a flatbed scanner
 spot detector in a drum scanner

 cameras
 area CCD Heidelberg area CCD
 CMOS camera chips

area CCD
www.hll.mpg.de

flatbed scanner
www.nuggetlab.com

Heidelberg
drum scanner

The image of the
Heidelberg drum
scanner and many
other images in this
section come from
“Handbook of Print
Media”,
by Helmutt Kipphan,
Springer-Verlag, 2001

11

Image capture example
103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213
117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103

A real image A digital image

117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

12

Image display

a digital image is an array of integers, how do you
display it?

reconstruct a real image on some sort of display
device
 LCD — portable computer, video projector C po tab e co pute , v eo p ojecto
 DMD — video projector
 EPS – electrophoretic display “e-paper”
 printer — ink jet, laser printer, dot matrix, dye

sublimation, commercial typesetter

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 3

13

Image display example

103 59 12 80 56 12 34 30 1 78 79 21 145 156 52 136 143 65 115 129 41 128 143 50 85
106 11 74 96 14 85 97 23 66 74 23 73 82 29 67 76 21 40 48 7 33 39 9 94 54 19
42 27 6 19 10 3 59 60 28 102 107 41 208 88 63 204 75 54 197 82 63 179 63 46 158 62
46 146 49 40 52 65 21 60 68 11 40 51 17 35 37 0 28 29 0 83 50 15 2 0 1 13 14
8 243 173 161 231 140 69 239 142 89 230 143 90 210 126 79 184 88 48 152 69 35 123 51
27 104 41 23 55 45 9 36 27 0 28 28 2 29 28 7 40 28 16 13 13 1 224 167 112 240
174 80 227 174 78 227 176 87 233 177 94 213 149 78 196 123 57 141 72 31 108 53 22 121
62 22 126 50 24 101 49 35 16 21 1 12 5 0 14 16 11 3 0 0 237 176 83 244 206 123
241 236 144 238 222 147 221 190 108 215 170 77 190 135 52 136 93 38 76 35 7 113 56 26
156 83 38 107 52 21 31 14 7 9 6 0 20 14 12 255 214 112 242 215 108 246 227 133 239
232 152 229 209 123 232 193 98 208 162 64 179 133 47 142 90 32 29 19 27 89 53 21 171
116 49 114 64 29 75 49 24 10 9 5 11 16 9 237 190 82 249 221 122 241 225 129 240 219
126 240 199 93 218 173 69 188 135 33 219 186 79 189 184 93 136 104 65 112 69 37 191 153
80 122 74 28 80 51 19 19 37 47 16 37 32 223 177 83 235 208 105 243 218 125 238 206
103 221 188 83 228 204 98 224 220 123 210 194 109 192 159 62 150 98 40 116 73 28 146 104
46 109 59 24 75 48 18 27 33 33 47 100 118 216 177 98 223 189 91 239 209 111 236 213

displayed on a
cathode ray tube

(Gaussian blur)
The image data

117 217 200 108 218 200 100 218 206 104 207 175 76 177 131 54 142 88 41 108 65 22 103
59 22 93 53 18 76 50 17 9 10 2 54 76 74 108 111 102 218 194 108 228 203 102 228 200
100 212 180 79 220 182 85 198 158 62 180 138 54 155 106 37 132 82 33 95 51 14 87 48
15 81 46 14 16 15 0 11 6 0 64 90 91 54 80 93 220 186 97 212 190 105 214 177 86 208
165 71 196 150 64 175 127 42 170 117 49 139 89 30 102 53 12 84 43 13 79 46 15 72 42
14 10 13 4 12 8 0 69 104 110 58 96 109 130 128 115 196 154 82 196 148 66 183 138 70
174 125 56 169 120 54 146 97 41 118 67 24 90 52 16 75 46 16 58 42 19 13 7 9 10 5
0 18 11 3 66 111 116 70 100 102 78 103 99 57 71 82 162 111 66 141 96 37 152 102 51
130 80 31 110 63 21 83 44 11 69 42 12 28 8 0 7 5 10 18 4 0 17 10 2 30 20 10
58 88 96 53 88 94 59 91 102 69 99 110 54 80 79 23 69 85 31 34 25 53 41 25 21 2
0 8 0 0 17 10 4 11 0 0 34 21 13 47 35 23 38 26 14 47 35 23

14
Different ways of displaying the same

digital image

the display device has a significant effect on the
appearance of the displayed image

Nearest-neighbour
e.g. LCD

Gaussian
e.g. cathode ray tube

Half-toning
e.g. inkjet printer

15

Sampling

a digital image is a rectangular array of intensity
values

each value is called a pixel
 “picture element”

sampling resolution is normally measured in pixels sampling resolution is normally measured in pixels
per inch (ppi) or dots per inch (dpi)

 computer monitors have a resolution around 100 ppi
 laser and ink jet printers have resolutions between 300 and 1200

ppi
 typesetters have resolutions between 1000 and 3000 ppi

16

Sampling resolution
256256 128128 6464 3232

22 44 88 1616

17

Quantisation
each intensity value is a number
for digital storage the intensity values must be

quantised
 limits the number of different intensities that can be stored
 limits the brightest intensity that can be stored

h i i l l d d f h how many intensity levels are needed for human
consumption

 8 bits often sufficient
 some applications use 10 or 12 or 16 bits
 more detail later in the course

colour is stored as a set of numbers
 usually as 3 numbers of 5–16 bits each
 more detail later in the course

18

Quantisation levels
8 bits

(256 levels)
7 bits

(128 levels)
6 bits

(64 levels)
5 bits

(32 levels)

1 bit
(2 levels)

2 bits
(4 levels)

3 bits
(8 levels)

4 bits
(16 levels)

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 4

19

The workings of the human visual system

to understand the requirements of displays
(resolution, quantisation and colour) we need to
know how the human eye works...

The lens of the eye forms an
image of the world on the
retina: the back surface ofretina: the back surface of
the eye

20

Structure of the human eye

 the retina is an array of light
detection cells

 the fovea is the high
resolution area of the retina

 the optic nerve takes signals
from the retina to the visual from the retina to the visual
cortex in the brain

Fig. 2.1 from Gonzalez & Woods

21

The retina

consists of about 150 million light receptors
retina outputs information to the brain along the

optic nerve
 there are about one million nerve fibres in the optic nerve
 the retina performs significant pre-processing to reduce  the retina performs significant pre processing to reduce

the number of signals from 150M to 1M
 pre-processing includes:

 averaging multiple inputs together

 colour signal processing
 local edge detection

www.stlukeseye.com

22

Detailed structure of retinal processing

a lot of pre-processing
occurs in the retina
before signals are
passed to the brain

many light receptors y g p
have their signals
combined into a single
signal to the brain

www.phys.ufl.edu/~avery/course/3400/vision/retina_schema.jpg

light comes in
from this direction

23

Light detectors in the retina

two classes
 rods
 cones

cones come in three types
 sensitive to short, medium and long wavelengths
 allow you to see in colour

the cones are concentrated in the macula, at the
centre of the retina

the fovea is a densely packed region in the centre of
the macula
 contains the highest density of cones
 provides the highest resolution vision

24

Foveal vision

150,000 cones per square millimetre in the fovea
 high resolution
 colour

outside fovea: mostly rods
 lower resolution

 many rods’ inputs are combined to produce one signal to the
visual cortex in the brain

 principally monochromatic
 there are very few cones, so little input available to provide

colour information to the brain

 provides peripheral vision
 allows you to keep the high resolution region in context
 without peripheral vision you would walk into things, be unable

to find things easily, and generally find life much more difficult

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 5

25
Distribution of rods & cones

 i th f

Fig. 2.2 from Gonzalez & Woods
www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

cones in the fovea

rods & cones outside the fovea

(1) cones in the fovea are squished together more tightly than
outside the fovea: higher resolution vision;
(2) as the density of cones drops the gaps between them are filled
with rods

26

Some of the processing in the eye

discrimination
 discriminates between different intensities and colours

adaptation
 adapts to changes in illumination level and colour

 can see about 1:100 contrast at any given time
10 but can adapt to see light over a range of 1010

persistence
 integrates light over a period of about 1/30 second

edge detection and edge enhancement
 visible in e.g. Mach banding effects

27

Intensity adaptation
 at any one time the eye can handle intensities

over a range of ~100:1
 this is the curve BbBa
 anything darker is seen as black

 if everything is black, the eye adjusts down

 anything brighter causes pain
 and stimulates the eye to adjust upy j p

 the eye can adjust over a range of 107:1 in colour
vision
 the curve BbBa slides up or down the photopic

curve

 at very low light levels only rods are effective
 this is the scotopic curve
 no colour, because the cones are not able to pick

up any light

Fig. 2.4 from Gonzalez & Woods

28

Intensity differentiation

the eye can obviously differentiate between different
colours and different intensities

Weber’s Law tells us how good the eye is at
distinguishing different intensities using just noticeable
differencesff

background at
intensity I

foreground at intensity I+I

for a range of values of I

• start with I=0
increase I until human observer can
just see a difference

• start with I large
decrease I until human observer can
just not see a difference

29

Intensity differentiation

results for a “normal” viewer
 a human can distinguish about a 2% change in intensity for

much of the range of intensities
 discrimination becomes rapidly worse as you get close to

the darkest or brightest intensities that you can currently
see

I

I/I



30

Simultaneous contrast

the eye performs a range of non-linear operations
for example, as well as responding to changes in

overall light, the eye responds to local changes

The centre square is the same intensity in all four cases but does not appear to be
because your visual system is taking the local contrast into account

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 6

31

Mach bands

show the effect of edge enhancement in the retina’s
pre-processing

Each of the nine rectangles is a constant colour but you will see each rectangle
being slightly brighter at the end which is near a darker rectangle and slightly

darker at the end which is near a lighter rectangle

32
Ghost squares

another effect caused by retinal pre-processing
 the edge detectors outside the fovea cause you to see grey

squares at the corners where four black squares join
 the fovea has sufficient resolution to avoid this “error”

33

Summary of what human eyes do...

sample the image that is projected onto the retina
adapt to changing conditions
perform non-linear pre-processing

 makes it very hard to model and predict behaviour

combine a large number of basic inputs into a much combine a large number of basic inputs into a much
smaller set of signals
 which encode more complex data

 e.g. presence of an edge at a particular location with a particular
orientation rather than intensity at a set of locations

pass pre-processed information to the visual cortex
 which performs extremely complex processing
 discussed in the Computer Vision course

34

Implications of vision on resolution

 the acuity of the eye is measured as the ability to see a
white gap,1 minute wide, between two black lines
 about 300dpi at 30cm
 the corresponds to about 2 cone widths on the fovea

 resolution decreases as contrast decreases resolution decreases as contrast decreases
 colour resolution is much worse than intensity resolution

 this is exploited in TV broadcast
 analogue television broadcasts the colour signal at half the

horizontal resolution of the intensity signal

35

Implications of vision on quantisation
humans can distinguish, at best, about a 2% change in

intensity
 not so good at distinguishing colour differences

we need to know what the brightest white and
darkest black are
 most modern display technologies (CRT, LCD, plasma)

have contrast ratios in the hundreds
 ranging from 100:1 to about 600:1

 movie film has a contrast ratio of about 1000:1

12–16 bits of intensity information
 assuming intensities are distributed linearly

 this allows for easy computation

 8 bits are often acceptable, except in the dark regions

36

Storing images in memory

8 bits became a de facto standard for greyscale images
 8 bits = 1 byte
 16 bits is now being used more widely, 16 bits = 2 bytes
 an 8 bit image of size W  H can be stored in a block of

W  H bytes
 one way to do this is to store pixel[x][y] at memory

location base + x + W  y
 memory is 1D, images are 2D

base

base + 1 + 5  2

5

5

4
3
2
1
0

0 1 2 3 4



Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 7

37

Colour images

 tend to be 24 bits per pixel
 3 bytes: one red, one green, one blue
 increasing use of 48 bits per pixel, 2 bytes per colour plane

 can be stored as a contiguous block of memory
 of size W  H  3

 more common to store each colour in a separate “plane” more common to store each colour in a separate plane
 each plane contains just W  H values

 the idea of planes can be extended to other attributes associated
with each pixel
 alpha plane (transparency), z-buffer (depth value), A-buffer (pointer to a data

structure containing depth and coverage information), overlay planes (e.g. for
displaying pop-up menus) — see later in the course for details

38

The frame buffer

most computers have a special piece of memory
reserved for storage of the current image being
displayed

output
t di l

frame
B
U

the frame buffer normally consists of dual-ported
Dynamic RAM (DRAM)
 sometimes referred to as Video RAM (VRAM)

stage
(e.g. DAC)

displaybuffer
U
S

39

Double buffering
 if we allow the currently displayed image to be updated then we

may see bits of the image being displayed halfway through the
update
 this can be visually disturbing, especially if we want the illusion of smooth

animation

 double buffering solves this problem: we draw into one frame
buffer and display from the otherbuffer and display from the other
 when drawing is complete we flip buffers

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

40

Modern graphics cards

 most graphics processing is now done on a separate graphics card
 the CPU communicates primitive data over the bus to the special

purpose Geometry Processing Unit (GPU)
 there is additional video memory on the graphics card, mostly used

for storing textures, which are mostly used in 3D games

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

GPU

Texture
memory

41

2D Computer Graphics
lines

 how do I draw a straight line?

curves
 how do I specify curved lines?

clipping

IP

3D CG

Background

2D CG

 what about lines that go off the edge of the screen?

filled areas
 how do I draw and fill polygons?

transformations
 scaling, rotation, translation, shearing

applications

42

Drawing a straight line

 a straight line can be defined by:

cmxy 
the slope of
the line

x

y

m

1c

yy 

 a mathematical line is “length without breadth”
 a computer graphics line is a set of pixels
 which pixels do we need to turn on to draw a

given line?

For a line passing through (x0,y0) and (x1,y1):

00

01

01

mxyc

xx

yy
m







Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 8

43

Which pixels do we use?

 there are two reasonably sensible alternatives:

 i l th h hi h th th “ l t” i l t th li every pixel through which the
line passes

for lines of slope less than 45º
we can have either one or two

pixels in each column

the “closest” pixel to the line
in each column

for lines of slope less than 45º
we always have just one pixel

in every column

 in general, use this


44

A line drawing algorithm — preparation 1

pixel (x,y) has its centre at real co-ordinate (x,y)
 it thus stretches from (x-½, y-½) to (x+½, y+½)

y+1

½

y+1½
pixel (x,y)

y

x-1 x+1x

x-½

y-½

y+½

x+½ x+1½x-1½

Beware: not every graphics system uses this convention. Some put
real co-ordinate (x,y) at the bottom left hand corner of the pixel.

45

A line drawing algorithm — preparation 2

the line goes from (x0,y0) to (x1,y1)

the line lies in the first octant (0 m 1)

x0 < x1
(x1,y1)

(x0,y0)

46Bresenham’s line drawing algorithm for
integer end points

Initialisation m = (y1 - y0) / (x1 - x0)
x = x0

yi = y0

y = y0

DRAW(x,y)

y

x x+1

m
yi

(x0,y0)

WHILE x  x1 DO
x = x + 1
yi = yi + m
y = ROUND(yi)
DRAW(x,y)

END WHILE

y & y’

x x’

m

yi

yi’

Iteration

J. E. Bresenham, “Algorithm for Computer Control of a Digital Plotter”, IBM Systems Journal, 4(1), 1965

47
Bresenham’s algorithm for floating point

end points

y

x x+1

m
yi = y+yf

(x0,y0)

m = (y1 - y0) / (x1 - x0)
x = ROUND(x0)
yi = y0 + m * (x-x0)
y = ROUND(yi)
yf = yi - y
WHILE x  ROUND(x1) DO

DRAW(x,y)
1

y & y’

x x’

m
y’+yf’

x = x + 1
yf = yf + m
IF (yf > ½) THEN

y = y + 1
yf = yf - 1

END IF
END WHILE

y+yf

We need to calculate the initial y from the rounded off initial position of x0 because we will not
necessarily get the right answer by rounding x0 and y0 independently.
Splitting the y-coordinate into fractional (yf) and integer (y) parts avoids rounding on every cycle.

48

Bresenham’s algorithm — more details

we assumed that the line is in the first octant
 can do fifth octant by swapping end points

therefore need four versions of the algorithm

2nd3rd

1st

4th

5th

6th 7th

8th

Exercise: work out what
changes need to be made to
the algorithm for it to work
in each of the other three
octants

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 9

49

Uses of the line drawing algorithm

to draw lines

as the basis for a curve-drawing algorithm

 d f lto draw curves as a sequence of lines

as the basis for iterating on the edges of polygons in
the polygon filling algorithms

50

A second line drawing algorithm

a line can be specified using an equation of the form:

cbyaxyxk ),(
For a line segment from (x0,y0) to (x1,y1), the line is defined by:

01

01

)(xxb

yya




this divides the plane into three regions:
 above the line k < 0

 below the line k > 0

 on the line k = 0

k < 0

k > 0
k = 0

1001 yxyxc 

51

Midpoint line drawing algorithm 1

first work out the iterative step
 it is often easier to work out what should be done on each

iteration and only later work out how to initialise and
terminate the iteration

given that a particular pixel is on the line,
the next pixel must be either immediately to the right
(E) or to the right and up one (NE)

use a decision variable
(based on k) to determine
which way to go Evaluate the

decision variable
at this point

if ≥ 0 then go NE

if < 0 then go E
This is the current pixel

52

Midpoint line drawing algorithm 2
decision variable needs to make a decision at point

(x+1, y+½)

if go E then the new decision variable is at
(x+2, y+½)

d a x b y c    () ()1 1
2

d a x b y c' () ()    2 1
2

if go NE then the new decision variable is at
(x+2, y+1½)

d a x b y c

d a

() ()    
 

2 2

d a x b y c

d a b

' () ()    
  

2 1 1
2

53

Midpoint line drawing algorithm 3

a = (y1 - y0)
b = -(x1 - x0)
c = x1 y0 - x0 y1

x = ROUND(x0)
y = ROUND((-a*x-c)/b)
d = a * (x+1) + b * (y+½) + c

WHILE x  ROUND(x1) DO
DRAW(x,y)
IF d < 0 THEN

d = d + a
ELSE

d = d + a + b

Initialisation Iteration

E case
just increment x

() (y)
y = y + 1

END IF
x = x + 1

END WHILE
y

x x+1(x0,y0)
First decision

point

NE case
increment x & y

54

Midpoint — comments

this version only works for lines in the first octant
 extend to other octants as for Bresenham

it is not immediately obvious that Bresenham and
Midpoint give identical results, but it can be proven
that they doy

Midpoint algorithm can be generalised to draw
arbitrary circles & ellipses
 Bresenham can only be generalised to draw circles with

integer radii

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 10

55

Curves

circles & ellipses
Bézier cubics

 Pierre Bézier, worked in CAD for Renault
 de Casteljau invented them five years earlier at Citroën

 but Citroën would not let him publish the results
 widely used in graphic design & typography

NURBS
 Non-Uniform Rational B-Splines
 more powerful than Bezier & now more widely used
 consider these in Part II

56

Midpoint circle algorithm 1

equation of a circle is
 centred at the origin

decision variable can be
 d = 0 on the circle, d > 0 outside, d < 0 inside

x y r2 2 2 

d x y r  2 2 2

divide circle into eight octants

 on the next slide we consider only
the second octant, the others are
similar

57

Midpoint circle algorithm 2
decision variable needed to make a

decision at point (x+1, y-½)

if go E then the new decision variable is

d x y r    () ()1 2 1
2

2 2

at (x+2, y-½)

if go SE then the new decision variable is
at (x+2, y-1½)

d x y r

d x

' () ()    
  

2

2 3

2 1
2

2 2

d x y r

d x y

' () ()    
   

2 1

2 2 5

2 1
2

2 2

58

Midpoint circle algorithm 3

Drawing an origin-centred circle in all eight octants
Call Octant
Draw(x,y) 2
Draw(-x,y) 3
Draw(-x,-y) 6
Draw(x -y) 7

1

23

4

Draw(x, y) 7

Draw(y,x) 1
Draw(-y,x) 4
Draw(-y,-x) 5
Draw(y,-x) 8

5

6 7

8

The second-octant algorithm thus allows you to draw the whole circle.

59

Taking circles further
the algorithm can be easily extended

to circles not centred at the origin

a similar method can be derived for a similar method can be derived for
ovals
 but: cannot naively use octants

 use points of 45° slope to divide
oval into eight sections

 and: ovals must be axis-aligned
 there is a more complex algorithm which

can be used for non-axis aligned ovals

60

Are circles & ellipses enough?

simple drawing packages use ellipses & segments of
ellipses

for graphic design & CAD need something with more
flexibilityflexibility
 use cubic polynomials

 lower orders (linear, quadratic) cannot:
have a point of inflection
match both position and slope at both ends of a segment
be non-planar in 3D

 higher orders (quartic, quintic,…):
 can wiggle too much
 take longer to compute

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 11

61

Hermite cubic
 the Hermite form of the cubic is defined by its

two end-points and by the tangent vectors at
these end-points:

P t t t P

t t P

t t t T

() ()

()

()

  

  

  

2 3 1

2 3

2

3 2
0

3 2
1

3 2
0

T1

T

 two Hermite cubics can be smoothly joined by
matching both position and tangent at an end
point of each cubic

t t T

()

() 
0

3 2
1

Charles Hermite, mathematician, 1822–1901
P1

P0

T0

62

Bézier cubic

 difficult to think in terms of tangent vectors

Bézier defined by two end points and two other
control points

P t t P() ()

()

 1

3 1

3
0

2t t P

t t P

t P

()

()

 

 



3 1

3 1

2
1

2
2

3
3

Pierre Bézier worked for Renault in the 1960s

where:

10

),(



t

yxP iii

63

Bezier properties

 Bezier is equivalent to Hermite

Weighting functions are Bernstein polynomials

T P P T P P0 1 0 1 3 23 3   () ()

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()      

Weighting functions sum to one

 Bezier curve lies within convex hull of its control points
 because weights sum to 1 and all weights are positive

b ti
i
 

0

3

1()

64

Types of curve join
each curve is smooth within itself
joins at endpoints can be:

 C1 – continuous in both position and tangent vector
 smooth join in a mathematical sense

 G1 – continuous in position, tangent vector in same direction
  smooth join in a geometric sense

 C0 – continuous in position only
 “corner”

 discontinuous in position

Cn (mathematical continuity): continuous in all derivatives up to the nth derivative

Gn (geometric continuity): each derivative up to the nth has the same “direction”
to its vector on either side of the join

Cn  Gn

65

Types of curve join
C0 – continuous in
position only

C0

C1 – continuous in position
& tangent vector

C1

G1 – continuous in
position & tangent
direction, but not
tangent magnitude

G1

66

Drawing a Bezier cubic – iterative method

 draw as a set of short line segments equispaced in
parameter space, t

(x0,y0) = Bezier(0)
FOR t = 0.05 TO 1 STEP 0.05 DO

(x1,y1) = Bezier(t)
DrawLine((x0,y0), (x1,y1))
(x0 y0) = (x1 y1)

 problems:
 cannot fix a number of segments that is appropriate for all possible

Beziers: too many or too few segments

 distance in real space, (x,y), is not linearly related to distance in
parameter space, t

(x0,y0) (x1,y1)
END FOR

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 12

67

Examples
the tick marks are
spaced 0.05 apart in t
(∆t=0.05)

∆t=0.2 ∆t=0.1 ∆t=0.05
68

Drawing a Bezier cubic – adaptive method

adaptive subdivision
 check if a straight line between P0 and P3 is an adequate

approximation to the Bezier
 if so: draw the straight line
 if not: divide the Bezier into two halves, each a Bezier, and

repeat for the two new Beziers

need to specify some tolerance for when a straight
line is an adequate approximation
 when the Bezier lies within half a pixel width of the straight

line along its entire length

69

Drawing a Bezier cubic (continued)

Procedure DrawCurve(Bezier curve)
VAR Bezier left, right
BEGIN DrawCurve

IF Flat(curve) THEN
DrawLine(curve)

ELSE

e.g. if P1 and P2 both lie
within half a pixel width of
the line joining P0 to P3

SubdivideCurve(curve, left, right)
DrawCurve(left)
DrawCurve(right)

END IF
END DrawCurve

draw a line between
P0 and P3: we already
know how to do this

this requires some
straightforward
calculations

70

Checking for flatness

2

0)(

)1()(

AB

ACABs

sCPAB

sBAssP





 we need to know
this distance

A

C

B

P(s)

22)()(

))(())((

ABAB

ACABACAB

yyxx

yyyyxxxx

AB

s




71

Special cases

if s<0 or s>1 then the distance from point C to the
line segment AB is not the same as the distance from
point C to the infinite line AB

in these cases the distance is |AC| or |BC|
respectivelyp y

A

B

C

P(s)

72

Subdividing a Bezier cubic into two halves

a Bezier cubic can be easily subdivided into two
smaller Bezier cubics

Q P

Q P P

Q P P P

0 0

1
1
2 0

1
2 1

1 1 1


 

 

R P P P P

R P P P

R P P

0
1
8 0

3
8 1

3
8 2

1
8 3

1
1
4 1

1
2 2

1
4 3

1 1

   
  

Q P P P

Q P P P P
2

1
4 0

1
2 1

1
4 2

3
1
8 0

3
8 1

3
8 2

1
8 3

  

   

R P P

R P
2

1
2 2

1
2 3

3 3

 


Exercise: prove that the Bezier cubic curves defined by Q0, Q1, Q2, Q3 and R0, R1, R2, R3

match the Bezier cubic curve defined by P0, P1, P2, P3 over the ranges t[0,½] and
t[½,1] respectively

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 13

73

The effect of different tolerances

 this is the same Bezier curve drawn with four different tolerances

100 20 5 0.2

74

What if we have no tangent vectors?

 base each cubic piece on the four surrounding data points

 at each data point the curve must depend solely on the
three surrounding data points
 define the tangent at each point as the direction from the preceding

point to the succeeding point
 tangent at P1 is ½(P2 -P0), at P2 is ½(P3 -P1)

 this is the basis of Overhauser’s cubic

Why?

75

Overhauser’s cubic

 method for generating Bezier curves which match
Overhauser’s model
 simply calculate the appropriate Bezier control point locations

from the given points
 e.g. given points A, B, C, D, the Bezier control points are:

P0=B P1=B+(C-A)/6
P C P C (D B)/6P3=C P2=C-(D-B)/6

 Overhauser’s cubic interpolates its controlling data points
 good for control of movement in animation
 not so good for industrial design because moving a single point

modifies the surrounding four curve segments
 compare with Bezier where moving a single point modifies just

the two segments connected to that point

Overhauser worked for the Ford motor company in the 1960s

76

Simplifying line chains
 this can be thought of as an inverse problem to the one of

drawing Bezier curves

 problem specification: you are given a chain of line segments
at a very high resolution, how can you reduce the number of
line segments without compromising quality
 e.g. given the coastline of Britain defined as a chain of line segments at

one metre resolution, draw the entire outline on a 12801024 pixel
screen

 the solution: Douglas & Peucker’s line chain simplification
algorithm

This can also be applied to chains of Bezier curves at high resolution: most of the curves will each
be approximated (by the previous algorithm) as a single line segment, Douglas & Peucker’s
algorithm can then be used to further simplify the line chain

77

Douglas & Peucker’s algorithm

 find point, C, at greatest distance from line segment AB
 if distance from C to AB is more than some specified

tolerance then subdivide into AC and CB, repeat for each of
the two subdivisions

 otherwise approximate entire chain from A to B by the single
line segment AB

A B

C

Douglas & Peucker, Canadian Cartographer, 10(2), 1973

78

Clipping

what about lines that go off the edge of the screen?
 need to clip them so that we only draw the part of the line

that is actually on the screen

clipping points against a rectangle

y yT

y yB
x x L x x R

need to check against four edges:

T

B

R

L

yy

yy

xx

xx






Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 14

79

Clipping lines against a rectangle — naïvely

21

21

21

221121

)1()(

)1()(

)1()(

),(to),(to

tyytty

txxttx

tPPttP

yxyxPP







)1(

else

onintersecti no then)(if

with intersect to

1

21

21

L

LLL

L

xx

xtxtx

xx

xx







 do this operation for each of the four edges

edgeintersect not doessegment line else

))(),((at

intersectssegment linethen

)10(if
12

1

LLL

L

L
L

tytxxx

t

xx

xx
t








This is naïve because a lot
of unnecessary operations
will be done for most lines.

80

Clipping lines against a rectangle — examples

y yT

 you can naïvely check every line against each of the four edges
 this works but is obviously inefficient

 adding a little cleverness improves efficiency enormously
 Cohen-Sutherland clipping algorithm

y yB

x x L x x R

81

Cohen-Sutherland clipper 1

 make a four bit code, one bit for each inequality
A x x B x x C y y D y yL R B T       

y yT
00011001 0101
ABCD ABCDABCD

 evaluate this for both endpoints of the line

Q A B C D Q A B C D1 1 1 1 1 2 2 2 2 2 

y y B

x x L x x R

00001000 0100

00101010 0110

Ivan Sutherland is one of the founders of Evans & Sutherland, manufacturers of flight simulator systems

82

Cohen-Sutherland clipper 2
 Q1= Q2 =0

 both ends in rectangle ACCEPT

 Q1 Q2 0
 both ends outside and in same half-plane REJECT

 otherwise
 need to intersect line with one of the edges and start again

 you must always re-evaluate Q and recheck the above tests after
doing a single clip

 the 1 bits tell you which edge to clip against

y y B

x x L

0000

0010

1010

0000

x x y y y y
x x
x x

y y x x x x
y y
y y

L
L

B
B

1 1 1 2 1
1

2 1

1 1 1 2 1
1

2 1

' ' ()

' ' ' ' ' (')
'
'

   



   



P1

P1'

P1''

P2Example

83

Cohen-Sutherland clipper 3

 if code has more than a single 1 then you cannot tell which is the
best: simply select one and loop again

 horizontal and vertical lines are not a problem
 need a line drawing algorithm that can cope with floating-point

endpoint co-ordinates

Why not?

Why?p

y yT

y y B

x x L x x R

Exercise: what happens in each of
the cases at left?
[Assume that, where there is a
choice, the algorithm always tries to
intersect with xL or xR before yB or yT.]

Try some other cases of your own
devising.

Why?

84

which pixels do we turn on?

Polygon filling

 those whose centres lie inside the polygon
 this is a naïve assumption, but is sufficient for now

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 15

85
Scanline polygon fill algorithm

take all polygon edges and place in an edge list (EL) , sorted on
lowest y value
start with the first scanline that intersects the polygon, get all

edges which intersect that scan line and move them to an active
edge list (AEL)
for each edge in the AEL: find the intersection point with the

current scanline; sort these into ascending order on the x value
fill between pairs of intersection points
move to the next scanline (increment y); move new edges from

EL to AEL if start point  y ; remove edges from the AEL if
endpoint  y ; if any edges remain in the AEL go back to step 

86

Scanline polygon fill example

87

Scanline polygon fill details
 how do we efficiently calculate the intersection points?

 use a line drawing algorithm to do incremental calculation
 store current x value, increment value dx, starting and ending y values
 on increment do a single addition x=x+dx

 what if endpoints exactly intersect
li ?scanlines?

 need to ensure that the algorithm
handles this properly

 what about horizontal edges?
 can throw them out of the edge

list, they contribute nothing

88

Clipping polygons

89

Sutherland-Hodgman polygon clipping 1

 clips an arbitrary polygon against an arbitrary convex polygon
 basic algorithm clips an arbitrary polygon against a single infinite clip

edge
 so we reduce a complex algorithm to a simpler one which we call

recursively
 the polygon is clipped against one edge at a time, passing the result on

 h to the next stage

Sutherland & Hodgman, “Reentrant Polygon Clipping,” Comm. ACM, 17(1), 1974

90

Sutherland-Hodgman polygon clipping 2
 the algorithm progresses around the polygon checking if each edge

crosses the clipping line and outputting the appropriate points

s

inside outside inside outside
s

e

inside outside

e
inside outside

p

e

e output

s
e

p output p and e output

s

nothing
output

Exercise: the Sutherland-Hodgman algorithm may introduce new edges along the
edge of the clipping polygon — when does this happen and why?

p

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 16

Sutherland-Hodgman polygon clipping 3

 line segment defined by (xs,ys) and (xe,ye)

 line segment is: p(t) = (1-t)s+te

 clipping edge defined by ax+by+c=0

 test to see which side of edge s and e are on:

91

s
e

inside outside

p

 k=ax+by+c

 k negative: inside, k positive: outside, k=0: on edge

 if ks and ke differ in sign then intersection point can be found by:

)()(

0))1(())1((

eses

ss

eses

yybxxa

cbyax
t

ctyytbtxxta








92

2D transformations

 scale

 rotate

why?
 it is extremely useful to be

able to transform predefined
objects to an arbitrary
location, orientation, and size

 any reasonable graphics
package will include

 translate

 (shear)

package will include
transforms
 2D  Postscript
 3D  OpenGL

93

Basic 2D transformations
 scale

 about origin
 by factor m

 rotate
 about origin
 by angle 

x mx

y my

'

'




x x y

y x y

' cos sin

' sin cos

 
 

 
 

 translate
 along vector (xo,yo)

 shear
 parallel to x axis
 by factor a

x x x

y y y
o

o

'

'

 
 

x x ay

y y

'

'

 


94

Matrix representation of transformations

 scale
 about origin, factor m

x

y

m

m

x

y

'

'



















0

0

 rotate
 about origin, angle 

x

y

x

y

'

'

cos sin

sin cos




















 
 

 do nothing
 identity

x

y

x

y

'

'



















1 0

0 1

x

y

a x

y

'

'



















1

0 1

 shear
 parallel to x axis, factor a

95

Homogeneous 2D co-ordinates

 translations cannot be represented using simple 2D matrix
multiplication on 2D vectors, so we switch to
homogeneous co-ordinates

 an infinite number of homogeneous co-ordinates map to
 2D i

 (, ,) ,x y w x
w

y
w

every 2D point
 w=0 represents a point at infinity
 usually take the inverse transform to be:

(,) (, ,)x y x y 1

96

Matrices in homogeneous co-ordinates
 scale

 about origin, factor m

x

y

w

m

m

x

y

w

'

'

'


















































0 0

0 0

0 0 1

 rotate
 about origin, angle 

x

y

w

x

y

w

'

'

'

cos sin

sin cos


















































 
 

0

0

0 0 1

 do nothing
 identity

 shear
 parallel to x axis, factor a

x

y

w

a x

y

w

'

'

'


















































1 0

0 1 0

0 0 1

x

y

w

x

y

w

'

'

'


















































1 0 0

0 1 0

0 0 1

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 17

97

Translation by matrix algebra

x

y

w

x

y

x

y

w

o'

'

'


















































1 0

0 1

0 0 1
0

In homogeneous coordinates

w w'y y wyo' x x wxo' 

x
w

x
w

x
'
'
  0 0'

'
y

w

y

w

y


In conventional coordinates

g

98

Concatenating transformations

 often necessary to perform more than one transformation on the
same object

 can concatenate transformations by multiplying their matrices
e.g. a shear followed by a scaling:

shearscale
x

y

w

m

m

x

y

w

x

y

w

a x

y

w

' '

' '

' '

'

'

'

'

'

'



































































































0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

x

y

w

m

m

a x

y

w

m ma

m

x

y

w

' '

' '

' '



































































































0 0

0 0

0 0 1

1 0

0 1 0

0 0 1

0

0 0

0 0 1

shearscale both

99

Concatenation is not commutative

be careful of the order in which you concatenate
transformations

rotate by 45° scale by 2

2
2

2
2

1
2

1
2

0

0

2 0 0

0 1 0

















scalerotate then scale

scale by 2
along x axis

rotate by 45°

along x axis

2
2

1
2

2
2

1
2

1
2

1
2

1
2

1
2

0 0 1 0 0 1

0

0

0 0 1

0

0

0 0 1

 



 


 


 




































rotatescale then rotate

100

Scaling about an arbitrary point

 scale by a factor m about point (xo,yo)
translate point (xo,yo) to the origin
scale by a factor m about the origin
translate the origin to (xo,yo)

(xo,yo)

(0,0)

x x xo'

'

















1 0

0 1

x m x' '

' '

'

'

















0 0

0 0

x x xo' ' '

' ' '

' '

' '

















1 0

0 1
  

y

w

y y

w
o'

'



 





 





 







 





0 1

0 0 1

y

w

m y

w

' '

' '

'

'



 











 







 





0 0

0 0 1

y

w

y y

w
o' ' '

' ' '

' '

' '



 











 







 





0 1

0 0 1

x

y

w

x

y

m

m

x

y

x

y

w

o

o

o

o

' ' '

' ' '

' ' '





















































































1 0

0 1

0 0 1

0 0

0 0

0 0 1

1 0

0 1

0 0 1

Exercise: show how to
perform rotation about
an arbitrary point

101

Bounding boxes

 when working with complex objects, bounding boxes can be
used to speed up some operations

N

S

EW

102

Clipping with bounding boxes

 do a quick accept/reject/unsure test to the bounding box then
apply clipping to only the unsure objects

BBB

BBT yT

y

A

A
A

R R

RR

U

BBL BBR

yB

x L
x R

A

R
R

U
U

BB x BB x BB x BB xL R R L B T T B      

BB x BB x BB x BB xL L R R B B T T      

otherwise  clip at next higher level of detail

REJECT

 ACCEPT

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 18

Clipping Bézier curves

If flat  draw using clipped line drawing algorithm
Else consider the Bézier’s bounding box

accept  draw using normal (unclipped) Bézier algorithm
reject  do not draw at all
unsure  split into two Béziers, recurse

103

A

A
A

R R

R

R
R

R

U
U

U

104

Object inclusion with bounding boxes
 including one object (e.g. a graphics) file inside another can be easily

done if bounding boxes are known and used

N
BBT N

S

EW

COMPASS
productions

PT

P

PRPL

use the eight values to
translate and scale the
original to the appropriate
position in the destination
document

S

EW

BBL BBR

BBB

Tel: 01234 567890 Fax: 01234 567899
E-mail: compass@piped.co.uk

PB

105

Bit block transfer (BitBlT)

 it is sometimes preferable to predraw something and then
copy the image to the correct position on the screen as and
when required
 e.g. icons  e.g. games

 copying an image from place to place is essentially a memory
operation
 can be made very fast

 e.g. 3232 pixel icon can be copied, say, 8 adjacent pixels at a time, if
there is an appropriate memory copy operation

106

Application 1: user interface

 early graphical user-
interfaces needed to use
objects that were quick to
draw
 straight lines
 filled rectanglesg

 complicated bits were done
using predrawn icons

 typefaces also tended to be
predrawn

107

Application 2: typography
 typeface: a family of letters designed to look good together

 usually has upright (roman/regular), italic (oblique), bold and bold-italic members

 two forms of typeface used in computer graphics
d d bi

abcd efgh ijkl mnop – Gill Sans abcd efgh ijkl mnop – Times
abcd efgh ijkl mnop – Arial abcd efgh ijkl mnop – Garamond

 pre-rendered bitmaps

 single resolution (don’t scale well)
 use BitBlT to put into frame buffer

 outline definitions
 multi-resolution (can scale)
 need to render (fill) to put into frame buffer

These notes are mainly set in Gill Sans, a lineale (sans-serif) typeface designed by Eric
Gill for Monotype, 1928–30. The lowercase italic p is particularly interesting.
Mathematics is mainly set in Times New Roman, a roman typeface commissioned by
The Times in 1931, the design supervised by Stanley Morison.

108

Application 3: Postscript

 industry standard rendering language for printers
 developed by Adobe Systems
 stack-based interpreted language
 basic features

 object outlines made up of lines, arcs & Bezier curves

 objects can be filled or stroked
 whole range of 2D transformations can be applied to objects
 typeface handling built in

 typefaces are defined using Bezier curves
 halftoning

 can define your own functions in the language

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 19

109

Examples which are Bezier-friendly

typeface: Utopia (1989)
designed as a Postscript typeface by

Robert Slimbach at Adobe

typeface: Hobo (1910)
this typeface can be easily
approximated by Beziers

110

Examples which are more fussy

typeface: Helvetica (1957)
abcdQRST2345&

typeface: Palatino (1950)
abcdQRST2345&

111

3D Computer Graphics
3D versions of 2D operations

 clipping, transforms, matrices, curves & surfaces

3D  2D projection
3D scan conversion

 depth-sort, BSP tree, z-Buffer, A-buffer

IP

Background

2D CG

3D CG

p

lighting
texture mapping

112

Surfaces in 3D: polygons

lines generalise to planar polygons
 3 vertices (triangle) must be planar
 > 3 vertices, not necessarily planar

a non-planar
“polygon” rotate the polygon

this vertex is in
front of the other

three, which are all
in the same plane

rotate the polygon
about the vertical axis

should the result be this
or this?

113

Splitting polygons into triangles

 some graphics processors accept only triangles
 an arbitrary polygon with more than three vertices isn’t

guaranteed to be planar; a triangle is

which is preferable?

?

Three-dimensional objects

 polyhedra comprise multiple connected
polygons

 polygon meshes

114

 open or closed
 manifold or non-manifold

 curved surfaces
 must be converted to polygons to be drawn

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 20

115

Curves in 3D

same as curves in 2D, with an extra
co-ordinate for each point

e.g. Bezier cubic in 3D:

P t t P() ()

()

 1

3 1

3
0

2t t P

t t P

t P

()

()

 

 



3 1

3 1

2
1

2
2

3
3

where: P x y zi i i i (, ,)

116

Surfaces in 3D: patches

curves generalise to patches
 a Bezier patch has a Bezier curve running along each of its

four edges and four extra internal control points

117

Bezier patch definition

 the Bezier patch defined by the sixteen control points,
P0,0,P0,1,…,P3,3, is:

b t t b t t t b t t t b t t0
3

1
2

2
2

3
31 3 1 3 1() () () () () () ()      

P s t b s b t Pi j
ji

i j(,) () () ,



0

3

0

3

where:

 compare this with the 2D version:

0 1 2 3() () () () () () ()

P t b t Pi i
i

() ()



0

3

118

Continuity between Bezier patches

each patch is smooth within itself
ensuring continuity in 3D:

 C0 – continuous in position
 the four edge control points must match

 C1 – continuous in both position and tangent vector1 p g
 the four edge control points must match

 the two control points on either side of
each of the four edge control points must
be co-linear with both the edge point and each
other and be equidistant from the edge point

 G1 – continuous in position and tangent direction
 the four edge control points must match
 the relevant control points must be co-linear

 see picture

119

Drawing Bezier patches

 in a similar fashion to Bezier curves, Bezier patches can be drawn by
approximating them with planar polygons

 simple method
 select appropriate increments in s and t and render the resulting quadrilaterals

 tolerance-based adaptive method
 h k if th B i t h i ffi i tl ll i t d b d il t l if  check if the Bezier patch is sufficiently well approximated by a quadrilateral, if so

use that quadrilateral
 if not then subdivide it into two smaller Bezier patches and repeat on each

 subdivide in different dimensions on alternate calls to the subdivision
function

 having approximated the whole Bezier patch as a set of (non-planar)
quadrilaterals, further subdivide these into (planar) triangles
 be careful to not leave any gaps in the resulting surface!

120

Subdividing a Bezier patch — example

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 21

121

Triangulating the subdivided patch

 need to be careful not to generate holes
 need to be equally careful when subdividing connected patches

 consider whether it is worth doing this adaptive method

Final quadrilateral
mesh

Naïve triangulation More intelligent
triangulation

122

3D transformations
 3D homogeneous co-ordinates

 3D transformation matrices

(, , ,) (, ,)x y z w x
w

y
w

z
w

1 0 0 0

0 1 0 0

0 0 1 0











1 0 0

0 1 0

0 0 1

t

t

t

x

y











1 0 0 0

0 0

0 0

cos sin

sin cos

 
 












translation identity rotation about x-axis

0 0 1 0

0 0 0 1









m

m

m

x

y

z

0 0 0

0 0 0

0 0 0

0 0 0 1



















0 0 1

0 0 0 1

tz











cos sin

sin cos

 
 



















0 0

0 0

0 0 1 0

0 0 0 1

0 0

0 0 0 1

sin cos 











cos sin

sin cos

 

 

0 0

0 1 0 0

0 0

0 0 0 1





















scale rotation about y-axisrotation about z-axis

123

3D transformations are not commutative

x

y
z x

z

90° rotation
about z-axis

90° rotation
about x-axis

opposite
faces





x
z

x

y
z

90° rotation
about z-axis

90° rotation
about x-axis





124

A transformation example I
 the graphics package Open Inventor defines a cylinder to be:

 centre at the origin, (0,0,0)

 radius 1 unit
 height 2 units, aligned along the y-axis

 this is the only cylinder that can be drawn,
but the package has a complete set of 3D transformations

 we want to draw a cylinder of:

x

y

2

2

 we want to draw a cylinder of:
 radius 2 units
 the centres of its two ends located at (1,2,3) and (2,4,5)

 its length is thus 3 units
 what transforms are required?

and in what order should they be applied?

A transformation example 2

order is important:
 scale first
 rotate
 translate last

scaling and translation are straightforward

125

x

y

2

2

Sscaling and translation are straightforward

x

y

3

4





















1000

0200

005.10

0002

S





















1000

4100

3010

5.1001

T

translate centre of
cylinder from (0,0,0) to
halfway between (1,2,3)

and (2,4,5)

scale from
size (2,2,2)

to size (4,3,4)

A transformation example 3

rotation is a multi-step process
 break the rotation into steps, each of which is rotation

about a principal axis
 work these out by taking the desired orientation back to

the original axis-aligned position

126

 the centres of its two ends located at (1,2,3) and (2,4,5)

 desired axis: (2,4,5)–(1,2,3) = (1,2,2)

 original axis: y-axis = (0,1,0)

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 22

A transformation example 4

 desired axis: (2,4,5)–(1,2,3) = (1,2,2)
 original axis: y-axis = (0,1,0)

 zero the z-coordinate by rotating about the x-axis

127

0001 
z

22

1

22

2
arcsinθ

1000

0θcosθsin0

0θsinθcos0

0001























R

y

)2,2,1(

 
)0,8,1(

0,22,1 22







A transformation example 5

 then zero the x-coordinate by rotating about the z-axis
 we now have the object’s axis pointing along the y-axis

128

00φsinφcos   y
2 

22

2

81

1
arcsinφ

1000

0100

00φcosφsin

φφ






















R

x

)0,8,1(

)0,3,0(

0,81,0
22









 



A transformation example 6

the overall transformation is:
 first scale
 then take the inverse of the rotation we just calculated
 finally translate to the correct position

129

 xx '































w

z

y

x

w

z

y

x

SRRT 1
2

1
1

'

'

'

Application: display multiple instances

 transformations allow you to define an object at one
location and then place multiple instances in your scene

130

Transformations in OpenGL
131

import javax.media.opengl.GL2;
import easel.* ;

public class Shapes3D implements Algorithm3D {

public void renderFrame(GL2 gl) {
gl.glScaled(2.0, 1.5, 2.0);
gl.glRotated(45.0, 1.0, 0.0, 0.0);
gl glRotated(20 7 0 0 0 0 1 0);

scale

rotate about x-axis

 b igl.glRotated(-20.7, 0.0, 0.0, 1.0);
gl.glTranslated(2.0, -3.0, -1.0);
Renderer.drawCube(gl);

}

public static void main(String[] args) {
System.out.println("Hello");
Renderer.init3D(new Shapes3D());

}
}

rotate about z-axis

translate

function to draw a
coloured cube

The translation on this slide is not that used in the previous example.

The function to draw a coloured cube is provided to save you having
to work out how to do this yourself.

Rotating cube in OpenGL
132

double theta = 0.0 ;

public void renderFrame(GL2 gl) {
theta += 2.0 ;
gl.glScaled(3.0,3.0,3.0);
gl.glRotated(theta, 1.0,1.0,1.0);g g (, , ,);
Renderer.drawCube(gl);

}

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 23

OpenGL’s transformation mechanism

there is a current transformation matrix that is
applied to every vertex that is drawn

the current transformation matrix is set to
identity by the OpenGL system before entering the
renderFrame function

133

glTranslate, glScale, glRotate, etc, create matrices that
are multiplied by the current transformation
matrix to make a new current transformation
matrix

134

3D  2D projection

to make a picture
 3D world is projected to a 2D image

 like a camera taking a photograph
 the three dimensional world is projected onto a plane

The 3D world is described as a setThe 3D world is described as a set
of (mathematical) objects

e.g. sphere radius (3.4)
centre (0,2,9)

e.g. box size (2,4,3)
centre (7, 2, 9)
orientation (27º, 156º)

135

Types of projection

parallel
 e.g.
 useful in CAD, architecture, etc
 looks unrealistic

perspective

(, ,) (,)x y z x y

perspective
 e.g.
 things get smaller as they get farther away
 looks realistic

 this is how cameras work

(, ,) (,)x y z x
z

y
z

Depth cues
136

Rendering depth
137

Perspective

Holy Trinity fresco
Masaccio,1425
Santa Maria Novella, Florence

138

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 24

139School of Athens by Raphael
painted 1510–11
Fresco in the
Vatican

Perspective projection 140

Perspective projection examples

Gates Building – the rounded version
(Stanford)

Gates Building – the rectilinear version
(Cambridge)

False perspective
141 Calculating

perspective
142

143

Viewing volume

viewing plane
(screen plane)

eye point
(camera point)

 the rectangular pyramid is
the viewing volume

 everything within the
viewing volume is projected
onto the viewing plane

144

Geometry of perspective projection

y

z

(, ,)x y z
(' , ' ,)x y d

x x
d
z

'

()0 0 0

d

y y
d
z

'

(, ,)0 0 0

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 25

145

Projection as a matrix operation

x x
d
z

'

























0010

0001

y

x

y

x

y y
d
z

'































 10/100

/1000

/

/1 z

y

d

d

dz

d

y

z
z

1
'

This is useful in the z-buffer
algorithm where we need to
interpolate 1/z values rather
than z values.



































wz

wy

wx

w

z

y

x

/

/

/

 remember

146
Perspective projection

with an arbitrary camera
 we have assumed that:

 screen centre at (0,0,d)

 screen parallel to xy-plane
 z-axis into screen

 y-axis up and x-axis to the right
 () t i i (0 0 0) eye (camera) at origin (0,0,0)

 for an arbitrary camera we can either:
 work out equations for projecting objects about an arbitrary point

onto an arbitrary plane
 transform all objects into our standard co-ordinate system (viewing

co-ordinates) and use the above assumptions

147

A variety of transformations

 the modelling transform and viewing transform can be multiplied together to
produce a single matrix taking an object directly from object co-ordinates into
viewing co-ordinates

object in
world

co-ordinates

object in
viewing

co-ordinatesviewing
transform

object in
2D screen

co-ordinates
projection

object in
object

co-ordinates modelling
transform

g
 either or both of the modelling transform and viewing transform matrices can

be the identity matrix

 e.g. objects can be specified directly in viewing co-ordinates, or directly in
world co-ordinates

 this is a useful set of transforms, not a hard and fast model of how things
should be done

148

Viewing transform 1

the problem:
 to transform an arbitrary co-ordinate system to the

default viewing co ordinate system

world
co-ordinates

viewing
co-ordinatesviewing

transform

default viewing co-ordinate system

camera specification in world co-ordinates
 eye (camera) at (ex,ey,ez)

 look point (centre of screen) at (lx,ly,lz)

 up along vector (ux,uy,uz)
 perpendicular to

u

e

l

el

149

Viewing transform 2

 translate eye point, (ex,ey,ez), to origin, (0,0,0)

 scale so that eye point to look point distance, , is distance el

T 























1 0 0

0 1 0

0 0 1

0 0 0 1

e

e

e

x

y

z

 scale so that eye point to look point distance, , is distance
from origin to screen centre, d

el S

el

el

el

      



















() () ()l e l e l ex x y y z z

d

d

d

2 2 2

0 0 0

0 0 0

0 0 0

0 0 0 1

150

Viewing transform 3

 need to align line with z-axis
 first transform e and l into new co-ordinate system

 then rotate e''l'' into yz-plane, rotating about y-axis

el

e S T e 0 l S T l'' ''      

0θsin0θcos   z

 

22

1

''''

''
arccosθ

1000

0θcos0θsin

0010

0θsin0θcos

zx

z

ll

l






















R

x

(' ' , ' ' , ' ')l l lx y z

 0 2 2, ' ' , ' ' ' 'l l ly x z



Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 26

151

Viewing transform 4

 having rotated the viewing vector onto the yz plane, rotate it
about the x-axis so that it aligns with the z-axis

0001  z 0 0 2 2' ' ' ' ' 'l l

l R l''' '' 1

22

2

''''''

'''
arccosφ

1000

0φcosφsin0

0φsinφcos0

000

zy

z

ll

l























R

y

(, ' ' ' , ' ' ')0 l ly z

 0 0

0 0

, ,

(, ,)

l l

d

y z





152

Viewing transform 5

 the final step is to ensure that the up vector actually points up,
i.e. along the positive y-axis
 actually need to rotate the up vector about the z-axis so that it lies in the

positive y half of the yz plane

u R R u''''   2 1
why don’t we need to
multiply u by S or T?

u is a vector rather than
a point, vectors do not
get translated

scaling u by a uniform
scaling matrix would
make no difference to the
direction in which it
points

22

3

''''''''

''''
arccosψ

1000

0100

00ψcosψsin

00ψsinψcos

yx

y

uu

u




















 

R

153

Viewing transform 6

 we can now transform any point in world co-ordinates to the
equivalent point in viewing co-ordinate

world
co-ordinates

viewing
co-ordinatesviewing

transform

x x'









 in particular:
 the matrices depend only on e, l, and u, so they can be pre-

multiplied together

y

z

w

y

z

w

'

'

'

 


     



 



R R R S T3 2 1

e l (, ,) (, ,)0 0 0 0 0 d

M R R R S T    3 2 1

154

Clipping in 3D

clipping against a volume in viewing co-ordinates

2a

a point (x,y,z) can be
clipped against the
pyramid by checking it
against four planes:

x

y

z
d

2b x z
a
d

x z
a
d

y z
b
d

y z
b
d

  

  

155

What about clipping in z?

 need to at least check for z <
0 to stop things behind the
camera from projecting onto
the screen

 can also have front and back

x

y

z

oops!

 can also have front and back
clipping planes:
z > zf and z < zb

 resulting clipping volume is
called the viewing frustum

zf
x

y

z

zb

156

Clipping in 3D — two methods

clip against the viewing frustum
 need to clip against six planes

 2D () d l h

x z
a
d

x z
a
d

y z
b
d

y z
b
d

z z z zf b       

which is
best?

project to 2D (retaining z) and clip against the axis-
aligned cuboid
 still need to clip against six planes

 these are simpler planes against which to clip
 this is equivalent to clipping in 2D with two extra clips for z

x a x a y b y b z z z zf b       

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 27

157

Bounding volumes & clipping

can be very useful for reducing the amount of work
involved in clipping

what kind of bounding volume?

 axis aligned box g

 sphere

can have multiple levels of bounding volume

158

3D scan conversion

lines
polygons

 depth sort
 Binary Space-Partitioning tree
 z-buffer z buffer
 A-buffer

159

3D line drawing

 given a list of 3D lines we draw them by:
 projecting end points onto the 2D screen
 using a line drawing algorithm on the resulting 2D lines

 this produces a wireframe version of whatever objects are
represented by the lines

160

Hidden line removal

 by careful use of cunning algorithms, lines that are hidden by
surfaces can be carefully removed from the projected version
of the objects
 still just a line drawing

 will not be covered further in this course

161

3D polygon drawing

 given a list of 3D polygons we draw them by:
 projecting vertices onto the 2D screen

 but also keep the z information
 using a 2D polygon scan conversion algorithm on the resulting 2D

polygons

 in what order do we draw the polygons?
 some sort of order on z

 depth sort
 Binary Space-Partitioning tree

 is there a method in which order does not matter?
 z-buffer

162

Depth sort algorithm

transform all polygon vertices into viewing co-ordinates
and project these into 2D, keeping z information

calculate a depth ordering for polygons, based on the most distant
z co-ordinate in each polygon

resolve any ambiguities caused by polygons overlapping in z
d h l i d h d f b k fdraw the polygons in depth order from back to front

 “painter’s algorithm”: later polygons draw on top of earlier polygons

 steps  and  are simple, step  is 2D polygon scan conversion,
step  requires more thought

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 28

163

Resolving ambiguities in depth sort

 may need to split polygons into smaller polygons to make a
coherent depth ordering





OK

OK

split









split










164

Resolving ambiguities: algorithm
 for the rearmost polygon, P, in the list, need to compare each polygon,

Q, which overlaps P in z
 the question is: can I draw P before Q?

do the polygons y extents not overlap?
do the polygons x extents not overlap?
 is P entirely on the opposite side of Q’s plane from the viewpoint?
 is Q entirely on the same side of P’s plane as the viewpoint?

tests get
more

expensive
 is Q entirely on the same side of P s plane as the viewpoint?

 if all 4 tests fail, repeat  and  with P and Q swapped (i.e. can I
draw Q before P?), if true swap P and Q

 otherwise split either P or Q by the plane of the other, throw away
the original polygon and insert the two pieces into the list

 draw rearmost polygon once it has been completely checked

Split a polygon by a plane

 remember the Sutherland-Hodgman algorithm
 splits a 2D polygon against a 2D line

 do the same in 3D: split a (planar) polygon by a plane

 line segment defined by (xs,ys,zs) and (xe,ye,ze)

165

s
e

inside outside

p

 clipping plane defined by ax+by+cz+d=0

 test to see which side of plane a point is on:
 k=ax+by+cz+d

 k negative: inside, k positive: outside, k=0: on edge
 apply this test to all vertices of a polygon; if all have the same sign then the

polygon is entirely on one side of the plane

166

Depth sort: comments

 the depth sort algorithm produces a list of polygons which
can be scan-converted in 2D, backmost to frontmost, to
produce the correct image

 it is reasonably cheap for small number of polygons, but
b i f l b f lbecomes expensive for large numbers of polygons

 the ordering is only valid from one particular viewpoint

167

Back face culling: a time-saving trick
 if a polygon is a face of a closed polyhedron

and faces backwards with respect to the
viewpoint then it need not be drawn at all
because front facing faces would later obscure
it anyway
 saves drawing time at the the cost of one extra test







per polygon

 assumes that we know which way a polygon is
oriented

 back face culling can be used in combination
with any 3D scan-conversion algorithm

168

Binary Space-Partitioning trees

 BSP trees provide a way of quickly calculating the correct
depth order:
 for a collection of static polygons
 from an arbitrary viewpoint

 the BSP tree trades off an initial time- and space-intensive pre-
processing step against a linear display algorithm (O(N)) which processing step against a linear display algorithm (O(N)) which
is executed whenever a new viewpoint is specified

 the BSP tree allows you to easily determine the correct order
in which to draw polygons by traversing the tree in a simple
way

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 29

169

BSP tree: basic idea

 a given polygon will be correctly scan-converted if:
 all polygons on the far side of it from the viewer are scan-converted

first
 then it is scan-converted
 then all the polygons on the near side of it are scan-converted

170

Making a BSP tree

 given a set of polygons
 select an arbitrary polygon as the root of the tree
 divide all remaining polygons into two subsets:

 those in front of the selected polygon’s plane

 those behind the selected polygon’s plane
 any polygons through which the plane passes are split into two y p yg g p p p

polygons and the two parts put into the appropriate subsets

 make two BSP trees, one from each of the two subsets
 these become the front and back subtrees of the root

 may be advisable to make, say, 20 trees with different
random roots to be sure of getting a tree that is reasonably
well balanced

You need to be able to tell which side of an arbitrary plane a vertex lies on and how to split a
polygon by an arbitrary plane – both of which were discussed for the depth-sort algorithm.

171

Drawing a BSP tree

 if the viewpoint is in front of the root’s polygon’s plane
then:
 draw the BSP tree for the back child of the root
 draw the root’s polygon

 draw the BSP tree for the front child of the root

 otherwise: otherwise:
 draw the BSP tree for the front child of the root
 draw the root’s polygon

 draw the BSP tree for the back child of the root

172

Scan-line algorithms
 instead of drawing one polygon at a time:

modify the 2D polygon scan-conversion algorithm to handle all of the
polygons at once

 the algorithm keeps a list of the active edges in all polygons and
proceeds one scan-line at a time
 there is thus one large active edge list and one (even larger) edge list

 enormous memory requirements enormous memory requirements

 still fill in pixels between adjacent pairs of edges on the scan-line but:
 need to be intelligent about which polygon is in front

and therefore what colours to put in the pixels
 every edge is used in two pairs:

one to the left and one to the right of it

173

z-buffer polygon scan conversion

depth sort & BSP-tree methods involve clever sorting
algorithms followed by the invocation of the standard
2D polygon scan conversion algorithm

by modifying the 2D scan conversion algorithm we
can remove the need to sort the polygonsp yg
 makes hardware implementation easier
 this is the algorithm used on graphics cards

174

z-buffer basics

store both colour and depth at each pixel

scan convert one polygon at a time in any order

 h lwhen scan converting a polygon:
 calculate the polygon’s depth at each pixel
 if the polygon is closer than the current depth stored at

that pixel
 then store both the polygon’s colour and depth at that pixel

 otherwise do nothing

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 30

175

z-buffer algorithm

FOR every pixel (x,y)
Colour[x,y] = background colour ;
Depth[x,y] = infinity ;

END FOR ;

FOR each polygon
FOR every pixel (x,y) in the polygon’s projection

 = l ’ l t i l ()

this requires you to
project the polygon’s
vertices to 2D and run
the 2D polygon scan-
conversion algorithm

this requires you to
modify the 2D algorithm z = polygon’s z-value at pixel (x,y) ;

IF z < Depth[x,y] THEN
Depth[x,y] = z ;
Colour[x,y] = polygon’s colour at (x,y) ;

END IF ;
END FOR ;

END FOR ;

modify the 2D algorithm
so that it can compute
the z-value at each pixel

176

z-buffer example

     
     
     

     
     
     

     
     
     

     
     
     

     
     
     

     
     
     

177

Interpolating depth values 1

 just as we incrementally interpolate x as we move along
each edge of the polygon, we can incrementally
interpolate z:
 as we move along the edge of the polygon

 as we move across the polygon’s projection

(, ,)x y z1 1 1

(, ,)x y z2 2 2

(, ,)x y z3 3 3

(' , ' ,)x y d1 1

(' , ' ,)x y d2 2

(' , ' ,)x y d3 3

project

x x
d
z

y y
d
z

a a
a

a a
a

'

'





178

Interpolating depth values 2

 we thus have 2D vertices, with added depth information

 we can interpolate x and y in 2D

[(' , '),]x y za a a

x t x t x

y t y t y

' () ' () '

' () ' () '

  


1

1
1 2

this point is halfway
between front and

back in 2D (measure
with a ruler if you do

t b li it)

 but z must be interpolated in 3D

y t y t y' () ' () '  1 1 2

1
1

1 1

1 2z
t

z
t

z
  () ()

not believe it)

this point is halfway
between front and
back in 3D (count the
rungs on the ladder)

179

Interpolating depth values 3







21 '')1('

'

txxtx

z

bd
ad

z

d
xx

bazx consider the projection onto the plane y=0

interpolate x′ in 2D space

now project to z=d







































21

21

21

11
)1(

1

)1(

)(

z
t

z
t

z

z

bd
adt

z

bd
adt

z

bd
ad

180

Comparison of methods

 BSP is only useful for scenes which do not change

Algorithm Complexity Notes
Depth sort O(N log N) Need to resolve ambiguities
Scan line O(N log N) Memory intensive
BSP tree O(N) O(N log N) pre-processing step
z-buffer O(N) Easy to implement in hardware

 as number of polygons increases, average size of polygon decreases, so time to
draw a single polygon decreases

 z-buffer easy to implement in hardware: simply give it polygons in any order you
like

 other algorithms need to know about all the polygons before drawing a single
one, so that they can sort them into order

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 31

181

Putting it all together - a summary

a 3D polygon scan conversion algorithm needs to
include:
 a 2D polygon scan conversion algorithm
 2D or 3D polygon clipping
 projection from 3D to 2Dp j
 either:

 ordering the polygons so that they are drawn in the correct order

or:
 calculating the z value at each pixel and using a depth-buffer

182

Sampling
 all of the methods so far take a single

sample for each pixel at the precise
centre of the pixel
 i.e. the value for each pixel is the colour of

the polygon which happens to lie exactly
under the centre of the pixel

h l d  this leads to:
 stair step (jagged) edges to polygons

 small polygons being missed completely
 thin polygons being missed completely or

split into small pieces

183

Anti-aliasing

 these artefacts (and others) are jointly known as aliasing
 methods of ameliorating the effects of aliasing are known as

anti-aliasing

 in signal processing aliasing is a precisely defined technical term for a
particular kind of artefactp

 in computer graphics its meaning has expanded to include most
undesirable effects that can occur in the image

 this is because the same anti-aliasing techniques which ameliorate
true aliasing artefacts also ameliorate most of the other artefacts

184

Anti-aliasing method 1: area averaging
 average the contributions of all polygons to each pixel

 e.g. assume pixels are square and we just want the average
colour in the square

 Ed Catmull developed an algorithm which does this:
 works a scan-line at a time
 clips all polygons to the scan-line
 d t i th f t f h l hi h j t  determines the fragment of each polygon which projects

to each pixel
 determines the amount of the pixel covered by the visible

part of each fragment
 pixel's colour is a weighted sum of the visible parts

 expensive algorithm!

185

Anti-aliasing method 2: super-sampling

 sample on a finer grid, then
average the samples in each
pixel to produce the final
colour
 for an nn sub-pixel grid, the

algorithm would take roughly n2

times as long as just taking one
sample per pixel

 can simply average all of the
sub-pixels in a pixel or can do
some sort of weighted average

186

The A-buffer – efficient super-sampling

 a significant modification of the z-buffer, which allows for sub-
pixel sampling without as high an overhead as straightforward
super-sampling

 basic observation:
 a given polygon will cover a pixel:

 totally totally
 partially
 not at all

 sub-pixel sampling is only required in the
case of pixels which are partially covered
by the polygon

L. Carpenter, “The A-buffer: an antialiased hidden surface method”, SIGGRAPH 84, 103–8

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 32

187

A-buffer: details

 for each pixel, a list of masks is stored
 each mask shows how much of a polygon covers the pixel
 the masks are sorted in depth order
 a mask is a 48 array of bits:

need to store both
colour and depth in
addition to the mask{

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

1 = polygon covers this sub-pixel

0 = polygon doesn’t cover this sub-pixel

sampling is done at the centre of each
of the sub-pixels

The use of 4×8 bits is because of the original architecture on which this was implemented.
You could use any number of sub-pixels: a power of 2 is obviously sensible.

188

A-buffer: example

 to get the final colour of the pixel you need to average
together all visible bits of polygons

1 1 1 1 1 1 1 1

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 1 1 1

0 0 0 0 1 1 1 1

0 0 0 0 0 0 0 0

1 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

sub-pixel
colours

final pixel
colour(frontmost) (backmost)A B C

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1

A=11111111 00011111 00000011 00000000
B=00000011 00000111 00001111 00011111
C=00000000 00000000 11111111 11111111

AB =00000000 00000000 00001100 00011111
ABC =00000000 00000000 11110000 11100000

A covers 15/32 of the pixel
AB covers 7/32 of the pixel
ABC covers 7/32 of the pixel

189

Making the A-buffer more efficient

 if a polygon totally covers a pixel then:
 do not need to calculate a mask, because the mask is all 1s
 all masks currently in the list which are behind this polygon can be

discarded
 any subsequent polygons which are behind this polygon can be

immediately discounted (without calculating a mask)

 in most scenes, therefore, the majority of pixels will have only
a single entry in their list of masks

 the polygon scan-conversion algorithm can be structured so
that it is immediately obvious whether a pixel is totally or
partially within a polygon

190

A-buffer: calculating masks

 clip polygon to pixel
 calculate the mask for each edge bounded by the right hand

side of the pixel
 there are few enough of these that they can be stored in a look-up

table

 XOR all masks together XOR all masks together

0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 1 1 1 1 0 0

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 1 1 1 1 1 1

0 0 1 1 1 1 1 1

0 1 1 1 1 1 1 1

0 0 0 0 0 0 0 0

0 0 0 1 1 1 1 1

0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0

   

191

A-buffer: comments

 the A-buffer algorithm essentially adds anti-aliasing to the z-
buffer algorithm in an efficient way

 most operations on masks are AND, OR, NOT, XOR
 very efficient boolean operations

 why 48? why 48?
 algorithm originally implemented on a machine with 32-bit registers

(VAX 11/780)

 on a 64-bit register machine, 88 is more sensible

 what does the A stand for in A-buffer?
 anti-aliased, area averaged, accumulator

192

A-buffer: extensions

 as presented the algorithm assumes that a mask has a constant
depth (z value)
 can modify the algorithm and perform approximate intersection

between polygons

 can save memory by combining fragments which start life in
the same primitivep
 e.g. two triangles that are part of the decomposition of a Bezier patch

 can extend to allow transparent objects

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 33

Illumination & shading
 until now we have assumed that each polygon is a uniform colour and

have not thought about how that colour is determined

193 194

Background

what is a digital image?
 what are the constraints on digital images?

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

2D CG IP

3D CG

Background

what hardware do we use?

how do we represent colour?

how do displays & printers work?
 how do we fool the human eye into seeing what we want it

to see?

195

What is required for vision?

illumination
 some source of light

objects
 which reflect (or transmit) the light

eyesy
 to capture the light as an image

direct viewing transmission reflection

196

Light: wavelengths & spectra

light is electromagnetic radiation
 visible light is a tiny part of the electromagnetic spectrum
 visible light ranges in wavelength from 700nm (red end of spectrum)

to 400nm (violet end)

every light has a spectrum of wavelengths that it emits
 b h f l h h every object has a spectrum of wavelengths that it

reflects (or transmits)
the combination of the two gives the spectrum of

wavelengths that arrive at the eye

197

The spectrum
visible light is only a tiny
part of the whole
electromagnetic spectrum

the short wavelength
end of the spectrum

is violet

the long wavelength
end of the spectrum
is red

violet blue green yellow red

198
Illuminants have different characteristics

different lights emit
different intensities of
each wavelength
 sunlight is reasonably

uniform
 incandescent light

bulbs are very red
 sodium street lights

emit almost pure
yellow

www.gelighting.com/na/business_lighting/education_resources/learn_about_light/

Incandescent Light Bulbs

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 34

199

Illuminant × reflection = reflected light

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

daylight

g g g

intensity

wavelength

reflectivity

wavelength

intensity received
by the eye

wavelength

× =

incandescent light bulb

200
incandescent light bulb camera flash bulb

compare these things:

 colour of the
monkey’s nose and
paws: more red under

t i li ht

Comparison
of

illuminants

halogen light bulbs (overhead)winter sunlight

certain lights

 oranges & yellows
(similar in all)

 blues & violets
(considerably
different)

201

Representing colour

we need a mechanism which allows us to represent
colour in the computer by some set of numbers
 preferably a small set of numbers which can be quantised

to a fairly small number of bits each

we will discuss:
 Munsell’s artists’ scheme

 which classifies colours on a perceptual basis

 the mechanism of colour vision
 how colour perception works

 various colour spaces
 which quantify colour based on either physical or perceptual

models of colour

202

Munsell’s colour classification system

three axes
 hue  the dominant colour
 value  bright colours/dark colours
 chroma  vivid colours/dull colours

 can represent this as a 3D graph

203

Munsell’s colour classification system

any two adjacent colours are a standard “perceptual”
distance apart
 worked out by testing it on people
 a highly irregular space

 e.g. vivid yellow is much brighter than vivid blue

invented by Albert H. Munsell, an American artist, in 1905 in an attempt to systematically classify colours

204

Colour vision

 there are three types of cone
 each responds to a different

spectrum
 very roughly long, medium,

and short wavelengths

 each has a response function:p
l(), m(), s()

 different numbers of the different types
 far fewer of the short wavelength receptors
 so cannot see fine detail in blue

 overall intensity response of the cones can be calculated
 y() = l() + m() + s()

 y = k  P() y() d is the perceived luminance in the fovea

 y = k  P() r() d is the perceived luminance outside the fovea r() is the response
function of the rods

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 35

205

Distribution of different cone types

 this is about 1° of visual angle
 distribution is:

 7% short, 37% medium, 56% long

 short wavelength receptors

simulated cone distribution at
the centre of the fovea

 regularly distributed
 not in the central 1/3°
 outside the fovea, only 1% of cones

are short

 long & medium
 about 3:2 ratio long:medium

www.cis.rit.edu/people/faculty/montag/vandplite/pages/chap_9/ch9p1.html

206

Colour signals sent to the brain

 the signal that is sent to the brain is pre-processed by the retina
+ + =long medium short luminance

– =long medium

+ – =long medium short yellow-blue

red-green

 this theory explains:
 colour-blindness effects
 why red, yellow, green and blue are

perceptually important colours
 why you can see e.g. a yellowish red

but not a greenish red

g y

207

Chromatic metamerism

 many different spectra will induce the same response in our
cones
 the values of the three perceived values can be calculated as:

 l = k  P() l() d
 m = k  P() m() d
 s = k  P() s() d () ()

 k is some constant, P() is the spectrum of the light incident on the retina

 two different spectra (e.g. P1() and P2()) can give the same values
of l, m, s

 we can thus fool the eye into seeing (almost) any colour by mixing correct
proportions of some small number of lights

208

Mixing coloured lights

by mixing different amounts of red, green,
and blue lights we can generate a wide
range of responses in the human eye

not all colours can be created in this way

red

green

blue

green

blue
light
off

red
light

fully on

209

XYZ colour space

not every wavelength can be represented as a mix of red,
green, and blue lights

but matching & defining coloured light with a mixture of
three fixed primaries is desirable

CIE define three standard primaries: X Y Z

FvDFH Sec 13.2.2

CIE define three standard primaries: X, Y, Z

Y matches the human eye’s response to light of a
constant intensity at each wavelength (luminous-
efficiency function of the eye)

X, Y, and Z are not themselves colours, they are
used for defining colours – you cannot make a light
that emits one of these primaries

XYZ colour space was defined in 1931 by the Commission
Internationale de l’ Éclairage (CIE)

210

CIE chromaticity diagram

chromaticity values are defined in terms of x, y, z

 ignores luminance
 can be plotted as a 2D function

x
X

X Y Z
y

Y
X Y Z

z
Z

X Y Z
x y z

 


 


 
   , , 1

FvDFH Fig 13.24
Colour plate 2540nm

520nm

510nm

 pure colours (single wavelength)
lie along the outer curve

 all other colours are a mix of
pure colours and hence lie
inside the curve

 points outside the curve do not
exist as colours

580nm

600nm

700nm

560nm

500nm

490nm

480nm

460nm
410nm

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 36

211

Colour spaces
 CIE XYZ, Yxy

 Uniform
 equal steps in any direction make equal perceptual differences

 CIE L*u*v*, CIE L*a*b*

 Pragmatic
 used because they relate directly to the way that the hardware works used because they relate directly to the way that the hardware works

 RGB, CMY, CMYK

 Munsell-like
 used in user-interfaces
 considered to be easier to use for specifying colour than are the pragmatic

colour spaces
 map easily to the pragmatic colour spaces
 HSV, HLS

212

XYZ is not perceptually uniform

Each ellipse shows how
far you can stray from
the central point before
a human being notices
a difference in colour

213

Luv was designed to be more uniform
214

Luv colour space

L is luminance and is
orthogonal to u and v, the
two colour axes

L*u*v* is an official CIE colour space. It is a straightforward distortion of XYZ space.

215

Lab space
another CIE colour

space
based on complementary

colour theory
 see slide 49 (Colour

signals sent to the brain)

also aims to be
perceptually uniform

L*=116(Y/Yn)1/3

a*=500[(X/Xn)1/3-(Y/Yn)1/3]

b*=200[(Y/Yn)1/3-(Z/Zn)1/3]

216

Lab space

this visualization shows
those colours in Lab space
which a human can perceive

again we see that human
perception of colour is not p p
uniform
 perception of colour

diminishes at the white and
black ends of the L axis

 the maximum perceivable
chroma differs for different
hues

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 37

217

RGB space

all display devices which output light mix red, green
and blue lights to make colour
 televisions, CRT monitors, video projectors, LCD screens

nominally, RGB space is a cube
the device puts physical limitations on:the device puts physical limitations on:

 the range of colours which can be displayed
 the brightest colour which can be displayed
 the darkest colour which can be displayed

218

RGB in XYZ space
CRTs and LCDs mix red, green, and blue to make all

other colours
the red, green, and blue primaries each map to a point

in XYZ space
any colour within the resultingy g

triangle can be displayed
 any colour outside the triangle

cannot be displayed
 for example: CRTs cannot display

very saturated purple, turquoise,
or yellow FvDFH Figs 13.26, 13.27

219

CMY space

printers make colour by mixing coloured inks
the important difference between inks (CMY) and

lights (RGB) is that, while lights emit light, inks absorb
light
 cyan absorbs red, reflects blue and green y , g
 magenta absorbs green, reflects red and blue
 yellow absorbs blue, reflects green and red

CMY is, at its simplest, the inverse of RGB

CMY space is nominally a cube

220

Ideal and actual printing ink reflectivities

ideal

actual

221

CMYK space
in real printing we use black

(key) as well as CMY

why use black?
 inks are not perfect absorbers
 mixing C + M + Y gives a muddy g g y

grey, not black
 lots of text is printed in black:

trying to align C, M and Y perfectly
for black text would be a
nightmare

222

Using K

if we print using just
CMY then we can get
up to 300% ink at any
point on the paper

removing the g
achromatic portion of
CMY and replacing
with K reduces the
maximum possible ink
coverage to 200%

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 38

223

Colour spaces for user-interfaces

RGB and CMY are based on the physical devices
which produce the coloured output

RGB and CMY are difficult for humans to use for
selecting colours

Munsell’s colour system is much more intuitive:Munsell s colour system is much more intuitive:
 hue — what is the principal colour?
 value — how light or dark is it?
 chroma — how vivid or dull is it?

computer interface designers have developed basic
transformations of RGB which resemble Munsell’s
human-friendly system

224

HSV: hue saturation value

three axes, as with Munsell
 hue and value have same meaning
 the term “saturation” replaces

the term “chroma”

 designed by Alvy Ray Smith in 1978
 algorithm to convert HSV to RGB

and back can be found in Foley et al.,
Figs 13.33 and 13.34

225

HLS: hue lightness saturation
a simple variation of HSV

 hue and saturation have same
meaning

 the term “lightness” replaces the
term “value”

designed to address the
complaint that HSV has all pure
colours having the same
lightness/value as white
 designed by Metrick in 1979
 algorithm to convert HLS to RGB

and back can be found in Foley et
al., Figs 13.36 and 13.37

226

Summary of colour spaces
 the eye has three types of colour receptor
 therefore we can validly use a three-dimensional

co-ordinate system to represent colour
 XYZ is one such co-ordinate system

 Y is the eye’s response to intensity (luminance)
 X and Z are, therefore, the colour co-ordinates

 same Y, change X or Z  same intensity, different colour
 same X and Z, change Y  same colour, different intensity

 there are other co-ordinate systems with a luminance axis
 L*a*b*, L*u*v*, HSV, HLS

 some other systems use three colour co-ordinates
 RGB, CMY

 luminance can then be derived as some function of the three
 e.g. in RGB: Y = 0.299 R + 0.587 G + 0.114 B

227

3D Computer Graphics
3D  2D projection
3D versions of 2D operations

 clipping, transforms, matrices, curves & surfaces

3D scan conversion
 depth-sort, BSP tree, z-Buffer, A-buffer

IP

Background

2D CG

3D CG

p

lighting
texture mapping

228

Illumination & shading

 until now we have assumed that each polygon is a uniform
colour and have not thought about how that colour is
determined

 things look more realistic if there is some sort of illumination
in the scene

 we therefore need a mechanism of determining the colour of  we therefore need a mechanism of determining the colour of
a polygon based on its surface properties and the positions of
the lights

 we will, as a consequence, need to find ways to shade
polygons which do not have a uniform colour

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 39

Different materials have different reflectances
229 230

BRDF

Bidirectional Reflectance
Distribution Function

BRDF

Bidirectional Reflectance
Distribution Function
 ρ(θi ,i ; θo, o)

BRDF

Bidirectional Reflectance
Distribution Function
 ρ(θi ,i ; θo, o)

 Isotropic material
 Invariant when material is rotated Invariant when material is rotated
 BRDF is 3D
 ρ(θi ,θo,diff)

We can lookup the ρ value for a
point (e.g., a vertex) if we know:
 the light’s position
 the camera’s position
 position and normal at the point

Capturing an anisotropic BRDF

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 40

Equations for lighting

Rather than using a BRDF look-up table, we might
prefer a simple equation

 This is a trade-off that has occurred often in the history of
computing

235

 Early years: memory is expensive, so use a calculated
approximation to the truth

 More recently: memory is cheap, so use a large look-up
table captured from the real world to give an accurate
answer

 Examples include: surface properties in graphics, sounds for
electric pianos/organs, definitions of 3D shape

236

How do surfaces reflect light?

    

perfect specular
reflection

Imperfect specular
reflection

diffuse reflection
(Lambertian reflection)

(mirror)

Johann Lambert, 18th century German mathematician

the surface of a specular reflector is facetted,
each facet reflects perfectly but in a slightly
different direction to the other facets

237

Comments on reflection

 the surface can absorb some wavelengths of light
 e.g. shiny gold or shiny copper

 specular reflection has “interesting” properties at glancing angles
owing to occlusion of micro-facets by one anotherg y

 plastics are good examples of surfaces with:
 specular reflection in the light’s colour
 diffuse reflection in the plastic’s colour

238

Calculating the shading of a polygon
 gross assumptions:

 there is only diffuse (Lambertian) reflection
 all light falling on a polygon comes directly from a light source

 there is no interaction between polygons

 no polygon casts shadows on any other
 so can treat each polygon as if it were the only polygon in the scene

li h id d b i fi i l di f h l light sources are considered to be infinitely distant from the polygon
 the vector to the light is the same across the whole polygon

 observation:
 the colour of a flat polygon will be uniform across its surface, dependent only

on the colour & position of the polygon and the colour & position of the light
sources

239

Diffuse shading calculation

L is a normalised vector pointing in
the direction of the light source

N is the normal to the polygon

Il is the intensity of the light source

kd is the proportion of light which is

L

N

I I k  diffusely reflected by the surface

I is the intensity of the light reflected
by the surface

I I k

I k N L
l d

l d


 

cos

()



use this equation to set the colour of the whole polygon and draw the polygon
using a standard polygon scan-conversion routine

240

Diffuse shading: comments

 can have different Il and different kd for different wavelengths
(colours)

 watch out for cos < 0
 implies that the light is behind the polygon and so it cannot illuminate

this side of the polygon

 do you use one-sided or two-sided polygons? do you use one sided or two sided polygons?
 one sided: only the side in the direction of the normal vector can be

illuminated
 if cos < 0 then both sides are black

 two sided: the sign of cos determines which side of the polygon is
illuminated
 need to invert the sign of the intensity for the back side

 this is essentially a simple one-parameter ( BRDF

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 41

241
Gouraud shading

 for a polygonal model, calculate the diffuse illumination at each
vertex rather than for each polygon
 calculate the normal at the vertex, and use this to calculate the diffuse

illumination at that point
 normal can be calculated directly if the polygonal model was derived from a

curved surface

 interpolate the colour across the
polygon, in a similar manner to that
used to interpolate z

 surface will look smoothly curved
 rather than looking like a set of polygons

 surface outline will still look polygonal

[(' , '), , (, ,)]x y z r g b1 1 1 1 1 1

[(' , '), ,
(, ,)]

x y z
r g b

2 2 2

2 2 2

[(' , ') , , (, ,)]x y z r g b3 3 3 3 3 3

Henri Gouraud, “Continuous Shading of Curved Surfaces”, IEEE Trans Computers, 20(6), 1971

242

Flat vs Gouraud shading

 note how the interior is smoothly
shaded but the outline remains
polygonal

http://computer.howstuffworks.com/question484.htm

243
Specular reflection

 Phong developed an easy-to-
calculate approximation to
specular reflection

 

N
R

V

L

 

L is a normalised vector pointing in the
direction of the light source

R is the vector of perfect reflection

N is the normal to the polygon

V is a normalised vector pointing at the
viewer

Il is the intensity of the light source 
 V Il is the intensity of the light source

ks is the proportion of light which is
specularly reflected by the surface

n is Phong’s ad hoc “roughness” coefficient

I is the intensity of the specularly reflected
light

I I k
I k R V

l s
n

l s
n


 

cos
()



Phong Bui-Tuong, “Illumination for computer
generated pictures”, CACM, 18(6), 1975, 311–7

n=1 n=3 n=7 n=20 n=40

244

Phong shading

 similar to Gouraud shading, but calculate the specular component
in addition to the diffuse component

 therefore need to interpolate the normal across the polygon in
order to be able to calculate the reflection vector

 N.B. Phong’s approximation to
specular reflection ignores
(amongst other things) the
effects of glancing incidence

[(' , '), , (, ,),]x y z r g b1 1 1 1 1 1 1N

[(' , ') , ,
(, ,) ,]

x y z
r g b

2 2 2

2 2 2 2N

[(' , ') , , (, ,) ,]x y z r g b3 3 3 3 3 3 3N

245

Examples

specular
reflection

100%

75%

50%

diffuse reflection

reflection

100% 75% 50% 25% 0%

25%

0%

246

The gross assumptions revisited
 only diffuse reflection

 now have a method of approximating specular reflection

 no shadows
 need to do ray tracing or shadow mapping to get shadows

 lights at infinity
 can add local lights at the expense of more calculationg p

 need to interpolate the L vector

 no interaction between surfaces
 cheat!

 assume that all light reflected off all other surfaces onto a given polygon
can be amalgamated into a single constant term: “ambient illumination”,
add this onto the diffuse and specular illumination

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 42

247

Shading: overall equation

 the overall shading equation can thus be considered to be the
ambient illumination plus the diffuse and specular reflections
from each light source

 

N
Ri

V

Li

I I k I k L N I k R Vi d i i i
n     () ()

 the more lights there are in the scene, the longer this calculation will take

 
 VI I k I k L N I k R Va a i d i i s i

ii

   () ()

248

Illumination & shading: comments
 how good is this shading equation?

 gives reasonable results but most objects tend to look as if they are made
out of plastic

 Cook & Torrance have developed a more realistic (and more expensive)
shading model which takes into account:
 micro-facet geometry (which models, amongst other things, the

roughness of the surface)

 Fresnel’s formulas for reflectance off a surface
 there are other, even more complex, models

 is there a better way to handle inter-object interaction?
 “ambient illumination” is a gross approximation

 distributed ray tracing can handle specular inter-reflection
 radiosity can handle diffuse inter-reflection

249

Surface detail
so far we have assumed perfectly smooth,

uniformly coloured surfaces
real life isn’t like that:

 multicoloured surfaces
 e.g. a painting, a food can, a page in a book

 bumpy surfaces
 e.g. almost any surface! (very few things are

perfectly smooth)

 textured surfaces
 e.g. wood, marble

250

Texture mapping
without with

all surfaces are smooth and of uniform
colour

most surfaces are textured with
2D texture maps

the pillars are textured with a solid texture

251

Basic texture mapping

 a texture is simply an image,
with a 2D coordinate system
(u,v)

 each 3D object is parameterised

u

v

 each 3D object is parameterised
in (u,v) space

 each pixel maps to some part of
the surface

 that part of the surface maps to
part of the texture

252

Paramaterising a primitive

 polygon: give (u,v)
coordinates for three
vertices, or treat as part of
a plane

 plane: give u-axis and v-axis
directions in the plane

 cylinder: one axis goes up
the cylinder, the other
around the cylinder

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 43

253

Sampling texture space

v

u

Find (u,v) coordinate of the sample point on the object
and map this into texture space

Sample texture space to determine the pixel’s colour

Object (on screen)“Texture space”

254
Sampling texture space: finding the value

Nearest neighbour: the sample
value is the nearest pixel value to
the sample point.

Bi-linear: the sample value is the
weighted mean of the four pixels
around the sample point.

Bi-cubic (not shown): the sample value is the weighted mean of the sixteen
pixels around the sample point. Runs at a quarter the speed of bi-linear.

255

Texture mapping examples

u

v

nearest-
neighbour

bicubic

look at the bottom right hand corner of the distorted
image to compare the two interpolation methods

256

Up-sampling

nearest-
neighbour

blocky
artefacts

u

v

 if one pixel in the texture map covers
several pixels in the final image, you
get visible artefacts

 only practical way to prevent this is
to ensure that texture map is of artefacts

bicubic

blurry
artefacts

to ensure that texture map is of
sufficiently high resolution that it does
not happen

257

Down-sampling

 if the pixel covers quite a large area
of the texture, then it will be
necessary to average the texture
across that area, not just take a
sample in the middle of the area

Down-sampling

without area averaging with area averaging

258

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 44

Multi-resolution texture
 rather than down-sampling when necessary, pre-calculate

multiple versions of the texture at different resolutions and
pick the appropriate resolution to sample from…

 can use tri-linear interpolation to get an even better result:
that is, use bi-linear interpolation in the two nearest levels and
then linearly interpolate between the two interpolated values

259

average 2×2 pixels
to make 1 pixel

260

an efficient memory arrangement for a multi-
resolution colour image

pixel (x,y) is a bottom level pixel location (level 0);
for an image of size (m,n), it is stored at these
locations in level k:

The MIP map
2 2

2

1 1

1

0 0

0













 





 

kk

ynxm

2
,

2











 







kk

ynx

2
,

2



















 

kk

yxm

2
,

2

Red

GreenBlue

261

What can a texture map modify?

any (or all) of the colour components
 ambient, diffuse, specular

transparency
 “transparency mapping”

reflectivenessreflectiveness

but also the surface normal
 “bump mapping”

262

Bump mapping
 the surface normal is used in

calculating both diffuse and
specular reflection

 bump mapping modifies the
direction of the surface normal so
that the surface appears more or
less bumpy

 rather than using a texture map, a
2D function can be used which
varies the surface normal
smoothly across the plane

 but bump mapping doesn’t change
the object’s outline

Graphics card architecture
263

What
happens in
the GPU?

output
stage

(e.g. DAC)
display

Buffer AB
U
S

Buffer B

GPU

Texture
memory

A graphics card architecture
264

Vertex Shader
(programmable)

Rasterizer
(z-buffer)

Pixel Shader
(programmable)

Raster
Operations

Unit

Geometry stage Rasterisation stage

based on nVIDIA’s GeForce 6 architecture

Texture Unit

3D triangles

textures frame buffers

Memory

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 45

A graphics card architecture
265

Vertex Shader
(programmable)

Rasterizer
(z-buffer)

Pixel Shader
(programmable)

Raster
Operations

Unit

Geometry stage Rasterization stage

based on nVIDIA’s GeForce 6 architecture

Texture Unit

3D triangles

textures frame buffers

Memory

266

Background

what is a digital image?
 what are the constraints on digital images?

how does human vision work?
 what are the limits of human vision?
 what can we get away with given these constraints & limits?

2D CG IP

3D CG

Background

what hardware do we use?

how do we represent colour?

how do displays & printers work?
 how do we fool the human eye into seeing what we want it

to see?

267

Image display

a handful of technologies cover over 99% of all
display devices
 active displays

 cathode ray tube standard for late 20th century
 liquid crystal display most common today

l d l b fl l b h plasma displays briefly popular but power-hungry
 digital mirror displays increasing use in video projectors

 printers (passive displays)
 laser printers the traditional office printer
 ink jet printers the traditional home printer
 commercial printers for high volume

268

Liquid crystal displays I

 liquid crystals can twist the polarisation of light
 basic control is by the voltage that is applied across the

liquid crystal: either on or off, transparent or opaque
 greyscale can be achieved with some types of liquid crystal

by varying the voltage
 colour is achieved with colour filters

269

Liquid crystal displays II
there are two polarizers at right angles to one another
on either side of the liquid crystal: under normal
circumstances these would block all light

there are liquid crystal directors: micro-grooves which
align the liquid crystal molecules next to them

the liquid crystal molecules try to line up with one
another; the micro-grooves on each side are at right another; the micro grooves on each side are at right
angles to one another which forces the crystals’
orientations to twist gently through 90° as you go from
top to bottom, causing the polarization of the light to
twist through 90°, making the pixel transparent

liquid crystal molecules are polar: they have a positive and a
negative end

applying a voltage across the liquid crystal causes the
molecules to stand on their ends, ruining the twisting
phenomenon, so light cannot get through and the
pixel is opaque

270

Liquid crystal displays III

 low power consumption compared to CRTs although the
back light uses a lot of power

 image quality historically not as good as cathode ray tubes,
but improved dramatically over the last ten years

 uses
 l t laptops
 video projectors

 rapidly replacing CRTs as desk top displays
 increasing use as televisions

a three LCD video projector, with colour made by
devoting one LCD panel to each of red, green and

blue, and by splitting the light using dichroic mirrors
which pass some wavelengths and reflect others

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 46

271

Digital micromirror devices I

 developed by Texas Instruments
 often referred to as Digital Light Processing (DLP) technology

 invented in 1987, following ten year’s work on deformable
mirror devices

 manufactured like a silicon chip!
 t d d 5 lt 0 8 i CMOS  a standard 5 volt, 0.8 micron, CMOS process
 micromirrors are coated with a highly reflected aluminium alloy

 each mirror is 16×16µm2

272

Digital micromirror devices II

 used increasingly in video projectors
 widely available from late 1990s
 colour is achieved using either three DMD chips or one

chip and a rotating colour filter

Electrophoretic displays I

electronic paper widely used in e-books
iRex iLiad, Sony Reader, Amazon Kindle
200 dpi passive display

273

Electrophoretic displays II

transparent capsules ~40µ diameter
 filled with dark oil
 negatively charged 1µ titanium dioxide particles

electrodes in substrate attract or repel white particles
image persists with no power consumption

274

image persists with no power consumption

Electrophoretic displays III

colour filters over
individual pixels

flexible substrate

275

flexible substrate
using plastic
semiconductors
(Plastic Logic)

276

Printers

many types of printer
 ink jet

 sprays ink onto paper

 laser printer
 uses a laser to lay down a pattern of charge on a drum; this picks

 h d t hi h i th d t th up charged toner which is then pressed onto the paper

 commercial offset printer
 an image of the whole page is put on a roller
 this is repeatedly inked and pressed against the paper to print

thousands of copies of the same thing

all make marks on paper
 essentially binary devices: mark/no mark

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 47

277

Printer resolution

laser printer
 300–1200dpi

ink jet
 used to be lower resolution & quality than laser printers

but now have comparable resolutionp

phototypesetter for commercial offset printing
 1200–2400 dpi

bi-level devices: each pixel is either on or off
 black or white (for monochrome printers)
 ink or no ink (in general)

278

What about greyscale?

 achieved by halftoning
 divide image into cells, in each cell draw a spot of

the appropriate size for the intensity of that cell
 on a printer each cell is mm pixels, allowing m2+1

different intensity levelsdifferent intensity levels
 e.g. 300dpi with 44 cells  75 cells per inch, 17

intensity levels

 phototypesetters can make 256 intensity levels in
cells so small you can only just see them

 an alternative method is dithering
 dithering photocopies badly, halftoning photocopies

well

will discuss halftoning and dithering in Image Processing section of course

279

Halftoning & dithering examples

Halftoning Dithering

280

What about colour?
generally use cyan, magenta, yellow, and black inks

(CMYK)
inks aborb colour

 c.f. lights which emit colour
 CMY is the inverse of RGB

why is black (K) necessary?
 inks are not perfect aborbers
 mixing C + M + Y gives a muddy grey, not black
 lots of text is printed in black: trying to align C, M and Y

perfectly for black text would be a nightmare

see slide 64 CMYK space

281

How do you produce halftoned colour?

 print four halftone screens, one in each colour
 carefully angle the screens to prevent interference (moiré) patterns

Standard rulings (in lines per inch)

65 lpi65 lpi

85 lpi newsprint

100 lpi

120 lpi uncoated offset paper

133 lpi uncoated offset paper

150 lpi matt coated offset paper or art paper
publication: books, advertising leaflets

200 lpi very smooth, expensive paper
very high quality publication

150 lpi  16 dots per cell
= 2400 dpi phototypesetter
(1616 dots per cell = 256

intensity levels)

282

Four colour halftone screens

Standard angles
 Cyan 15°
 Black 45°
 Magenta 75°
 Yellow 90°

Magenta, Cyan & Black
are at 30° relative to
one another

Yellow (least distinctive
colour) is at 15° relative
to Magenta and Cyan

At bottom is the moiré pattern
 this is the best possible (minimal)

moiré pattern
 produced by this optimal set of

angles
 all four colours printed in black to

highlight the effect

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 48

283

Range of printable colours

a: colour photography
(diapositive)

b: high-quality offset printing
c: newspaper printing

why the hexagonal shape?
because we can print dots which
only partially overlap making the
situation more complex than for
coloured lights

284

Beyond four colour printing

 printers can be built to do printing in more colours
 gives a better range of printable colours

 six colour printing
 for home photograph printing
 dark & light cyan, dark & light magenta, yellow, black

 eight colour printing eight colour printing
 3× cyan, 3× magenta, yellow, black
 2× cyan, 2× magenta, yellow, 3× black

 twelve colour printing
 3× cyan, 3× magenta, yellow, black

red, green, blue, orange

285

The extra range of colour

this gamut is for
so-called HiFi
colour printing
 uses cyan,

magenta yellow magenta, yellow,
plus red, green and
blue inks

286

Laser printer

287

Ink jet printers

continuous ink jet
(left)

piezo ink jet
(right)

thermal ink jet
or bubble jet
(left)

electrostatic ink jet
(right)

288

Image Processing
 filtering

 convolution
 nonlinear filtering

 point processing
 intensity/colour correction

 compositing

IP

Background

2D CG

3D CG

p g
 halftoning & dithering
 compression

 various coding schemes

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 49

289

Point processing

each pixel’s value is modified
the modification function only takes that pixel’s value

into account

p i j f p i j' (,) { (,)}

 where p(i,j) is the value of the pixel and p'(i,j) is the
modified value

 the modification function, f (p), can perform any operation
that maps one intensity value to another

290
Point processing

inverting an image

white

f(p)

black p
black white

291
Point processing

improving an image’s contrast

white

f(p)

black p
black white

dark histogram improved histogram

292
Point processing

modifying the output of a filter
black or white = edge
mid-grey = no edge

black = edge
white = no edge
grey = indeterminate

black = edge
white = no edge

black

white

p

f(p)

black white
black

white

p

f(p)

black white

thresholding

293

Image compositing

merging two or more images together

what does this operator do?

294

Simple compositing

copy pixels from one image to another
 only copying the pixels you want
 use a mask to specify the desired pixels

the mask determines
which image is used
for each pixel

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 50

295

Alpha blending for compositing

instead of a simple boolean mask, use an alpha mask
 value of alpha mask determines how much of each image to

blend together to produce final pixel

a b d

the mask determines
how to blend the two
source pixel values

m d ma m b  ()1

296

Differencing – an example

- =

a b d

the two images are taken from slightly different viewpoints

take the difference between the two images black = large difference
white = no differenced a b  1 | |

where 1 = white and 0 = black

297

Differencing – an example

- =

a b d

take the difference between the two images black = no difference
white = large difference|| bad 

where 1 = white and 0 = black

298

299 300

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 51

301

Filtering

move a filter over the image, calculating a new value
for every pixel

302

Filters - discrete convolution

convolve a discrete filter with the image to produce a
new image
 in one dimension:

f x h i f x i
i

'() () ()  






 in two dimensions:

i 
where h(i) is the filter

f x y h i j f x i y j
ji

' (,) (,) (,)   










303

Example filters - averaging/blurring

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1
9

1 1 1

1 1 1

1 1 1

 1
9Basic 3x3 blurring filter

G i 3 3 bl i filt
Gaussian 5x5 blurring filter

1 2 1

2 24

1 2 1

1
16 

1 2 4 2 1

2

4

2

1 2 4 2 1

2

4

2

6 6

6 69

9

9

9161
112 

Gaussian 3x3 blurring filter

304

Example filters - edge detection

1 1 1

0 00

-1 -1 -1

1 1 0

1 -10

0 -1 -1

1 0 -1

1 -10

1 0 -1 1 0

-10

0 1

0-1Prewitt filters

Horizontal Vertical Diagonal

1 2 1

0 00

-1 -2 -1

2 1 0

1 -10

0 -1 -2

1 0 -1

2 -20

1 0 -1

Sobel filters

Roberts filters

305

Example filter - horizontal edge detection

1 1 1 300 200 100 0

0

300

0 0 0 0 0 00

0 0 0 0 0

300

0

0

0

0

0

0

0

300

100 100 100 100 100 100

100 100 100 100 100 100

100 100 100 100 100 100

100

100

100

100

100

100

100

100

100

Horizontal edge
detection filter

Image Result

0 00

-1 -1 -1

300 300 200 100

0 100 100 100

0 0 0 0 0 0

0 0 0 0

300

0

0

0

300

0

0

0

0

0

0

0

0

0

0

300

0

0

0 0 0 100 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0 0 0 0 100 100

0

0

0

0

100

100

100

100

0

0

0

0

 

306

Example filter - horizontal edge detection

original image after use of a 33 Prewitt
horizontal edge detection filter

mid-grey = no edge, black or white = strong edge

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 52

307

Median filtering

not a convolution method
the new value of a pixel is the median of the values of

all the pixels in its neighbourhood

10 15 17 21 24 27

e.g. 33 median filter

99

10 15

12

15

17 21 24

18

27

34 2

37

38 42

40 44

40 41 43 47

16 20 25

22 23 25

37 36 39

27

39

41

16 21 24

20 36

23 36 39

25
(16,20,22,23,

25,
25,36,37,39)

sort into order and take median

308

Median filter - example

Original noisy image Small median filter
reduces the noise

Large median filter
reduces noise but blurs

309

Median filter - limitations

copes well with shot (impulse) noise
not so good at other types of noise

in this example,
median filter reduces
noise but doesn’t

original

noise but doesn t
eliminate it

Gaussian filter
eliminates noise
at the expense of
excessive blurring

add shot noise

median
filter

Gaussian
blur

Median filter – as an artistic effect
310

30×30 median filter

Filtering based on local image properties
311

Photoshop “Crystallize” filter with cell size 20

Filtering based on local image properties
312

Photoshop “Wind” filter

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 53

Filtering based on global image properties
313

Photoshop “Auto Colour” adjustment

314

Halftoning & dithering

mainly used to convert greyscale to binary
 e.g. printing greyscale pictures on a laser printer
 8-bit to 1-bit

is also used in colour printing,
normally with four colours:o a y w t ou co ou s:
 cyan, magenta, yellow, black

315

Halftoning

each greyscale pixel maps to a square of binary pixels
 e.g. five intensity levels can be approximated by a 22 pixel

square
 1-to-4 pixel mapping

8-bit values that map to each of the five possibilities

0-51 52-102 103-153 154-204 205-255

316

Halftoning dither matrix

one possible set of patterns for the 33 case is:

these patterns can be represented by the dither
matrix: 7 9 5

2 1 4

6 3 8

 1-to-9 pixel mapping

317

Rules for halftone pattern design

 mustn’t introduce visual artefacts in areas of constant intensity
 e.g. this won’t work very well:

 every on pixel in intensity level j must also be on in levels > j
 i.e. on pixels form a growth sequence

 d f h  pattern must grow outward from the centre
 simulates a dot getting bigger

 all on pixels must be connected to one another
 this is essential for printing, as isolated on pixels will not print very well

(if at all)

318

Ordered dither

 halftone prints and photocopies well, at the expense of large
dots

 an ordered dither matrix produces a nicer visual result than
a halftone dither matrix

1 9 3 11

15 5 13 7ordered 15 5 13 7

4 12 2 10

14 8 16 6

16 8 11 14

12 1 2 5

7 4 3 10

15 9 6 13

ordered
dither

halftone

3 6 9 14

Exercise: phototypesetters may use halftone cells up to size16x16, with 256 entries;
either construct a halftone dither matrix for a cell that large or, better, an algorithm to generate
an appropriate halftone dither matrix

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 54

319

1-to-1 pixel mapping

a simple modification of the ordered dither method
can be used
 turn a pixel on if its intensity is greater than (or equal to)

the value of the corresponding cell in the dither matrix

m
de g

1 9 3 11

15 5 13 7

4 12 2 10

14 8 16 6

0 1 2 3

0
1
2
3

n

dm n,

q p

b q d

i j i j

i j i j i j

, ,

, , ,()



 

div

mod mod

15

4 4

quantise 8 bit pixel value

find binary value

e.g.

320

Error diffusion

error diffusion gives a more pleasing visual result than
ordered dither

method:
 work left to right, top to bottom
 map each pixel to the closest quantised value map each pixel to the closest quantised value
 pass the quantisation error on to the pixels to the right

and below, and add in the errors before quantising these
pixels

321

Error diffusion - example (1)

map 8-bit pixels to 1-bit pixels
 quantise and calculate new error values

8-bit value

fi,j

1-bit value

bi,j

error

ei,j

0-127 0 f i j,

 each 8-bit value is calculated from pixel and error values:

128-255 1 f i j,  255

f p e ei j i j i j i j, , , ,   
1
2 1

1
2 1

in this example the errors
from the pixels to the left
and above are taken into
account

322

Error diffusion - example (2)

107 100

60 80

+30

107 100

60 80

0

+30

original image process pixel (0,0) process pixel (1,0)

process pixel (0,1) process pixel (1,1)

107 100

0 110

+30 +55

+55

0

1

137 100

0 0

+55

-59

-59
1 96

0 0

0
-59 +48

+48

process pixel (0,1) process pixel (1,1)

323

Error diffusion

 Floyd & Steinberg developed the error diffusion method in
1975
 often called the “Floyd-Steinberg algorithm”

 their original method diffused the errors in the following
proportions:

pixels that have

7
16

1
165

16

3
16

pixels still to
be processed

pixels that have
been processed

current pixel

324

Halftoning & dithering — examples
ordered dither error diffusedoriginal

halftoning
(44 cells)

halftoning
(55 cells)

thresholding

Computer Graphics & Image Processing MichaelmasTerm 2013

©1996–2013 Neil A Dodgson & Peter Robinson 55

325

Halftoning & dithering — examples

original

halftoned with a very
fine screen

ordered dither

the regular dither
pattern is clearly
visible

error diffused

more random than
ordered dither and
therefore looks more
attractive to the
human eye

thresholding

<128  black

128  white

halftoning

the larger the cell size, the more intensity levels
available

the smaller the cell, the less noticable the
halftone dots

326

Course Structure – a review
Background [3L]

 images, human vision, displays

2D computer graphics [4L]
 lines, curves, clipping, polygon filling,

transformations

3D computer graphics [6L] 2D CG IP

3D CG

3D computer graphics [6L]
 projection (3D2D), surfaces, clipping,

transformations, lighting, filling, ray tracing,
texture mapping

Image processing [3L]
 filtering, compositing, half-toning, dithering,

encoding, compression

Background

327

What next?

Advanced graphics
 Modelling, splines, subdivision surfaces, complex geometry,

more ray tracing, radiosity, animation

Human-computer interaction
 Interactive techniques, quantitative and qualitative q q q

evaluation, application design

Information theory and coding
 Fundamental limits, transforms, coding

Computer vision
 Inferring structure from images

328

And then?

Graphics
 multi-resolution modelling
 animation of human behaviour
 æsthetically-inspired image processing

HCIHCI
 large displays and new techniques for interaction
 emotionally intelligent interfaces
 applications in education and for special needs
 design theory

http://www.cl.cam.ac.uk/research/rainbow/

