Compiler Construction
Lent Term 2014
Lecture 9 (of 16)

* Assorted topics
- bootstrapping
— exceptions

Timothy G. Griffin
tgg22@cam.ac.uk
Computer Laboratory
University of Cambridge

Bootstrapping. We need some notation...

An application

Simple Examples
app called app written P P
A in language A
hello (hello
A An interpreter or x86 JBC
inter VM for language A JBC
B Written in language B jvm
x86
x86

A machine called M1
mch running N—/
language

A natively.

Tombstones

trans

This is an application called trans
that translates programs in language

A into programs in language B, and it is
written in language C.

Ahead-of-time compilation

Hello - Hello Hello
javac aot
Java | Java “JBC JBC || JBC Ex8(i x86
- JBC JBC x86
vim
il = e Lns
C++ | C++ " x86] ,g¢ :(86 N/
x86 x86 x86
x86
\ M1 / \ M1)
\ M1 /

Thanks to David Greaves
for the example.

Of course translators can be translated

foo_1 R foo_2

N
o
\

m

trans
A A —————> B H B

Translator foo_2 is produced
as output from trans when
given foo_1 as input.

Our seemingly impossible task

We have just invented a really great
B new language L (in fact we claim that
“L is far superior to C++"). To prove how

yippeee

&

great L is we write a compiler

for L in L (of course!). This
compiler produces machine code B
for a widely used instruction set
(say B = x86).

yippeeee R Furthermore, we want to compile our
> B compiler so that it can run

on a machine running B.

How can we compiler our compiler?

There are many many ways we could go about this task.
The following slides simply sketch out one plausible route
to fame and fortune.

Step 1
Write a small interpreter (VM) for
a small language of byte codes

MBC = My Byte Codes

zoom|| 955 [Zoom
c++ || €+ B B

The zoom machinel!

Step 2
Pick a small subset S of L and
write a translator from S to MBC

i i
(3 L) MBC S y_pp) MBC
C++ c++_ﬁ_.> B B

Write yip by hand. (It sure would be nice if we
could hide the fact that this is written is C++.)

Translator yipp is produced
as output from gcc when yip is given as input.

Step 3

Write a compiler forL in S

ippe ippee
L VIPP® > B L yipP B
i
S || s —XP2_, mec|| MBC
B
Write a compiler yippe for the
full language L, but written only
in the sub-language S.
Compile yippe using yipp to produce yippee
Step 4
Write a compiler forL inL
ippeee i
L yipp > B L yippeeee >
ippee
L L — YPPee B B
MBC
MBC
zoom
B

Rewrite compiler
yippe to yippeee,
using the full power
of language L.

Now compile this using yippee to obtain our goal!

Putting it all together

We wrote only these compilers
and the MBC VM.

L Vippees, s L Yippeeee g

L _vyippe s L 1L __vippegs |B

jr—
MBC

i | i MBC
S yip__ mBc S | s | yipp__ mBC
B

C++|| c++ 9cc B e
B B
B
M1 \ M1)
M1
Step 5

Cover our tracks and leave the world
mystified and amazed

Our L compiler download site contains only three components:

MBC ippeee

zoom L yipp >

C++

yippee L
L —> B
MBC| N\ - Shhhh! Don’t tell

1 This is a just file of bytes. 1 anyone that
: We give it the mysterious and ! we wrote the first
: intimidating name voodoo 1 compiler in C++

Our instructions:
1. Use gcc to compile the zoom interpreter
2. Use zoom to run voodoo with input yippeee to
produce output the compiler yippeeee

New Topic : Exceptions (informal description)

e handle f

If expression e evaluates
“‘normally” to value v,
then v is the result of the
entire expression.

Otherwise, an exceptional
value V' is “raised” in the
evaluation of e, then
resultis (f v’)

raise e

Evaluate expression e to
value v, and then raise v
as an exceptional value,
which can only be
“handled”.

Implementation of exceptions

may require a lot of language-specific
consideration and care. Exceptions
can interact in powerful and unexpected
ways with other language features.
Think of C++ and class destructors,

for example.

Viewed from the call stack

handle
frame

Call stack just
before evaluating
code for

Push a special
frame for the
handle

e handle f

current
frame
frame

handle for f

frame \
“raise V’is “Unwind” call stack.
encountered Depending on language,
while evaluating this may involve some
a function body “clean up” to free resources.

associated with
top-most frame

Possible pseudo-code implementation

let fun _h27 () =

e handle f build special “handle frame”

save address of f in frame;
. code for e ..
return value of e

in _h27 () end

raise e .. code for e ..

save v, the value of e;

unwind stack until first

fp found pointing at a handle frame;
Replace handle frame with frame

for call to (extracted) f using

v as argument.

