
1

1

Compiler Construction
Lent Term 2014

Lecture 10 (of 16)

Timothy G. Griffin
tgg22@cam.ac.uk

Computer Laboratory
University of Cambridge

• Assorted topics

– Universal polymorphism
– Tuples
– Objects

A peek at universal polymorphism

map : (‘a -> ‘b) -> ‘a list -> ‘b list !
!
fun map f [] = [] !
 | map f (a::rest) = (f a) :: (map f rest) !

The code generated for map must work
for any times ‘a and ‘b.

So it seems that all values of any type must
be represented by objects of the same size.

2

Boxing and Unboxing

Similar terminology is used
in Java for putting a value in
a container class (boxing)
and taking it out (unboxing)

For example, put an int into
the Integer container class.

1066 !An unboxed integer :

 !A boxed integer :
 1066 !
HEADER !

On the heap

It is better to work with unboxed
values than with boxed values.

Compilers for ML-like languages must
expend a good deal of effort trying to
find good optimizations for
boxed/unboxed choices.

See Appel.

Many ML compilers use a single bit in each machine
word to distinguish boxed from unboxed values. This
is why mosml has 31 (or 63) bit integers.

Tuples (in ML-like, L3-like languages)

g: int -> int * int * int !
!
fun g x = (x+1, x+2, x+3) !
!
 . . . (g 17) . . . !

17

18

20

19

Heap allocated

stack before
call to g

stack after

HEADER

3

On a stack-oriented machine

fun g x = (x+1, x+1, x+3) !

18

18

20

19

Heap allocated

fun g x = !
 let val y1 = x+1 !
 val y2 = x+2 !
 val y3 = x+3 !
 in return (ALLOCATE_TUPLE 3) end !

19

20

ALLOCATE_TUPLE 3

Some IR

HEADER

Tuples (in ML-like, L3-like languages)

!
fun g x = (x+1, x+1, x+3) !
!
fun f (u, v, w) = u + v + w !
!
 . . . f (g 17) . . . !

•  Does function f take 3 arguments or 1?
•  How would you inline f?

4

How might we avoid this?!

17

18

17

stack
frame
for g

18

19

20

57

stack
frame
for f

18

19

20

19
20

Stack snapshots

Evaluation of f(g 17)

8

New Topic : Objects (with single
inheritance)

let start := 10

 class Vehicle extends Object {
 var position := start
 method move(int x) = {position := position + x}
 }
 class Car extends Vehicle {
 var passengers := 0
 method await(v : Vehicle) =
 if (v.position < position)
 then v.move(position – v.position)
 else self.move(10)
 }
 class Truck extends Vehicle {
 method move(int x) =
 if x <= 55 then position := position +x
 }
 var t := new Truck
 var c := new Car
 var v : Vehicle := c
in
 c.passengers := 2;
 c.move(60);
 v.move(70);
 c.await(t)
end

method override

subtyping allows a
Truck or Car to be viewed and
used as a Vehicle

5

9

Object Implementation?

–  how do we access object fields?

•  both inherited fields and fields for the current
object?

–  how do we access method code?
•  if the current class does not define a particular

method, where do we go to get the inherited
method code?

•  how do we handle method override?
–  How do we implement subtyping (“object

polymorphism”)?
•  If B is derived from A, then need to be able to

treat a pointer to a B-object as if it were an A-
object.

10

Another OO Feature

•  Protection mechanisms
–  to encapsulate local state within an object,

Java has “private” “protected” and “public”
qualifiers

•  private methods/fields can’t be called/used outside
of the class in which they are defined

– This is really a scope/visibility issue! Front-
end during semantic analysis (type checking
and so on), the compiler maintains this
information in the symbol table for each class
and enforces visibility rules.

6

11

Object representation

class A {
public:
 int a1, a2;

 void m1(int i) {
 a1 = i;
 }
 void m2(int i) {
 a2 = a1 + i;
 }
}

C++

object data
a1

a2

m1_A

m2_A
method table

An A object

NB: a compiler typically generates methods with an extra argument
representing the object (self) and used to access object data.

12

Inheritance (“pointer polymorphism”)

object data

m1_A

m2_A

method table
(code entry

points =
memory locations)

a1

a2

b1

m3_B

class B : public A {
public:
 int b1;

 void m3(void) {
 b1 = a1 + a2;
 }
}

a B object

Note that a pointer to a B object can
be treated as if it were a pointer to an A object!

7

13

Method overriding

object data

m1_A_A

m2_A_C

method table

a1

a2

c1

m3_C_C

class C : public A {
public:
 int c1;

 void m3(void) {
 b1 = a1 + a2;
 }
 void m2(int i) {
 a2 = c1 + i;
 }
}

declared defined

a C object

14

Static vs. Dynamic

•  which method to invoke on overloaded
polymorphic types?

class C *c = ...;
class A *a = c;

a->m2(3);

???

m2_A_A(a, 3); static

m2_A_C(a, 3); dynamic

8

15

Dynamic dispatch

•  implementation: dispatch tables

ptr to C
Is also a ptr to A

a1

a2

b1

m1_A_A

m2_A_C

m3_C_C

*(a->dispatch_table[1])(a, 3);

class C *c = ...;
class A *a = c;

a->m2(3);

16

This implicitly uses some form of pointer
subtyping

void m2_A_C(class_A *this_A, int i) {
 class_C *this = convert_ptrA_to_ptrC(this_A);

 this->a2 = this->c1 + i;
}

void m2(int i) {
 a2 = c1 + i;
}

