
Computer Fundamentals
Lecture 4

Dr Robert Harle

Michaelmas 2013

This Week

 The roles of the O/S (kernel, timeslicing, scheduling)

 The notion of threads

 Concurrency problems

 Multi-core processors

 Virtual machines

The Origins of the OS

 A lot of the initial computer programs covered the same
ground – they all needed routines to handle, say,
floating point numbers, differential equations, etc.
 Therefore systems soon shipped with libraries: built-in

chunks of programs that could be used by other
programs rather than re-invented.

 Then we started to add new peripherals (screens,
keyboards, etc).
 To avoid having to write the control code (“drivers”)

for each peripheral in each program the libraries
expanded to include this functionality

 Then we needed multiple simultaneous apps and users
 Need something to control access to resources...

Operating System

Hardware

Application

User

Operating System

Hardware

Operating System

Application

User

Operating System

Hardware

Operating System

Application

User

Application

User

Application

User

OS Functions
 Abstracts hardware (allows you to write code to

e.g. access HDD and takes care of the different
HDDs for you)

 Schedules processes (necessary for multitasking: see
later)

 Allocates main memory (to individual processes)
 Provides library of useful functions (e.g. get system

time, load file, etc)
 Enforces security
 May provide libraries to create a GUI

Platforms
 Almost all significant programs make use of

the library functions in an OS (e.g. to draw a
window)

 Our machine code needs not only a
specific instruction set, but also the relevant
operating system (with its libraries) installed

 So software is typically compiled for a
specific platform: a (architecture, OS) pair
 x86/Windows
 ARM/Windows
 x86/Linux
 ARM/iOS
 X86/OSX

The Kernel

 The kernel is the part of the OS that runs the
system
 Just software
 Handles process scheduling (see later)
 Access to hardware
 Memory management

 Very complex software – when it breaks... game
over.

Multitasking by Time-slicing

 Modern OSes allow us to run many programs at
once (“multitask”). Or so it seems. In reality a
CPU time-slices:
 Each running program (or “process”) gets a

certain slot of time on the CPU
 We rotate between the running processes with

each timeslot
 This is all handled by the OS, which schedules the

processes. It is invisible to the running program.

A B C

time

A B C A B CD D

Process D
started

Processes
A,B,C running

Context Switching

 Every time the OS decides to switch the running
task, it has to perform a context switch

 It saves all the program's context (the program
counter, register values, etc) to (main) memory

 It loads in the context for the next program
 Obviously there is a time cost associated with

doing this...

Relinquishing a Timeslot

 Sometimes a process is stuck waiting
for something to happen (e.g. data to
be read from disk)

 The process is “blocked”
 Should release (yield) its timeslot
 How can we know when to unblock it?

A B C A B C B CD D

A Blocks
and yields

B

Interrupts

 Modern systems support interrupts
 Just signals that something has happened.

An interrupt handler is associated with each
interrupt

 E.g. HDD raises an interrupt to say it's done
getting data → scheduler unblocks the
process

A B C A B C B CD D A

A blocks
Interrupt
handler

B

Choosing a Timeslot Size

 The computer is more efficient: it
spends more time doing useful stuff
and less time context switching

 The illusion of running multiple
programs simultaneously is broken

 Appears more responsive
 More time context switching means

the overall efficiency drops

Longer

Shorter

Threads

 Sometimes a program need to do background
tasks whilst still performing a foreground task

 E.g. run an intensive computation but still
process mouse events in case the user hits
cancel.

 Processes have threads: effectively sub
processes that run and are scheduled
independently

A1 A2 C

time

A1 A2 B1 B3 A1 A2B2 C

Processes vs Threads

 Threads run independently but share
memory

Process A

Thread
1

Process B

Thread
1

Thread
2

Memory

Multiple CPUs

 Ten years ago, each generation of CPUs packed
more in and ran faster. But:
 The more you pack stuff in, the hotter it gets
 The faster you run it, the hotter it gets
 And we got down to physical limits anyway!!

 Some systems had multiple CPUs to get speed up

C

B

A

Multicore CPUs

 Modern system contain chips with
multiple cores: multiple CPUs in a single
package

 Connections shorter → faster
 Lower power

C

B

A1

A2

The New Challenge

 Two cores run completely independently, so a
single machine really can run two or more
applications simultaneously

 BUT the real interest is how we write reliable
programs that use more than one core or
thread
 This is hard because they use the same

resources, and they can then interfere with
each other

 Those sticking around for IB CST will start to
look at such concurrency issues in far more
detail. We will just look at...

Race Conditions

c = c + 1;

c=5

c = c - 1;

Main memory

Thread 1 Thread 2

Race Conditions

LOAD c
ADD #1
STORE c

c=5

LOAD c
SUB #1
STORE C

Main memory

Thread 1 Thread 2

Race Conditions

LOAD c
ADD #1
STORE c

LOAD c
SUB #1
STORE C

Thread 1 Thread 2

5
5
6
6
6
5

6
5
5

t

5
6
6

Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

LOAD c

ADD #1
STORE c

LOAD c
SUB #1
STORE C

Thread 1 Thread 2

5
5
5
4
4
6

5
4
4t

5

6
6

Thread 1 Thread 2
Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

LOAD c
ADD #1
STORE c

LOAD c

SUB #1
STORE C

Thread 1 Thread 2

5
5
5
6
6
4

5

4
4

t

5
6
6

Thread 1 Thread 2
Thread 1
Register

Thread 2
Register

Main
Memory

Race Conditions

 When we have two or more threads
sharing a piece memory the result can
depend on the order of execution

 → “Race condition”

 Hard to detect (non-deterministic)
 Hard to debug
 Generally just hard

Solving Race Conditions

LOAD c
ADD #1
STORE c

 Risky sets of
operations like this
one must be made
atomic

 i.e. no context
switching once the
code block is started

 Not trivial → much of
CST IB devoted to this

Aside: The Value of Immutability

 If something is immutable, the race
conditions go away since you can
only read it → remember this for OOP

Virtual Machines

 Go back 20 years and emulators were all the rage:
programs on architecture X that simulated architecture
Y so that programs for Y could run on X

 Essentially interpreters, except they had to recreate the
entire system. So, for example, they had to run the
operating system on which to run the program.

PC operating system

Sega O/S

Game

 Now computers are so fast
we can run multiple virtual
machines on them

 Allows us to run multiple
operating systems
simultaneously!

Virtualisation

 Virtualisation is the new big thing in business. Essentially the
same idea: emulate entire systems on some host server

 But because they are virtual, you can swap them between
servers by copying state

 And can dynamically load your server room!

Windows 7

Windows 7

Windows xp

Windows 7

Ubuntu

Windows 7

Windows 7

Ubuntu

Android

Heavy load Light load

Thanks for coming

 These optional lectures were an
experiment. I'd appreciate any
feedback you have.
 Should they be repeated next year?
 Was the level about right? Too fast? Too

slow?
 Was there anything else you'd like to have

had covered? Anything you'd not bother
with?

