
Computer Laboratory

Algorithms I — Exercises for students

Academic year 2012–2013

Lent–Easter term 2013

http://www.cl.cam.ac.uk/Teaching/1213/AlgorithI/
frank.stajano––algs1@cl.cam.ac.uk

(course-related emails sent to this address will be given higher priority)

Revised 2013 edition
Revision 13 of 2013-02-03 20:27:30 +0000 (Sun, 03 Feb 2013).

c© 2005–2013 Frank Stajano

http://www.cl.cam.ac.uk/Teaching/1213/AlgorithI/

Exercises from the course handout

Your supervisor may also point you at suitable sections of past exam questions. Past
exam questions are available from the course web site.

Exercise 1
Assume that each swap(x, y) means three assignments (namely tmp = x; x
= y; y = tmp). Improve the insertsort algorithm pseudocode shown in the
handout to reduce the number of assignments performed in the inner loop.

Exercise 2
Provide a useful invariant for the inner loop of insertion sort, in the form of
an assertion to be inserted between the “while” line and the “swap” line.

Exercise 3

|sin(n)| = O(1)

|sin(n)| 6= Θ(1)

200 + sin(n) = Θ(1)

123456n + 654321 = Θ(n)

2n− 7 = O(17n2)

lg(n) = O(n)

lg(n) 6= Θ(n)

n100 = O(2n)

1 + 100/n = Θ(1)

For each of the above “=” lines, identify the constants k, k1, k2, N as appropri-
ate. For each of the “ 6=” lines, show they can’t possibly exist.

2

Exercise 4
What is the asymptotic complexity of the variant of insertsort that does fewer
swaps?

Exercise 5
The proof of Assertion 1 (lower bound on exchanges) convinces us that Θ(n)
exchanges are always sufficient. But why isn’t that argument good enough to
prove that they are also needed?

Exercise 6
When looking for the minimum ofm items, every time one of them−1 compar-
isons fails the best-so-far minimum must be updated. Give a permutation of
the numbers from 1 to 7 that, if fed to the Selection sort algorithm, maximizes
the number of times that the above-mentioned comparison fails.

Exercise 7
Code up the details of the binary partitioning portion of the binary insertion
sort algorithm.

Exercise 8
Prove that Bubble sort will never have to perform more than n passes of the
outer loop.

Exercise 9
Can you spot any problems with the suggestion of replacing the line that
assigns to a3[i3] with the more explicit and obvious a3[i3] = min(a1[i1],
a2[i2])? What would be your preferred way of solving such problems? If
you prefer to leave that line as it is, how would you implement the procedure
smallest it calls? What are the trade-offs between your chosen method and
any alternatives?

c© Frank Stajano 3

Exercise 10
In one line we return the same array we received from the caller, while in
another we return a new array created within the mergesort subroutine. This
asymmetry is suspicious. Discuss potential problems.

Exercise 11
Never mind the theoretical computer scientists, but how do you mergesort in
n/2 space?

Exercise 12
Justify that the merging procedure just described will not overwrite any of the
elements in the second half.

Exercise 13
Write pseudocode for the bottom-up mergesort.

Exercise 14
Can picking the pivot at random really make any difference to the expected
performance? How will it affect the average case? The worst case? Discuss.

Exercise 15
Justify why running Insertion sort over the messy array produced by the trun-
cated Quicksort might not be as stupid as it may sound at first. How should
the threshold be chosen?

Exercise 16
What is the smallest number of pairwise comparisons you need to perform to
find the smallest of n items?

4 Algorithms I — Exercises for students (2012–2013)

Exercise 17
(More challenging.) And to find the second smallest?

Exercise 18
What are the minimum and maximum number of elements in a heap of height
h?

Exercise 19
For each of the sorting algorithms seen in this course, establish whether it is
stable or not.

Exercise 20
Give detailed pseudocode for the counting sort algorithm (particularly the
second phase), ensuring that the overall cost stays linear. Do you need to
perform any kind of precomputation of auxiliary values?

Exercise 21
Why couldn’t we simply use counting sort in the first place, since the keys are
integers in a known range?

c© Frank Stajano 5

Exercise 22
Leaving aside for brevity Fibonacci’s original 1202 problem on the sexual ac-
tivities of a pair of rabbits, the Fibonacci sequence may be more abstractly
defined as follows:

F0 = 1
F1 = 1
Fn = Fn−2 + Fn−1 for n ≥ 2

(This yields 1, 1, 2, 3, 5, 8, 13, 21, . . .)
In a couple of lines in your favourite programming language, write a recursive
program to compute Fn given n, using the definition above. And now, finally,
the question: how many function calls will your recursive program perform to
compute F10, F20 and F30? First, guess; then instrument your program to tell
you the actual answer.

Exercise 23
Prove (an example is sufficient) that the order in which the multiplications are
performed may dramatically affect the total number of scalar multiplications—
despite the fact that, since matrix multiplication is associative, the final matrix
stays the same.

Exercise 24
Provide a small counterexample that proves that the greedy strategy of choos-
ing the item with the highest £/kg ratio is not guaranteed to yield the optimal
solution.

Exercise 25
Draw the memory layout of these two representations for a 3×5 matrix, point-
ing out where element (1,2) would be in each case.

Exercise 26
Show how to declare a variable of type list in the C case and then in the Java
case. Show how to represent the empty list in the Java case. Check that this
value (empty list) can be assigned to the variable you declared earlier.

6 Algorithms I — Exercises for students (2012–2013)

Exercise 27
As a programmer, do you notice any uncomfortable issues with your Java
definition of a list? (Requires some thought and O-O flair.)

Exercise 28
Draw a picture of the compact representation of a list described in the notes.

Exercise 29
Invent (or should I say “rediscover”?) a linear-time algorithm to convert an
infix expression such as
(3+12)*4 - 2
into a postfix one without parentheses such as
3 12 + 4 * 2 -.
By the way, would the reverse exercise have been easier or harder?

Exercise 30
How would you deal efficiently with the case in which the keys are English
words? (There are several possible schemes of various complexity that would
all make acceptable answers provided you justified your solution.)

Exercise 31
Should the new key-value pair added by set() be added at the start or the
end of the list? Or elsewhere?

Exercise 32
Solve the recurrence, again with the trick of setting n = 2m.

c© Frank Stajano 7

Exercise 33
(Clever challenge, straight from CLRS3—exercise 12.2-4.) Professor Bunyan
thinks he has discovered a remarkable property of binary search trees. Suppose
that the search for key k in a binary search tree ends up in a leaf. Consider
three sets: A, the keys to the left of the search path; B, the keys on the search
path; and C, the keys to the right of the search path. Professor Bunyan claims
that any three keys a ∈ A, b ∈ B, and c ∈ C must satisfy a ≤ b ≤ c. Give a
smallest possible counterexample to the professor’s claim.

Exercise 34
Why, in BSTs, does this up-and-right business find the successor? Can you
sketch a proof?

Exercise 35
(Important.) Prove that, in a binary search tree, if node n has two children,
then its successor has no left child.

Exercise 36
Prove that this deletion procedure, when applied to a valid binary search tree,
always returns a valid binary search tree.

Exercise 37
What are the smallest and largest possible number of nodes of a red-black tree
of height h?

8 Algorithms I — Exercises for students (2012–2013)

Exercise 38
For each of the three possible types of 2-3-4 nodes, draw an isomorphic “node
cluster” made of 1, 2 or 3 red-black nodes. The node clusters you produce
must:

• Have the same number of keys, incoming links and outgoing links as the
corresponding 2-3-4 nodes. as the corresponding 2-3-4 nodes.

• Respect all the red-black rules when composed with other node clusters.

Exercise 39
(The following is not hard but it will take somewhat more than five minutes.)
Using a soft pencil, a large piece of paper and an eraser, draw a B-tree with
t = 2, initially empty, and insert into it the following values in order:

63, 16, 51, 77, 61, 43, 57, 12, 44, 72, 45, 34, 20, 7, 93, 29.

How many times did you insert into a node that still had room? How many
node splits did you perform? What is the depth of the final tree? What is the
ratio of free space to total space in the final tree?

Exercise 40
Prove that, if a key is not in a bottom node, its successor, if it exists, must be.

Exercise 41
(Trivial) Make a hash table with 8 slots and insert into it the following values:

15, 23, 12, 20, 19, 8, 7, 17, 10, 11.

Use the hash function

h(k) = (k mod 10) mod 8

and, of course, resolve collisions by chaining.

c© Frank Stajano 9

Exercise 42
Non-trivial Imagine redoing the exercise above but resolving collisions by open
addressing. When you go back to the table to retrieve a certain element, if
you land on a non-empty location, how can you tell whether you arrived at the
location for the desired key or on one occupied by the overspill from another
one? (Hint: describe precisely the low level structure of each entry in the table.)

Exercise 43
How can you handle deletions from an open addressing table? What are the
problems of the obvious naïve approach?

Exercise 44
If we are using bubblesort, why did I indicate the costs as linear rather than
quadratic?

Exercise 45
Prove that the sequence of trees in a binomial heap exactly matches the bits
of the binary representation of the number of elements in the heap.

10 Algorithms I — Exercises for students (2012–2013)

