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Preliminaries

Course content and textbooks
This course, a continuation of what we did in Algorithms I last year, is about some of the
coolest stuff a programmer can do.

Most real-world programming is conceptually pretty simple. The undeniable diffi-
culties come primarily from size: enormous systems with millions of lines of code and
complex APIs that won’t all comfortably fit in a single brain. But each piece usually
does something pretty bland, such as moving data from one place to another and slightly
massaging it along the way.

Here, it’s different. In our two courses on algorithms and data structures, but especially
in this second helping, we look at pretty advanced hacks—those ten-line chunks of code
that make you want to take your hat off and bow.

The only way really to understand this material is to program and debug it yourself,
and then run your programs step by step on your own examples, visualizing intermediate
results along the way. You might think you are fluent in n programming languages but you
aren’t really a programmer until you’ve written and debugged some hairy pointer-based
code such as that required to cut and splice the doubly-linked lists used in Fibonacci
trees. (Once you do, you’ll know why.)

However the course itself isn’t about programming: like “Algorithms I”, it’s about
designing and analysing algorithms and data structures—the ones that great programmers
then write up as tight code and put in libraries for other programmers to reuse. It’s about
finding smart ways of solving difficult problems, and about measuring different solutions
to see which one is actually smarter.

In order to gain a more than superficial understanding of the course material you will
also need a full-length textbook, for which this handout is not a substitute. If you were
diligent last year you probably already have it:

[CLRS3] Cormen, Leiserson, Rivest, Stein. Introduction to Algorithms, Third
edition. MIT press, 2009. ISBN 978-0-262-53305-8.

A heavyweight book at about 1300 pages, it covers a little more material and at
slightly greater depth than most others. It includes careful mathematical treatment of
the algorithms it discusses and is a natural candidate for a reference shelf. Despite its
bulk and precision this book is written in a fairly friendly style. At some point it was also
the computer science book with the highest number of citations ! You can’t properly call
yourself a computer scientist if CLRS3 is not on your bookshelf. It’s the default text for
this course: by all means feel free to refer to other books too, but chapter references in
the chapter headings of these notes are to this textbook.
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Other algorithms textbooks worth consulting as optional additional references include
at least Sedgewick; Kleinberg and Tardos; and of course the legendary Knuth. Full
bibliographic details are in the syllabus and on the course web page. However none of
these textbooks covers all the topics in the syllabus, so you’re still better off getting
yourself a copy of CLRS3 (which by the way, in spite of its quality, is also the cheapest
of the bunch).

Note also that a growing number of usually accurate algorithm and data structure
descriptions can be found on Wikipedia. Once you master the material in this course,
and especially after you’ve earned some experience by writing and debugging your own
implementation, consider improving any descriptions that you find lacking or unclear.

What is in these notes
Many of the algorithms discussed in this course manipulate graphs. Most of the advanced
data structures discussed in this course are useful for efficiently implementing some graph-
based algorithm. Whatever topic we choose to start from, there will necessarily be some
forward references—either to the algorithms that justify the existence and features of
the data structures, or to the data structures that allow the algorithms to achieve the
claimed asymptotic performance. Please be patient about that: we have to break the
circular references by starting somewhere; and you can always read ahead if you wish.

These notes are meant as a clear and concise reference but they are not a substitute for
having your own copy of the recommended textbook. They can help you navigate through
the textbook and can help when organizing revision. I recommend that you come to each
lecture with this handout and a paper notebook, and use the latter to take notes and
sketch diagrams. In your own time, use the same notebook to write down your (attempts
at) solutions to exercises as you prepare for upcoming supervisions.

These notes contain short exercises, highlighted by boxes, that you would do well
to solve as you go along to prove that you are not just reading on autopilot. They
tend to be easy (most are meant to take not more than five minutes each) and are
therefore insufficient to help you really own the material covered here. For that, program
the algorithms yourself1 and solve problems found in your textbook or assigned by your
supervisor. There is a copious supply of past exam questions at http://www.cl.cam.ac.
uk/teaching/exams/pastpapers/ under both “Algorithms II” and “Data Structures and
Algorithms” but, particularly for the latter, be sure to choose (or ask your supervisor to
help you choose) ones that are covered by this year’s syllabus, because the selection of
topics offered in these courses has evolved throughout the years.

Acknowledgements and history
I wrote my first version of these course notes in 2005, for Data Structures and Algorithms,
building on the final 7–8 pages of the excellent notes for that course originally written
by Arthur Norman and then enhanced by Roger Needham (my academic grandfather—
the PhD supervisor of my PhD supervisor) and Martin Richards. I hereby express my

1The more programs you write to recreate what I show you in the lectures, the more you will really
own this material.
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gratitude to my illustrious predecessors. In 2006 this part of the course split off from
the rest and became Algorithms II. I did a major revision and expansion of the notes
for the 2007 edition, as the course grew from 6 to 8 lectures, another one in 2008 as
it grew to 10 lectures and another one in 2011 as it grew to 12. Naturally I also did
minor revisions and corrections in all the other years in which I taught the course. This
academic year (2013–2014) is the last time I’ll be teaching this Algorithms II course.
Following another rearrangement, your successors will study this material in the context
of a new and extended first-year Algorithms module, of which I’ll teach the first half and
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Although I don’t know where they are, from experience I am pretty sure that these
notes still contains bugs, as all non-trivial documents do. Consult the course web page for
the errata corrige. I am grateful to Sam Staton, Christian Richardt, Long Nguyen, Michael
Williamson, Myra VanInwegen, Manfredas Zabarauskas, Ben Thorner, Simon Iremonger,
Heidi Howard, Tom Sparrow, Simon Blessenohl, Nick Chambers, Nicholas Ngorok, Miklós
András Danka and particularly Alastair Beresford for sending me corrections to previous
editions. If you find any more corrections and email them to me, I’ll credit you in any
future revisions.

Last but not least, many thanks to Tim Griffin for lecturing this course in my stead
during my sabbatical in 2009–2010.
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Chapter 1

Advanced data structures

Chapter contents

Amortized analysis. Priority queues. Binomial heaps. Fibonacci
heaps. van Emde Boas trees. Disjoint sets.
Expected coverage: about 5 lectures.

This chapter discusses some advanced data structures that will be used to improve
the performance of some of the graph algorithms to be studied in chapter 2. We also
introduce amortized analysis as a more elaborate way of computing the asymptotic com-
plexity in cases where worst-case analysis of each operation taken individually would give
a needlessly pessimistic and insufficiently tight bound.

Note that these advanced data structures do not generally offer support for finding
an item given its key; it is tacitly assumed that the calling client program will maintain
pointers to the nodes of the data structure it uses so that, when the client invokes a method
on a specific node, the data structure already knows where that node is, as opposed to
having to look for it. Therefore, when a method accepts or returns a parameter such
as Item x in the Abstract Data Type description, what we implicitly mean is that, at
the implementation level, x is a pointer to the node holding that item within the data
structure.

1.1 Priority queues

Textbook

Study section 6.5 in CLRS3.

This section on priority queues should be a review of material already seen in Algo-
rithms I. We keep it here to make this chapter self-contained.
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Chapter 1. Advanced data structures

A priority queue is a data structure that holds a dynamic set of items and offers
convenient access to the item with highest priority1, as well as facilities for extracting
that item, inserting new items and promoting a given item to a priority higher than its
current one.

0 ADT PriorityQueue {
1 void insert(Item x);
2 // BEHAVIOUR: add item <x> to the queue.
3

4 Item first();
5 // BEHAVIOUR: return the item with the smallest key (without
6 // removing it from the queue).
7

8 Item extractMin();
9 // BEHAVIOUR: return the item with the smallest key and remove it

10 // from the queue.
11

12 void decreaseKey(Item x, Key new);
13 // PRECONDITION: item <x> is already in the queue.
14 // PRECONDITION: new < x.k
15 // BEHAVIOUR: change the key of <x> to <new>, thereby increasing the priority
16 // of x.
17 // POSTCONDITION: x.k == new
18

19 void delete(Item x);
20 // PRECONDITION: item <x> is already in the queue.
21 // BEHAVIOUR: remove item <x> from the queue.
22 // IMPLEMENTATION: make <x> the new minimum by calling decreaseKey with
23 // a value (conceptually: minus infinity) smaller than any in the queue;
24 // then extract the minimum and discard it.
25 }
26

27 ADT Item {
28 // A total order is defined on the keys.
29 Key k;
30 Data payload;
31 }

As for implementation, you could simply use a sorted array, but you’d have to keep the
array sorted at every operation, for example with one pass of bubble-sort, which gives
linear time costs for any operations that change the priority queue.

1“Highest priority” by convention means “earliest in the sorting order” and therefore “numerically
smallest” in case of integers. Priority 1 is higher than priority 3.
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1.1. Priority queues

Exercise 1
Why do we claim that keeping the sorted-array priority queue sorted using
bubble sort has linear costs? Wasn’t bubble sort quadratic?

Operation Cost with sorted array
creation of empty queue O(1)
first() O(1)
insert() O(n)
extractMin() O(n)
decreaseKey() O(n)
delete() O(n)

But we can do better than this.

1.1.1 Binary heaps

The binary heap is the priority queue data structure implicitly used in the heapsort
algorithm2. It is a clever yet comparatively simple construction that allows you to read
out the highest priority item in constant time cost (without removing it from the queue)
and lets you achieve O(lg n) costs for all other priority queue operations.

A min-heap is a binary tree that satisfies two additional invariants: it is “almost full”
(i.e. all its levels except perhaps the lowest have the maximum number of nodes, and the
lowest level is filled left-to-right) and it obeys the “heap property” whereby each node has
a key less than or equal to those of its children.

As a consequence of the heap property, the root of the tree is the smallest element.
Therefore, to read out the highest priority item, just look at the root (constant cost).
To insert an item, add it at the end of the heap and let it bubble up (following parent
pointers) to a position where it no longer violates the heap property (max number of steps:
proportional to the height of the tree). To extract the root, read it out, then replace it
with the element at the end of the heap, letting the latter sink down until it no longer
violates the heap property (again the max number of steps is proportional to the height
of the tree). To reposition an item after decreasing its key, let it bubble up towards the
root (again in no more steps than the height of the tree, within a constant factor).

2Except that heapsort uses a max-heap and here we use a min-heap.

c© Frank Stajano 9



Chapter 1. Advanced data structures

Since the tree is balanced (by construction, because it is always “almost full”), its
height never exceeds O(lg n), which is therefore the asymptotic complexity bound on all
the priority queue operations that alter the tree.

Operation Cost with binary min-heap
creation of empty heap O(1)
first() O(1)
insert() O(lg n)
extractMin() O(lg n)
decreaseKey() O(lg n)
delete() O(lg n)

These logarithmic costs represent good value and the binary heap, which is simple to
code and compact to store3, is therefore a good choice, in many cases, for implementing
a priority queue.

1.1.2 Binomial heaps

A more complex implementation of the priority queue is the binomial heap, whose main
additional advantage is that it allows you to merge two priority queues, still at a time
cost not exceeding O(lg n).

Exercise 2
As a comparison, what is the most efficient algorithm you can think of to
merge two binary heaps? What is its complexity?

0 ADT BinomialHeap extends PriorityQueue {
1 void merge(BinomialHeap h);
2 // BEHAVIOUR: combine the current heap with the supplied heap h. In
3 // the process, make the supplied heap h empty and incorporate all its
4 // elements into the current heap.
5 }

A binomial heap is a forest of binomial trees, with special properties detailed below.

3The array representation does not even require any extra space for pointers.
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1.1. Priority queues

A binomial tree (not heap) of order 0 is a single node, containing one Item.
A binomial tree of order k is a tree obtained by combining two binomial trees of

order k − 1, by appending one of the trees to the root of the other as the (new) leftmost
child4. By induction, it contains 2k nodes (since the number of nodes doubles at each
new order). By induction, the number of child subtrees of the root of the tree (known as
the degree of the tree) is k, the same as the tree’s order (since at each new order the tree
gains one more child). By induction, the height of the tree is also k, again same as the
tree’s order (since at each new order the tree grows taller by one level, because the new
child is as tall as the previous order’s tree and is shifted down by one).

A binomial heap is a collection of binomial trees (at most one for each tree order),
sorted by increasing size, each obeying the “heap property” by which each node has a key
less than or equal to those of its children. If the heap contains n nodes, it contains O(lg n)
binomial trees and the largest of those trees5 has degree O(lg n).

Exercise 3
Draw a binomial tree of order 4.

Exercise 4
Give proofs of each of the stated properties of binomial trees (trivial) and
heaps (harder until you read the next paragraph—try before doing so).

The following property is neat: since the number of nodes and even the shape of the
binomial tree of order k is completely determined a priori, and since each binomial heap

4Note that a binomial tree is not a binary tree: each node can have an arbitrary number of children.
Indeed, by “unrolling” the recursive definition above, you can derive an equivalent one that says that a
tree of order k consists of a root node with k children that are, respectively, binomial trees of all the
orders from k − 1 down to 0.

5And hence a fortiori also each of the trees in the heap.

c© Frank Stajano 11



Chapter 1. Advanced data structures

has at most one binomial tree for any given order, then, given the number n of nodes of a
binomial heap, one can immediately deduce the orders of the binomial trees contained in
the heap just by looking at the “1” digits in the binary representation of n. For example,
if a binomial heap has 13 nodes (binary 1101 = 23 + 22 + 20), then the heap must contain
a binomial tree of order 3, one of order 2 and one of order 0—just so as to be able to hold
precisely 13 nodes.

The operations that the binomial heap data structure provides are implemented as
follows.

first() To find the element with the smallest key in the whole binomial heap, scan the
roots of all the binomial trees in the heap, at cost O(lg n) since there are that many
trees.

extractMin() To extract the element with the smallest key, which is necessarily a root,
first find it, as above, at cost O(lg n); then cut it out from its tree. Its children now
form a forest of binomial trees of smaller orders, already sorted by decreasing size.
Reverse this list of trees6 and you have another binomial heap. Merge this heap
with what remains of the original one. Since the merge operation itself (q.v.) costs
O(lg n), this is also the total cost of extracting the minimum.

merge() To merge two binomial heaps, examine their trees by increasing tree order and
combine them following a procedure similar to the one used during binary addition
with carry with a chain of full adders.

“binary addition” procedure. Start from order 0 and go up. At each
position, say that for tree order j, consider up to three inputs: the tree of
order j of the first heap, if any; the tree of order j of the second heap, if
any; and the “carry” from order j − 1, if any. Produce two outputs: one
tree of order j (or none) as the result for order j, and one tree of order
j + 1 (or none) as the carry from order j to order j + 1. All these inputs
and outputs are either empty or they are binomial trees. If all inputs are
empty, all outputs are too. If exactly one of the three inputs is non-empty,
that tree becomes the result for order j, and the carry is empty. If exactly
two inputs are non-empty, combine them to form a tree of order j + 1 by
appending the tree with the larger root to the other; this becomes the
carry, and the result for order j is empty. If three inputs are non-empty,
two of them are combined as above to become the carry towards order
j + 1 and the third becomes the result for order j.

The number of trees in each of the two binomial heaps to be merged is bounded by
O(lg n) (where by n we indicate the total number of nodes in both heaps together)
and the number of elementary operations to be performed for each tree order is
bounded by a constant. Therefore, the total cost of the merge operation is O(lg n).

insert() To insert a new element, consider it as a binomial heap with only one tree with
only one node and merge it as above, at cost O(lg n).

6An operation linear in the number of child trees of the root that was just cut off. Since the degree
of a binomial tree of order k is k, and the number of nodes in the tree is 2k, the number of child trees of
the cut-off root is bounded by O(lg n).
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1.2. Amortized analysis

decreaseKey() To decrease the key of an item, proceed as in the case of a normal binary
heap within the binomial tree to which the item belongs, at cost no greater than
O(lg n) which bounds the height of that tree.

Operation Cost with binomial heap
creation of empty heap O(1)
first() O(lg n)
insert() O(lg n)
extractMin() O(lg n)
decreaseKey() O(lg n)
delete() O(lg n)
merge() O(lg n)

Although the programming complexity is greater than for the binary heap, these log-
arithmic costs represent good value and therefore implementing a priority queue with
a binomial heap is a good choice for applications where an efficient merge operation is
required. If however there is no need for efficient merging, then the binary heap is less
complex and somewhat faster.

Having said that, when the cost of an algorithm is dominated by specific priority queue
operations, and where very large data sets are involved, as will be the case for some of the
graph algorithms of chapter 2 when applied to a country’s road network, or to the Web,
then the search for even more efficient implementations is justified. We shall describe an
even more efficient priority queue implementation in section 1.3 but, before that, we shall
introduce a method that will let us analyse its overall performance with greater accuracy.

1.2 Amortized analysis

Textbook

Study chapter 17 in CLRS3.

Some advanced data structures support operations that are ordinarily fast but occa-
sionally very slow, depending on the current state of the data structure. If we performed
our usual worst-case complexity analysis, such operations would have to be rated accord-
ing to their very slow worst case every time they are invoked. However, since we know
that they usually run much faster than that, we might obtain a correct but needlessly pes-
simistic bound. Amortized analysis takes the viewpoint that the cost of these occasional
expensive operations might in some cases be spread, for accounting purposes, among the
more frequent cheap ones, yielding a tighter and more useful bound.

It is important to understand that amortized analysis still gives a worst-case bound
(it is not a probabilistic estimate of the average case), but one that only applies to a
sequence of operations over the lifetime of the data structure. Individual operations may
exceed the stated amortized cost but the amortized bound will be correct for the whole
sequence.

We introduce two ways of performing amortized analysis: aggregate analysis and the
potential method.

c© Frank Stajano 13



Chapter 1. Advanced data structures

1.2.1 Aggregate analysis

In aggregate analysis the general idea is to take a sequence of operations, compute its
total cost and then divide it by the number of operations in the sequence to obtain the
amortized cost of each. All operations are rated at the same cost even though in reality
some of them were cheaper and some were more expensive. An example will hopefully
clarify.

Let’s assume you have a stack data structure whose methods are the usual void
push(Item x) and Item pop(), plus a special void multipop(int n) that removes and
discards the top n elements from the stack (or however many are available if the stack
contains fewer than n). What is the cost of a sequence of n operations, each of which
could be push, pop or multipop, on an initially empty stack? The “traditional” worst-
case analysis would tell us that, while push and pop have constant cost, a single multipop
could cost up to n (since there could be up to n elements in the stack) and therefore the
worst-case costs are O(n2).

This asymptotic bound is correct but it is not tight. It is easy to see that, since each
item must be pushed before it is popped (whether on its own or as part of a multipop),
the combined number of all elementary popping operations (whether from pop or in bursts
from multipop) cannot exceed the number of pushing operations, in turn bounded by n
which is the total number of operations in the sequence. Therefore aggregate analysis
tells us that a sequence of n operations can cost at most O(n) and that therefore the
amortized cost of each of the n operations is O(1).

14 Algorithms II (2013–2014)



1.2. Amortized analysis

The example should make it clear that, if the amortized cost of an operation is low
(e.g. the amortized cost of multipop is O(1)), this does not mean that all individual calls
of that operation will be bounded by that low constant cost7. It does however mean that,
in a sequence of n operations, the overall cost cannot build up to more than n times the
(low) amortized cost of the individual operations.

1.2.2 The potential method

While aggregate analysis always attributes the same share of the cost to each of the
operations in the sequence, the potential method can be more specific: it can give different
amortized costs for different operations in the sequence.

The potential method works on the intuitive idea that, in order to compensate for the
occasional expensive runs of some operations, if we are going to prove that their amortized
cost is in fact lower than their worst-case cost when taken individually, we might “save”
some “currency” somewhere, for the purpose of “repaying” the excessive costs when needed
and still remain within the budget of the (lower) amortized cost when the overall sequence
of operations is taken into account.

The “currency” is a totally fictitious entity that is not actually paid to anyone; it is just
a way of accounting for the fact that, if an operation is frugal, that is to say it actually
costs less than advertised, the “savings” can be used to “cover up” for a later operation
that costs more than advertised. If we do that with savings that accumulate over many
frugal operations, we may be able to cover up so well for occasional expensive operations
that we lower their asymptotic complexity.

Let’s revisit the stack example. Let’s say the cost of one elementary push or pop is
one currency unit8. Imagine this currency unit as a gold coin, if you wish. To push a
plate on the stack in the cafeteria, you must pay a gold coin (insert coin into machine,
whatever). Same for popping a plate from the stack. For a multipop of 4 plates, you’d

7Indeed it is still true that the worst-case non-amortized cost of a single multipop is O(n), not O(1).
8That’s another way to say that these elementary operations have constant cost.
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have to pay 4 coins. Now, imagine that at each push you actually sacrifice two gold coins:
one to operate the machine and the other as a saving—you tape the second gold coin to
the plate before pushing it on the stack. If you do that, the cost of a simple push becomes
two currency units instead of one. Interestingly, that’s still O(1), because the constant
factor is absorbed by the big-O notation. But what happens to pop? You pay one coin
for operating the machine and taking off the plate, but you receive one coin that had been
taped to the plate when it was pushed. So you end up doing pop at zero cost! And what
about multipop? Amazingly, there too, even if you pop four plates (and therefore must
pay four coins to operate the machine four times), you get back that many coins from the
plates themselves, so you end up paying nothing in that case as well. Therefore, with the
potential method, the amortized cost of push is O(1) while the amortized cost of pop and
multipop is zero9. Note that it is still the case, as before, that a sequence of n operations
will cost no more than O(n).

The point of the potential method is to devise an amortized cost structure that, despite
being somewhat arbitrary, can be proved always to be an upper bound for the actual
costs incurred, for any possible sequence of operations. To ensure that, it is essential to
be always in credit.

If we call ĉi the amortized cost of operation i, ci its real cost and Φi the potential stored
in the data structure before operation i, then the amortized cost (two coins to push one
plate) is the same as the real cost (one coin to operate the machine) plus the increase in
the potential of the data structure (one more coin deposited in the stack, taped to the
plate):

ĉi = ci + ∆Φi = ci + Φi+1 − Φi.

For a sequence of operations for i from 0 to n− 1, the total amortized cost is:

n−1∑
i=0

ĉi =
n−1∑
i=0

(ci + ∆Φi) =
n−1∑
i=0

ci + Φn − Φ0.

If you want to be able to claim that the amortized cost is an upper bound for the real
cost, you must be able to say that

n−1∑
i=0

ĉi ≥
n−1∑
i=0

ci

which, when you subtract the previous equation from it, becomes

0 ≥ −Φn + Φ0

and therefore
Φn ≥ Φ0.

In other words, since the above must hold for any sequence and therefore for any n,
the potential of the data structure must never at any time go below what it was initially.
We may simplify the expression by arbitrarily setting Φ0 = 0 when the initially empty
structure is created and saying that the potential must be nonnegative at all times.

9There is a subtlety here related to the cost of doing pop or multipop on an empty stack; if we wanted
to account for the cost of these failed calls, we’d have to be more meticulous in the above, and we’d end
up with O(1) amortized costs for all three operations.
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In the example, the potential stored in the stack data structure was represented by
the coins on the plates—one currency unit per plate. So the “potential function” Φ of
the data structure was essentially the number of plates on the stack, which can never
be negative. Choosing a potential function that starts at zero and can never become
negative will guarantee that your real costs will never exceed your amortized costs for any
possible sequence of operations. This is what allows you to take the amortized costs as
valid asymptotic bounds for the real costs.

1.3 Fibonacci heaps

Textbook

Study chapter 19 in CLRS3.

The Fibonacci heap is yet another implementation of the priority queue, also featuring
a merge facility like the binomial heap. In exchange for additional coding complexity
and occasional delays, it offers an amazing constant amortized cost for all priority queue
operations that don’t remove nodes from the queue, and logarithmic costs for those that
do. It is a “lazy” data structure in which many operations are performed very quickly but
in which other less frequently used operations require a major and potentially lengthy
clean-up and rearrangement of the internals of the data structure.

Using the Fibonacci heap may be advantageous, compared to a binomial or a binary
heap, in cases where we expect the number of cheap operations to be asymptotically
dominant over that of expensive operations.

It must however be noted that the additional programming complexity required by
Fibonacci heaps means that the big-O notation hides a fairly large constant; this, and the
extra implementation effort required, means that the move to a Fibonacci heap is only
justified when the priority queues to be processed are really large.

1.3.1 Historical motivation and design criteria

The Fibonacci heap was created out of a desire to improve the asymptotic running time
of the Dijkstra algorithm (section 2.4.2) for finding shortest paths from a single source
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on a weighted directed graph10. The limiting factor on the running time of the Dijkstra
algorithm is the efficiency of the priority queue used to hold the vertices. The overall cost
of Dijkstra is dominated by |V | times the cost of extractMin() plus |E| times the cost of
decreaseKey(), where V and E are the sets of vertices and edges of the graph11. With
a standard binary heap implementation for the priority queue, each of these individual
costs is O(lg V ); so the overall cost of Dijkstra is O(V lg V +E lg V ) which, on a connected
graph, becomes O(E lg V ) because |E| ≥ |V |. This highlights that the critical operation is
decreaseKey(): if we could reduce its cost without increasing that of the other operations,
we would reduce the overall cost of Dijkstra. The development of the Fibonacci heap came
out of this insight. It led to a data structure where, in amortized terms, extractMin()
still costs O(lg V ) but decreaseKey(), which is performed more frequently, has only
constant cost. The overall amortized cost of Dijkstra then becomes O(V lg V +E) which
is a definite improvement over O(E lg V ). The same arguments bring an improvement
from O(E lg V ) to O(V lg V + E) to Prim’s algorithm too (section 2.3.2).

1.3.2 Core ideas

One of the main ideas behind the Fibonacci heap is to use a lazy data structure in which
many operations have constant cost because they do only what’s necessary to compute the
answer and then (unlike what happens with binomial heaps) return immediately without
performing any tidying up. For example, in a binomial heap, both insert() and merge()
require the elaborate binary-addition-like operation in which trees of the same degree are
combined to form a tree of higher degree12, possibly requiring further recombination with
another existing tree and so on. Since each combining step takes constant cost, the
insert() and merge() methods each take time bounded by the number of trees in the
longest of the two binomial heaps (roughly speaking), which is O(lg n). We might instead
imagine a lazy data structure (no tidying up after each insertion) in which the nodes
are simply held in a linked list, with two extra pointers to indicate respectively the node
with the smallest key (min) and the last node in the list. There, insert() and merge()
would each only have constant cost: splicing in the new vertex or sublist at the front, and
updating the min pointer after a single comparison. This gives O(1) instead of O(lg n)
for these two operations.

10This subsection contains forward references to some graph algorithms to be studied later and may
be a little hard to understand fully until then. If so, please don’t worry and come back to it later. Or
follow the references and read ahead.

11See the remark on notation at the end of subsection 2.1.2 on page 43.
12In the original 1987 paper by Fredman and Tarjan that introduced Fibonacci trees, the number of

children of a node is indicated as its rank, not its degree. We use degree in these notes to avoid confusion
with a different definition of the term rank that is used in the context of disjoint sets (section 1.5), but
be aware that in the literature you may find rank to mean “number of children”.
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In a binomial heap, returning the smallest value without removing it from the heap,
as done by first(), requires a linear search among the roots of the trees, which costs
O(lg n) since that’s the bound on the number of trees. In our linked list data structure we
just return the item pointed by min, at cost O(1). The decreaseKey() method is equally
cheap: you decrease the key of the designated node and, after one comparison, update
the min pointer if necessary. Cost is O(1) as opposed to the O(lg n) of the binomial heap
where the key might have to navigate up the tree towards the root.

There is a catch, of course: in our lazy data structure as described so far, we end
up paying O(n) for extractMin(). The extraction itself is not the real problem: yes, it
would require O(n) to find, via sequential traversal, the predecessor of the node to be
removed, but this can easily be brought back to O(1) by using a doubly-linked list instead
of a regular list, at no increase in asymptotic cost for any of the other previously described
operations.

The real, unavoidable cost is finding the second-smallest item (the new minimum after
the removal) so as to be able to update the min pointer; for the lazy data structure this
requires scanning the whole list, which costs O(n). This negates all the benefits of making
the other operations O(1) because for example Dijkstra would end up costing O(V 2 +E).
On sparse graphs where |E| = O(V ), the performance of Dijkstra using the list-based lazy
structure is O(V 2) which is much worse than the O(V lg V ) achieved with a binomial or
binary heap13.

The trick, then, is to perform some moderate amount of tidying up along the way so
that searching for the new minimum will cost less than O(n). The strategy used by the
Fibonacci heap is in some sense a halfway-house between the flat list and the binomial
heap. As far as insert(), merge() and first() are concerned, we operate similarly to
what happens with the flat list14. Whenever we perform extractMin(), though, after
having extracted the minimum we rearrange all the remaining vertices into something
very similar to a binomial heap; and only then we look for the minimum, now at reduced
cost. This may sound suspicious at first, given the expected cost of building an entire
binomial heap; but we are only claiming a logarithmic cost for extractMin() in amortized
terms : the actual cost will be higher.

Having conveyed these general intuitions, there is no point in discussing things any
further without first explaining precisely how Fibonacci heaps are implemented. So let’s
now do that. Once that is understood, we’ll get back to the analysis and compute precise
amortized costs for all operations.

13It is however true that O(V 2 + E) is better than O(E lg V ) on dense graphs where |E| = O(V 2):
there, it becomes O(V 2) versus O(V 2 lg V ).

14Indeed a Fibonacci heap is indistinguishable from a flat doubly-linked list with min pointer so long
as only insert(), merge() and first() are performed on it.
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1.3.3 Implementation

A Fibonacci heap is implemented as a forest of min-heap-ordered15 trees. The heap also
maintains a min pointer to the root with the smallest key among all the roots. The roots
are linked together in a circular doubly-linked list, in no particular order. For each node,
the children of the node are also linked together in a circular doubly-linked list, in no
particular order. Each node has a pointer to its unique parent (None if the node is a
root) and a pointer to one of its children (None if the node is a leaf; the other children
are reachable via the circular list). Here is the layout of the FibNode data structure:

0 ADT FibNode extends Item {
1 FibNode b; // back pointer; previous item in sibling list
2 FibNode f; // forward pointer; next item in sibling list
3 FibNode p; // parent pointer; direct ancestor
4 FibNode c; // child pointer; other children reachable via sibling list
5 Boolean marked; // set iff this node is not a root and has lost a child
6 int degree; // number of children
7 }

Next is an ASCII-art example of a Fibonacci heap with 6 trees (not showing all the
criss-crossing pointers, though). Each two-digit integer in the diagram stands for a full
FibNode, of which it displays the payload. Horizontally-connected nodes, such as 43, 41
and 33, are siblings: they are actually members of a doubly-linked list.

15Each node with a parent has a key not smaller than that of the parent.
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06 58 30 10 40 44
| | | |
+ +---+-------+ +---+ +
| | | | | | |

77 43 41 33 70 32 50
| | |
+---+ + +
| | | |

54 66 82 51
|
+
|

76

The following diagram magnifies a four-node portion of the previous Fibonacci heap,
showing all the fields and pointers of each FibNode.

A peculiar constraint that the Fibonacci heap imposes on its trees, beyond that of
being min-heap-ordered, is the following: after a node has been made a child of another
node, it may lose at most one child before having to be made a root. In other words:
while a root node (such as the one with key 30 in the above example) may lose arbitrarily
many children without batting an eyelash, a non-root node (such as 41) may only lose at
most one child node; after that, if it is to lose any other child nodes, it must be cut off
from its tree and promoted to being a standalone root. The reason for this constraint will
be explained during the asymptotic analysis: its ultimate purpose is to bound the time
of extractMin() by ensuring that a node with n descendants (children, grandchildren
etc) has a degree (number of children) bounded by O(lg n). The way the constraint is
enforced is to have a boolean flag (the marked field) in each node, which is set as soon
as the non-root node16 loses its first child. When attempting to cut a child node from a
non-root parent, if the parent is marked then the parent must be cut off as well and made
a root (and unmarked), and so on recursively. This maintains the required invariant.

16Note that, by line 5 of the FibNode ADT definition on page 20, a root node is never marked. And
if a marked node is ever made into a root, it must then lose its mark.
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Exercise 5
Explain with an example why, if the “peculiar constraint” were not enforced,
it would be possible for a node with n descendants to have more than O(lg n)
children.

As is typical with priority queues, there is no efficient support for finding the node
that holds a given key. Therefore the methods of a Fibonacci heap take already-created
FibNodes as parameters and return FibNodes where appropriate. The calling code is
responsible for allocating and deallocating such nodes and maintaining pointers to them.

FibHeap constructor()
Behaviour: Create an empty heap.
Implementation: Set min to None (constant cost).

FibHeap constructor(FibNode n)
Behaviour: Create a heap containing just node n.
Implementation: Make min point to this node and adjust n’s own pointers con-
sistently with the fact that n is now the only node in the circular doubly-linked list
of roots (constant cost)17.

void insert(FibNode n)
Behaviour: Add node n to the heap.
Precondition: n is not in the heap.
Postcondition: The nodes now in this heap are those it had before plus n.
Implementation: create a heap with just n (constant cost) and merge it into the
current heap (constant cost, cfr merge()).

void merge(FibHeap h)
Behaviour: Take another heap h and move all its nodes to this heap.
Postcondition: h is empty. The nodes now in this heap are those it had before
plus those that used to be in h.
Implementation: Splice the circular list of roots of h into the circular list of roots
of this heap (constant cost). Compare the two min and point to the winner (constant
cost).

FibNode first()
Behaviour: Return (a pointer to) the node containing the minimum key, with-
out removing that node from the heap.
Precondition: This heap is not empty.
Postcondition: This heap is exactly the same as it was before invoking the method.
Implementation: return min (constant cost).

FibNode extractMin()
Behaviour: Return (a pointer to) the node containing the minimum key, but also
remove that node from the heap.

17Conceptually this is a private constructor, used only by the insert() method and not accessible to
external clients.
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Precondition: This heap is not empty.
Postcondition: This heap contains the same nodes it had previously (though not
necessarily in the same layout), minus the one that contained the minimum key.
Implementation: Cut off the root pointed by min from the circular list of roots of
this heap (constant cost). Cut off this root from its children (cost proportional to
the number of children, because you must reset the p pointer of each child). Splice
the circular list of children into the circular list of roots (constant cost). Repeatedly
perform the “linking step” while it is possible to do so: if any two trees in the circular
list of roots have the same degree k, i.e. the same number of child subtrees, combine
them into a single tree of degree k + 1 by making the tree with the larger root key
become a child of the other (cost to be discussed later). Set min to point to the root
with the smallest key (cost proportional to the total number of trees now in the
root list, also to be discussed later). Finally, at constant cost, return the (previous)
minimum node that was cut off from the root list and from its children at the start
of the operation. (Total cost to be discussed later.)

void decreaseKey(FibNode n, int newKey)
Behaviour: Decrease the key of node n to newKey.
Precondition: n is in this heap and newKey < n.key.
Postcondition: This heap contains the same nodes as it did previously (though
not necessarily in the same layout), except that n now has a new key.
Implementation: Decrease n.key to the new value, then check if n.key is now
smaller than the parent node’s key. If it hasn’t, the job is completed, at constant
cost. If it has become smaller, the min-heap ordering has been violated. Restore
it at constant cost by cutting off n, ensuring its marked flag is reset and making n
into a new root, where it can have as low a key as it wants without disturbing the
min-heap property. As you cut off the node, you must however obey the “peculiar
constraint”: if the node’s parent is marked, it must also be cut off and unmarked
(and its ancestors too, recursively, if necessary, causing a series of so-called cascading
cuts). If the node’s parent is not marked, and is not a root, it must be marked.
(Cost of cascading cuts to be discussed later.)

void delete(FibNode n)
Behaviour: Remove the given node from the heap.
Precondition: n is in this heap.
Postcondition: This heap contains the same nodes as before this method was in-
voked, except for n which has been removed.
Implementation: As with any priority queue, you may implement delete() as
a combination of decreaseKey() and extractMin(). Invoke decreaseKey() on
node n with a newKey of −∞, making that node the one with the smallest key in
the heap. Then perform extractMin() to remove it. (Cost: the sum of the costs of
decreaseKey() and extractMin().)

1.3.4 Amortized analysis

Using the potential method we shall prove that extractMin() and delete() run in
amortized O(lg n) cost and that all other operations, particularly decreaseKey(), run in
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amortized constant cost.
We define the potential function Φ of the Fibonacci heap as t + 2m where t is the

number of trees and m is the number of marked nodes. This means, using the previous
metaphor, that we must pay, or rather deposit in the data structure, an extra gold coin
whenever we create a new tree at the root level and we must deposit two gold coins
whenever we mark a node; however we do get back one gold coin whenever we remove
a tree and we get back two coins whenever we unmark a node. The value of a gold
coin is taken to be sufficient to cover the highest of the constant costs identified in the
preliminary analysis in the previous section.

Let’s now review each of the methods and assess its amortized cost.

FibHeap constructor()
No trees and no nodes are created, so Φ = 0. Amortized cost is equal to real cost,
i.e. constant.

FibHeap constructor(FibNode n)
We make a new (singleton) tree, so we deposit an extra gold coin in it on top of
the real cost. The amortized cost is still constant; it’s actually higher than the real
cost, but the difference is hidden by the big-O notation.

void merge(FibHeap h)
We rewrite a fixed number of pointers to splice together the two doubly-linked lists
of roots. The roots of h already carry one gold coin each so there is no change in
overall potential when we transfer them to this heap. The amortized cost is the
same as the real cost, i.e. constant.

void insert(FibNode n)
Creating the singleton heap forces us to pay a gold coin but that’s still only a
constant cost. We just saw that merging has amortized constant cost and therefore
here too the overall amortized cost is constant (though slightly higher than the real
cost).

FibNode first()
The potential is not affected so the amortized cost is the same as the real cost:
constant.

FibNode extractMin()
Now things start to get interesting. Cutting off the node pointed by min from the
root list yields a gold coin which repays us of any one-off work done. If c is the
degree (= number of children) of that minimum node, for each of the c children we
must perform a constant amount of work to reset the p (parent) pointer to None,
plus we must deposit a gold coin into the child node because we are creating a
new root-level tree. So we are paying the equivalent of 2c gold coins for this part.
Then we must do the linking step: if any two trees have the same degree, we join
them into a single tree of degree one higher by making one the child of the other.
This action may have to be repeated many times, depending on how many trees
there are (however many there were before, minus one, plus c) but we don’t worry
about it because each join (whose real cost is a constant since it’s a fixed number
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of pointer manipulations) pays for itself with the gold coin released by the tree that
becomes a child of the other. So, in amortized terms, the whole linking step is free of
charge. Next, finding the smallest root among the remaining trees after the linking
step requires a linear search of all of the remaining trees. How many are there?
heap with n nodes, call d(n) the highest degree of any node in that heap; then,
since the outcome of the linking step is that no two trees have the same degree, the
number of trees is necessarily bounded by d(n) + 1 (the case in which we have the
trees of all possible degrees from 0 to d(n)). Since c ≤ d(n) by definition of d, the
overall amortized cost of extractMin(), including also the 2c mentioned previously,
is O(d(n)). All that remains to do in order to support the original claim is therefore
to prove that d(n) = O(lg n), which we shall do in section 1.3.5. The intuition is that
we don’t want any tree in a Fibonacci heap to grow “wide and shallow”, otherwise
the root will have too many children compared to the total number of nodes of the
tree and the number of children will exceed O(lg n); and the “peculiar constraint”
has precisely the effect of preventing “wide and shallow” trees. In summary, the
amortized cost of extractMin() is O(lg n) even though the real cost may be much
higher because of the hidden work involved in the linking step (which gets repaid
by spending some of the gold coins that were stored in the data structure).

void decreaseKey(FibNode n, int newKey)
If the node doesn’t need to move as a consequence of its key having been decreased,
the potential is unchanged by the operation and therefore the amortized cost is
the same as the real cost, i.e. constant. In the case where the node must be cut
(because its key is now smaller than that of its parent, which would violate the
min-heap property), let’s assume that there are p ≥ 0 marked ancestors above it
that also need to be made into roots with cascading cuts. Each marked node that is
cut releases two gold coins as it gets unmarked (remember roots are all unmarked).
One coin covers for the cost of cutting and splicing, while the other coin is stored
in the newly-created root. Therefore, any arbitrarily long chain of cascading cuts
of marked nodes will exactly repay for itself in amortized terms. The only possibly
non-marked node among those to be cut is n itself, the one whose key has been
decreased. If n is unmarked (and it may or may not be) we must pay a constant
cost for cutting and splicing it and then we must store a gold coin in the new tree
root; furthermore, if the parent of n was unmarked and was not a root, we must
mark it and store two coins in it, at a total worst-case cost of up to four coins (one
stored in the new root, two in the newly-marked node, and one coin’s worth to
cover all the actual work of cutting, splicing and marking). This is still a constant
with respect to n, therefore the overall amortized cost still won’t exceed O(1), even
though the real cost may be much higher because of the hidden work involved in
the cascading cuts.

void delete(FibNode n)
As previously noted, this is simply a two-step sequence of decreaseKey(), which
costs O(1) amortized, and extractMin(), which costs O(lg n) amortized; therefore
in total this operation costs O(lg n) amortized.

The following table summarizes the amortized costs of all the methods of a Fibonacci
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heap: all methods have constant amortized cost except those that remove nodes from the
heap, which have logarithmic cost.

Operation Cost (amortized) with Fibonacci heap
creation of empty heap O(1)
first() O(1)
insert() O(1)
extractMin() O(lg n)
decreaseKey() O(1)
delete() O(lg n)
merge() O(1)

1.3.5 Why Fibonacci?

To complete the complexity analysis of extractMin() we must prove that the maximum
degree of any node in an n-node Fibonacci heap is bounded by O(lg n); if we do so, then
we have shown that the whole extractMin() operation is O(lg n). The full story will also
explain the reason for the Fibonacci name assigned to the data structure.

We want to prove that, by building Fibonacci heaps in the way we described (includ-
ing in particular the “linking step” during extractMin() and the “peculiar constraint”
enforced by node marking in decreaseKey()), if a node has k children then the number
of nodes in the subtree rooted at that node is at least exponential in k. In other words
we shall prove that, if a subtree contains n nodes (root of subtree included), the root of
that subtree has at most O(lg n) children.

Consider a node x, with children, and consider its child nodes in the order in which
they were attached to x, from earliest to latest. They could have only been attached
during a linking step, which happens between two trees of the same degree. Call y the
k-th child of x. When y was appended to x, x must have had at least k−1 children (even
though it may have had more, since deleted) and so y itself must have had at least k − 1
children itself at that time, because it had to be of x’s degree in order to be linked to x.
Since then, y may have lost at most one child but not more—otherwise, thanks to the
peculiar constraint, it would have been cut off and made into a root. Therefore (thesis)
the k-th child of x has at least k − 2 children.

Now let’s define the function N(j) as the minimum possible number of nodes of a
subtree rooted at a node x of degree j and let’s seek a closed expression for it. If node x
has degree 0, meaning no children, then the whole subtree contains just the original node
x: N(0) = 1. If node x has degree 1 (one child), the minimum tree is one where that child
has no children, so the tree only has these two nodes (x and its child) and N(1) = 2. The
thesis above tells us how many children each of the children of x from the second onwards
must have at least: the second node must have at least 0, the third node at least 1, the
fourth node at least 2, the k-th node at least k − 2. Therefore, assuming that each of
these children is itself root of a subtree with the minimum possible number of nodes, the
overall minimum number of nodes in the subtree rooted at x will be the sum of all these
contributions:

N(j) =
root

1 +
child 1

1 +
child 2

N(2− 2) +
child 3

N(3− 2) + . . .+
child j

N(j − 2)= 2 +

j−2∑
l=0

N(l). (1.1)
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From this we can prove inductively that

N(j) = F (j + 2) (1.2)

where F (k) is the k-th Fibonacci number18. For the base of the induction, it’s easy to
verify that the relation holds for j = 0 and j = 1; for the inductive step, let’s assume it
works for j and check whether it does for j + 1:

LHS = N(j + 1) =

= 2 +

j−1∑
l=0

N(l) =

= 2 +

j−2∑
l=0

N(l) +N(j − 1)
(1.1)
=

= N(j) +N(j − 1)
(1.2)
=

= F (j + 2) + F (j + 1) =

= F (j + 3) =

= RHS

QED.

It works! So the number of nodes in a subtree of degree j is at least equal to the
(j + 2)-th Fibonacci number. Since the Fibonacci numbers grow exponentially (it can be
proved that F (j+2) ≥ φj), we have that the total number of nodes in a subtree of degree
j is exponential in j:

N(j) ≥ φj

and therefore, taking the log of both sides,

logφN(j) ≥ j

which means that j ≤ K lgN(j) for some constant K. So we have finally proved that, in
a Fibonacci heap, if a subtree has n nodes, the root of the subtree has degree O(lg n).

1.4 van Emde Boas trees

Textbook

Study chapter 20 in CLRS3.

18The well-known Fibonacci sequence is defined as F (0) = 0, F (1) = 1 and F (i+ 2) = F (i) +F (i+ 1).
Each number is the sum of its two predecessors: 0, 1, 1, 2, 3, 5, 8, 13, 21. . . The sequence occurs in many
contexts in nature and art and the ratio of two successive numbers converges to the irrational number
φ = 1+

√
5

2 , known as the golden ratio. Note that this φ is totally unrelated to the potential Φ introduced
in section 1.2.2.
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Just when you thought that the Fibonacci heaps were the asymptotically fastest and
most elaborate way of implementing a priority queue, here comes another amazing data
structure that goes even further—the van Emde Boas tree, or “vEB tree”.

The Fibonacci heap already has amortized constant cost for most of its operations and
it’s hard to improve on that; but is still has amortized O(lg n) costs for extractMin()
and delete(). The vEB tree manages to bring those costs down to an amazing O(lg lg n)!
The three main trade-offs are:

1. all operations cost O(lg lg n), even the ones that were O(1) with the Fibonacci heap;

2. the vEB tree requires the keys to be (unique) integers of a specified maximum size
in bits;

3. unlike the Fibonacci heap, the vEB tree does not offer an efficient merge operation.

The interface exposed by the vEB tree is essentially that of the ordered dynamic set19:
member(), insert(), delete(), min(), max(), pred(), succ(). All these operations
are performed in O(lg lg n) time and, by combining them in the obvious way, one can
also perform in O(lg lg n) time the typical priority queue operations of extractMin(),
first(), decreaseKey().

Exercise 6
Assume that insert(), delete(), min(), max(), pred(), succ() all have
complexity O(f(n)). Define extractMin(), first() and decreaseKey() in
terms of the previous primitives, without exceeding O(f(n)) complexity.

But the vEB tree is a pretty elaborate data structure so we’ll get to it in stages rather
than describing the final product straight away. First, though, instead of speaking of n,
the number of keys held in the priority queue, we’ll speak of u, the size of the universe
of keys, or in other words the number of possible keys in the data structure (for example
u = 264, if each key is a 64-bit integer). The costs for the vEB tree, unlike those for the
Fibonacci heap, are in fact a function of u (the number of distinct keys that the data
structure could potentially hold), not of n (the number of keys actually stored in the data
structure); so, to be more precise, with this definition we should have said in the above
that the costs of the dynamic set operations supported by the vEB tree are O(lg lg u).

1.4.1 Array

The first attempt to speed up operations such as insert() and delete() is to use an
array of bits of size u, with A[k] == 1 if and only if the item whose key is k is in the
data structure; then insert() and delete() will cost O(1). But min(), max(), pred(),
succ() will cost an unacceptable O(u), because we’ll have to scan the array linearly,
skipping all the 0s, until we find the next 1.

19Except that we disregard satellite data because all that matters here is the keys themselves. Indeed,
we don’t even have a search method but just a member method that says whether a given key is in the
data structure or not.
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1.4.2 Binary tree

We can augment the array with a binary tree whose leaves are the array entries. Each
node of the tree is labelled with one “summary” bit for its subtree, which is 1 iff the
subtree rooted there has any nonzero leaves. In other words, the bit value of each node is
the OR of the values of its two children. This allows us to skip empty contiguous regions
more efficiently. For example, to find the minimum, start from the root and follow the
leftmost “1” pointers until you get to a leaf. The cost is the height of the tree, i.e. O(lg u).

Finding the successor (the next cell with a “1”) of a designated value20 is slightly more
elaborate. You go up until the up-arrow goes right and the other (right) child has a “1”
summary21. Then you go down that right child of that ancestor and find the minimum of
that subtree. The worst possible cost is twice the height of the tree, so again O(lg u).

Inserting a new leaf is easy: set it and all its ancestors to 1, again at cost O(lg u).
Deleting is not quite symmetrical, though: you set the leaf to 0 but then, as you go up
the tree, the value of each ancestor must be recomputed as the OR of its two children.
The cost remains O(lg u), since the work per node is constant.

1.4.3 Two-level tree

In an attempt to speed up operations even further, we force the tree to have a constant
height of just two levels (instead of a variable height of lg u levels). Each node of the
tree, root included, must therefore have

√
u children. Again, each node stores one bit

which is the OR of all its children. The procedures to find the minimum (maximum) or
the successor (predecessor) are conceptually the same as before, but because the tree has
constant height the total cost is O(

√
u).

20Note that the successor of x can be sought regardless of whether x is or isn’t a member of the data
structure, i.e. without cell x necessarily having to be set to 1 itself.

21If you go up and reach the root without the up-arrow ever going right, you were already at the
rightmost cell of the array so you have no successor. If the up-arrow eventually goes right but the right
child has a “0” summary, then there are no bits set after your position and therefore you have no successor
either.
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The procedures for inserting and deleting are also conceptually the same as before,
but deletion is more expensive.

Exercise 7
How much do insertion and deletion cost for the two-level tree? Why?

1.4.4 Proto-vEB tree

We continue with the idea of a tree of degree
√
u, but this time we make the data structure

recursive: if u is the size of the universe of keys at a given level in the structure, at the
next level down the structure shrinks by a factor of

√
u. Imagine for example that, at the

top level, u = 264. Then the root node, to cater for u = 264 leaves, will have
√
u = 232

children, each with
√
u = 232 leaves. From the point of view of one of these children, the

size of the universe of keys will be u = 232 (that’s a new u for this level), so that node
will in turn have

√
u = 216 children, each with

√
u = 216 leaves. And so forth until the

base level where u = 2.
We also rearrange the tree slightly: previously, each node contained one summary bit

with the OR of all its children. Now, although the same information is still there, we
store it somewhere else. Node (cluster) n, of size u, has

√
u children of size

√
u. It also

has another (anomalous) child, called “summary”, which itself is a proto-vEB node of size√
u (structurally identical to all the other children of n) but whose values are the indices

of the children of n (clusters of size
√
u) that are not empty. And each node restarts

numbering its own children from 0.
Each proto-vEB node with u > 2 thus contains the following three fields:

u: an integer giving the size of the universe of keys for this node; this node can store all
integers from 0 to u− 1.

summary: a pointer to a proto-vEB node of size
√
u containing one summary bit for each

child of the current node.

cluster[]: an array with
√
u cells, each being a pointer to a proto-vEB node of size

√
u.
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At the bottom level, the proto-vEB node with u = 2 does not have the summary
pointer and stores actual bits, rather than pointers, in the two cells of its cluster.

We assume for simplicity that u = 22k for some integer k, so that the square root of
u is always an integer, at all levels in the tree. Another way of saying the same thing is
that the number of bits of u is a power of 2 (at all levels) and that therefore it is always
possible to split the bit string of a key in two halves of equal length. Given any key
x ∈ [0, u− 1], if we call high(x), or h, the top half of the binary representation of x and
low(x), or l, the bottom half22, then x is stored in the h-th child of the root node and
it is key number l within that node. (We use the function index(h, l) to join back the
two halves: index(high(x), low(x)) == x.)

For example, if a proto-vEB tree of size u = 24 stores the key 13 (binary 1101), the
root node (which has

√
u = 22 clusters with

√
u = 22 keys each) stores it in its cluster

number 3 (binary 11, the most significant half of 1101) and at position 1 (binary 01) in
that cluster. Note well how cluster number 3 has a size of 4, not 16, and thus only holds
keys from 0 to 3. The key it holds is indeed 1, not 13, which wouldn’t fit. You can only
reconstruct the full value of the key if you look at the whole path: you can’t read it off
from the leaf. (Remember that as you do the following exercise.)

Exercise 8
Sketch a picture of a proto-vEB tree of size u = 16 representing the set 2, 3,
4, 5, 7, 14, 15.

Where did these weird ideas come from? Why are we doing this at all? The objective
is to attain the O(lg lg u) complexity bound. We can show that the recurrence

T (u) = T (
√
u) +O(1)

is solved by the desired

T (u) = O(lg lg u)

and this suggests that, to attain that recurrence, we should build a recursive structure
where the size of each node is the square root of the size of the parent. Then if a recursive

22Note also that, in reality, the functions high() and low() must take u as a second parameter, in
order to know how many bits to chop off.
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procedure for, say, finding the minimum, did on each level an amount of work proportional
to the size of a node at that level, it would be described by the above recurrence and would
achieve the desired running time.

Let’s first show, informally, that the above recurrence is indeed solved by the given
function. We use the substitution u = 2m, implying m = lg u.

T (u) = T (
√
u) +O(1)

T (2m) = T (2
m
2 ) +O(1)

= T (2
m
4 ) + 2O(1)

= T (2
m
8 ) + 3O(1)

= T (2
m
16 ) + 4O(1)

= T (2
m

2l ) + lO(1)

= T (2
m
m ) + lgm ·O(1)

= T (2) +O(1) lgm

= O(lgm)

= O(lg lg u)

QED.
Let’s now look specifically at finding the minimum.

0 def min(self):
1 """In this class method for a protoVEB object,
2 self is a protovEB node of size u.
3 Return the minimum key in self, or None if self holds no keys."""
4

5 if self.u == 2:
6 handle base case by brute force at constant cost
7 else:
8 minCluster = self.summary.min()
9 if minCluster == None:

10 return None
11 else:
12 h = minCluster
13 l = self.cluster[minCluster].min()
14 return index(h, l)

We see that the worst-case costs involve two recursive calls of min() from within itself
(lines 8 and 13), on proto-vEB nodes of size

√
u. This yields the recurrence

T (u) = 2T (
√
u) +O(1)

which unfortunately solves to T (u) = O(lg u), not O(lg lg u).
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Exercise 9
Prove that the recurrence

T (u) = 2T (
√
u) +O(1)

has the solution
T (u) = O(lg u).

Some of the other data structure methods have even worse performance. Consider for
example the case of looking for the successor of a given key. As with the two-level tree, we
go up until the ancestor node has a child to the right of us, and that child’s summary bit
is 1. Then we go down that child, all the way to the leaves, looking for the minimum. To
obtain a recurrence for this operation, let’s rephrase it as a top-down recursive procedure
that matches the hierarchy of the data structure: the successor of k, if it exists, is either
k’s successor within the cluster that contains k (in case k is not the maximum of its own
cluster), or it’s the minimum of the next cluster that contains anything.

0 def successor(self, k):
1 """In this method, self is a protovEB node of size u.
2 k is a key in the range 0..u-1.
3 Return the key that is the successor of k in self,
4 or None if there is none."""
5

6 if self.u == 2:
7 handle base case by brute force at constant cost
8 else:
9 h = high(k, self.u)

10 l = low(k, self.u)
11 successorInCluster = self.cluster[h].successor(l)
12 if successorInCluster == None:
13 nextCluster = self.summary.successor(h)
14 if nextCluster == None:
15 return None
16 else:
17 return nextCluster.min()
18 else:
19 return successorInCluster

Here we see that, in the worst case, the successor() method calls itself twice, in lines
11 and 13, each time on a node of size

√
u, but then also invokes min() on a node of size√

u, in line 17. This gives us a recurrence of T (u) = 2T (
√
u) +O(lg

√
u), where the factor

of 2 in front of the T term comes from the two recursive invocations of successor() from
within itself, while the O(lg

√
u) is the cost of min() as derived above.
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Exercise 10
Prove that the recurrence

T (u) = 2T (
√
u) +O(lg

√
u)

has the solution
T (u) = O(lg u lg lg u).

Therefore, with the proto-vEB tree, computing the successor is asymptotically slower
than computing the minimum.

But, despite these disappointments, the proto-vEB tree still gives us hints of what to
do next.

1.4.5 vEB tree

The vEB tree can be thought of as a proto-vEB tree optimized so that its methods have
to make at most one recursive call. This is done to ensure that the recurrence does not
gain a multiplying factor in front of the inner T (

√
u).

The variations to achieve this result are as follows.

• The vEB node contains all the fields of the proto-vEB node, plus two more that
store the minimum and maximum key held in the node and its descendants.

• The minimum key for the node is actually only stored in the min field; it is not also
stored in any of the clusters. The maximum, instead, is. (Can be confusing.)

• If a node contains no values, both the min and the max are set to None.

• In the base case of u = 2, the node does not have clusters nor summary. Its content
can be deduced simply by observing its min and max.
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Exercise 11
Deceptively difficult. Do not skip.
Sketch a picture of a vEB tree of size u = 16 representing the set 2, 3, 4, 5, 7, 14,
15. OK to study the textbook and handout first, but keep them closed while
doing this exercise. No matter how good you are, you will almost certainly get
some details wrong. That’s OK. Check the textbook after having drawn your
solution and mark in red all the items that are different, understanding why.
Then the next day do the exercise again, with textbook closed. Iterate until
you get no errors. Will take several days (no shame in that).
You may think you understand vEB trees but you actually don’t until you
successfully complete this exercise.

CLRS3 also describes another trick that allows lg u to be odd instead of even, but we
are not going to worry about that detail in this course. It’s just formal rules to decide
which of the two “halves”, h and l, gets the extra bit (the most significant part, h, is the
one that ends up with one more bit if there is an odd number of them in lg u).

What happens to the class methods and their costs with these customizations?

The minimum and maximum are trivially read off the corresponding fields of the
node, so the min() and max() methods now only cost O(1). Of course, whenever a
data structure caches some information, we must be suspicious and wonder how much it
costs to keep this cache up to date. So, what happens with insert()? If the node is
empty, insert the value directly (into both the min and max fields, which previously held
None, but without touching summary or cluster because the minimum is not stored in the
clusters) at constant cost. Otherwise, insert the value h|l into both cluster and summary.
However only one of these two calls is recursive: if cluster[h] was empty, insertion of
l into cluster[h] has constant cost23 and insertion of h into summary is recursive. If,
on the other hand, cluster[h] wasn’t empty, insertion of l into cluster[h] is recursive
but insertion of h into summary is not even needed because summary necessarily already
contained h. The resulting recurrence is T (u) = T (

√
u) +O(1), which is O(lg lg u).

What about finding the successor?

23It’s just a matter of setting the min and max to l.
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0 def successor(self, k):
1 """In this method, self is a vEB node of size u.
2 k is a key in the range 0..u-1.
3 Return the key that is the successor of k in self,
4 or None if there is none."""
5

6 if self.u == 2:
7 handle base case by brute force at constant cost
8 elif self.min != None and k < self.min:
9 return self.min

10 # NB: OK to ask for successor of a key not in self
11 else:
12 h = high(k, self.u)
13 l = low(k, self.u)
14 maxInCluster = self.cluster[h].max
15 if maxInCluster != None and l < maxInCluster:
16 # the successor of k is in k’s own cluster
17 return index(h, self.cluster[h].successor(l))
18 else:
19 # the successor of k is in another cluster
20 nextCluster = self.summary.successor(h)
21 if nextCluster == None:
22 return None
23 else:
24 return index(nextCluster, self.cluster[nextCluster].min)

Does cluster h (the one containing k) also contain k’s successor? With a proper vBE
we can tell without a recursive call, just by checking with a single lookup (line 14) whether
k is the maximum of its cluster (line 15). We then call successor() recursively only once
per invocation, either on the key’s own cluster in the “then” branch (line 17) or on the
summary in the “else” branch (line 20). No path through this method has more than one
recursive call of successor(), so the recurrence is again T (u) = T (

√
u) +O(1), which is

O(lg lg u).
Deletion is more complicated (we won’t reproduce a listing here but there is one in

CLRS3), and so is its analysis because there is a possible path through the procedure
in which two recursive calls are made. However it is possible to prove that, when this
happens, one of the two calls takes constant time. Therefore the recurrence that applies
is still T (u) = T (

√
u) +O(1), which is O(lg lg u).

1.5 Disjoint sets

Textbook

Study chapter 21 in CLRS3.

The disjoint set data structure, sometimes also known as union-find or merge-find, is
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used to keep track of a dynamic collection of disjoint sets (sets with no common elements)
over a given universe of elements.

An example application can be seen in Kruskal’s minimum spanning tree algorithm
(section 2.3.1), where this data structure is used to keep track of the connected components
of a forest: every connected component is stored as the set of its vertices and checking
whether two vertices belong to the same disjoint set in the collection or to two different
ones tells us whether adding an edge between them would introduce a cycle in the forest
or not. Most other uses of this data structure are still generally related to keeping track
of equivalence relations24.

The available operations on a DisjointSet object, which despite its name is actually
a collection of disjoint sets, allow us to add a new singleton set to the collection by
supplying the element it contains (makeSet()), find the set that contains a given element
(findSet()), and finally form the union of two sets in the collection (union()).

Conceptually, the makeSet() and findSet() methods return a “handle”, which is
anything that can act as a unique identifier for a set. If you invoke findSet() twice
without modifying the set between the two calls, you will get the same handle. In practice,
an implementer might choose to use one of the set elements as the handle.

0 ADT DisjointSet {
1 Handle makeSet(Item x);
2 // PRECONDITION: none of the existing sets already contains x.
3 // BEHAVIOUR: create a new set {x} and return its handle.
4

5 Handle findSet(Item x);
6 // PRECONDITION: there exists a set that contains x.
7 // BEHAVIOUR: return the handle of the set that contains x.
8

9 Handle union(Handle x, Handle y);
10 // PRECONDITION: x != y.
11 // BEHAVIOUR: merge those two sets into one and return handle of new set.
12 // Nothing is said about whether the returned handle matches either
13 // or none of the supplied ones (i.e. whether set x absorbs y,
14 // set y absorbs x or both sets get destroyed and a new one created).
15 }

24An equivalence relation is one that is reflexive, symmetric and transitive, such as “is of the same
color as” or “has the same mother as” or “costs the same as”.
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1.5.1 List implementation

A relatively simple implementation of this data structure uses linked lists to store the sets.
The makeSet() method creates a new one-item list and takes constant time. The union()
method, too, can be made to take constant time if the DisjointSet object maintains, for
each list in the collection, a pointer to the last element.

The findSet() method requires finding the head of the list that contains the given
element25; however, in a singly-linked list, this cannot be done by following the list pointers
because they go away from the list head, not towards it. If we add a further pointer from
each list node to the head of the corresponding list, then we can implement findSet()
in O(1), but then union() is no longer O(1) because we must update all the pointers-to-
head of all the nodes of the list being appended. Indeed, one can easily construct pessimal
input sequences for which the cost of O(n) operations is Θ(n2), yielding an amortized cost
of O(n) for each disjoint set operation. The following example does. Perform a sequence
of 2n− 1 operations, of which n are makeSet() and n− 1 are union(), according to the
following pattern: keep alternating between making a new set and appending the long
list with all the previous elements to the short one of the newly-made singleton set26.

d = DisjointSet()
h0 = d.makeSet(x0)

h1 = d.makeSet(x1)
h0 = d.union(h0, h1)
h2 = d.makeSet(x2)
h0 = d.union(h0, h2)
h3 = d.makeSet(x3)
h0 = d.union(h0, h3)
h4 = d.makeSet(h4)
h0 = d.union(h0, h4)
.
.
.

25Remember (see the comments that open this chapter on page 7) that the Item x passed by the caller
to the findSet() method is actually already a pointer to the list node that contains the set element of
interest—you don’t have to worry about finding the required set element in the data structure.

26For any given implementation following the above naïve strategy, you can always achieve this pes-
simal append by appropriately choosing the order of the parameters in the call to union().
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As the example implicitly suggests, the smart thing to do is instead to append the
shorter list to the longer one; doing this requires us to keep track of the length of each
list, but this is not a major overhead. With such a weighted union heuristic, it is
possible to prove that the cost of a sequence of m operations on n elements27 goes down
to O(m+ n lg n) time.

1.5.2 Forest implementation

A more elaborate representation stores each set in a separate tree (rather than list), with
each node pointing to its parent. The makeSet() method creates a new root-only tree
at cost O(1), while findSet() returns the root of the tree by navigating up the edges of
the tree, at cost O(h) where h is the height of the tree. The union() operation appends
the first tree to the second by making the root of the first tree a child of the root of the
second28, at cost O(1).

With the same kind of reasoning that suggested the weighted union heuristic, we
may improve the performance of union() by ensuring that the operation won’t generate
unnecessarily tall trees: we do this by keeping track of the rank of each tree (an upper
bound on the height of the tree) and always appending the tree of smaller29 rank to the
other. This union by rank heuristic ensures that the rank of the resulting tree is either
the same as that of the taller of the two trees or, at worst, one greater, if the two original
trees had the same rank. In other words, the maximum rank of the trees in the collection
grows as slowly as possible.

Another speedup is obtained by adopting the path compression heuristic, which at
every findSet(x) “flattens” the path from x to the root of the tree. In other words, x
and all the intermediate nodes between it and the root are reparented to become direct
children of the root. Stored ranks are not adjusted (which is why they end up being
only upper bounds on the heights of the respective trees, rather than exact values). This
operation costs no more than the O(h) of the original findSet(), asymptotically, since
all these nodes had to be visited in order to find the root anyway.

Exercise 12
If we are so obsessed with keeping down the height of all these trees, why don’t
we just maintain all trees at height ≤ 1 all along?

It can be shown with some effort that, if we adopt both “union by rank” and “path
compression”, the cost of a sequence ofm operations on n items is O(m·α(n)), where α() is
an integer-valued monotonically increasing function (related to the Ackermann function)
that grows extremely slowly. Since α(n) is still only equal to 4 for n equal to billions
of billions of times the number of atoms in the observable universe, it can be assumed
that, for practical applications of a disjoint set, the value α(n) is bounded by the constant

27In other words, a sequence of m operations, with m > n, of which n are makeSet() and m− n are
findSet() or union().

28These trees are not binary.
29Or equal.
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value 5 and may be ignored in the O notation. Therefore, “for all practical purposes”, the
performance of the forest implementation of the disjoint set with these two heuristics on
a sequence of m operations is O(m), meaning that the amortized cost per operation is
constant.
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Chapter 2

Graph algorithms

Chapter contents

Graph representations. Breadth-first and depth-first search. Topo-
logical sort. Minimum spanning tree. Kruskal and Prim algo-
rithms. Shortest paths. Bellman-Ford and Dijkstra algorithms.
Maximum flow. Ford-Fulkerson algorithm. Matchings in bipartite
graphs.
Expected coverage: about 5 lectures.

Graph theory can be said to have originated in 1736, when Euler proved the impossi-
bility of constructing a closed path that would cross exactly once each of the 7 bridges of
the city of Königsberg (Prussia).

Exercise 13
Build a “7-bridge” graph with this property. Then look up Euler and Königs-
berg and check whether your graph is or isn’t isomorphic to the historical one.
(Hint: you don’t have to reconstruct the historical layout but note for your
information that the river Pregel, which traversed the city of Königsberg, in-
cluded two islands, which were connected by some of the 7 bridges.) Finally,
build the smallest graph you can find that has this property.

2.1 Basics

Textbook

Study chapter 22 in CLRS3.
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2.1.1 Definitions

The general heading “graphs” covers a number of useful variations. Perhaps the simplest
case is that of a general directed graph: this has a set V of vertices and a set E of ordered
pairs of vertices that are taken to stand for directed edges. Such a graph is isomorphic
to, and is therefore a possible representation for, a relation R : V → V . Note that it
is common to demand that the ordered pairs of vertices be all distinct, and this rules
out having parallel edges. In some cases it may also be useful either to assume that for
each vertex v, the edge (v, v) is present (in which case the relation is reflexive), or to
demand that no edges joining any vertex to itself can appear (in which case the relation
is antireflexive). The graph is called undirected when the edges have no arrows, i.e.
when (v1, v2) is the same edge as (v2, v1), as is the case for the graph of the Königsberg
bridges problem.

A sequence of zero or more edges12 from vertex u to vertex v in a graph, indicated
as u  v, forms a path. If each pair of vertices in the entire graph has a path linking
them, then the graph is connected. A non-trivial3 path from a vertex back to itself
is called a cycle. Graphs without cycles have special importance, and the abbreviation
DAG stands for Directed Acyclic Graph. An undirected graph without cycles is a tree4,
but not vice versa (because some trees are directed graphs). A directed tree is always a
DAG, but not vice versa (think of the frequently-occurring diamond-shaped DAG). If the
set of vertices V of a graph can be partitioned into two sets, L and R say, and each edge
of the graph has one end in L and the other in R, then the graph is said to be bipartite.

1Zero when u ≡ v. Conversely, when a path u  v consists of precisely one edge, we iron out the
squiggles in the arrow and indicate it as u→ v.

2If the graph is directed, then all the edges of a path must go in the same direction.
In other words, a→ b← c is not a path between a and c.

3Here, by “non-trivial” we mean a path with more than one edge; when a cycle has only one edge we
call it a loop.

4Or a forest if made of several disconnected components.

42 Algorithms II (2013–2014)



2.1. Basics

Exercise 14
Draw in the margin an example of each of the following:

1. An anti-reflexive directed graph with 5 vertices and 7 edges.

2. A reflexive directed graph with 5 vertices and 12 edges.

3. A DAG with 8 vertices and 10 edges.

4. An undirected tree with 8 vertices and 10 edges.

5. A tree that is not “an undirected graph without cycles”.

6. A graph without cycles that is not a tree.

Actually, I cheated. Some of these can’t actually exist. Which ones? Why?

The definition of a graph can be extended to allow values to be associated with each
edge—these will usually be calledweights even though they may represent other concepts
such as distances, carrying capacities, costs, impedances and so on. Graphs can be used to
represent a great many things, from road networks to register use in optimizing compilers,
to databases, to electrical circuits, to timetable constraints, to web pages and hyperlinks
between them. The algorithms using them discussed here are only the tip of an important
iceberg.

2.1.2 Graph representations

Barring specialized representations for particular applications, the two most obvious ways
to represent a graph inside a computer are with an adjacency matrix or with adjacency
lists.
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The adjacency matrix, especially suitable for dense graphs5, is a square |V | × |V |
matrix W in which wij gives the weight of the edge from vertex i to vertex j (or, for
unweighted graphs, a boolean value indicating the presence or absence of an edge). This
format makes manipulation easy but obviously has O(|V |2) storage costs.

Therefore, for sparse graphs5, a more economical solution is often preferred: for each
vertex v, an adjacency list (usually unsorted) contains the vertices that can be reached
from v in one hop. For weighted graphs, the weight of the corresponding edge is recorded
alongside each destination vertex.

A comment on notation: the computational complexity of a graph algorithm will
usually be a function of the cardinality of the sets V and E; however, given that E and
V on their own as sets have no meaning in a big-O formula, writing down the cardinality
bars has no disambiguating function and only makes the formulae longer and less legible,
as in O(|E| + |V | lg |V |). Therefore the convention is to omit the bars within the big-O
notation and write instead things like O(E + V lg V ).

2.1.3 Searching (breadth-first and depth-first)

Many problems involving graphs are solved by systematically searching. This usually
means following graph edges so as to visit all the vertices. Note that we assume that we
have access to a list of all the vertices of the graph and that we can access it regardless
of the arrangement of the graph’s edges; this way, when a search algorithm stops before
visiting all the vertices, we can restart it from one of the vertices still to be visited.
This “backdoor” does not, as some might think, defeat the point of graph searching: in
general, the objective is not merely to access the vertices but to visit them according
to the structure of the graph—for example to establish what is the maximum distance
between any two vertices in the graph6, which by the way is known as the diameter of
the graph.

5A dense graph is one with many edges (|E| ≈ |V |2) and a sparse graph is one with few (|E| � |V |2).
6I should be more precise when saying something like this. In this instance I am referring to a

“maximum of minimums”; in other words, imagine to compute, for every two vertices in the graph, the
shortest path between them; then I want the longest of these shortest paths. Otherwise the definition of
maximum distance might be inconsistent, as one might be able to take arbitrarily many detours round
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The two main strategies for inspecting a graph are depth-first and breadth-first. In
both cases we may describe the search algorithm as a vertex colouring procedure. All
vertices start out as white, the virginal colour of vertices that have never been visited.
One vertex is chosen as source of the search: from there, other vertices are explored
following graph edges. Each vertex is coloured grey as soon as it is first visited, and then
black once we have visited all its adjacent vertices. Depending on the structure of the
graph, for example if a graph has several disconnected components, it may be necessary
to select another source if the original one has been made black but there still exist white
vertices.

0 def bfs(G, s):
1 """Run the breadth-first search algorithm on the given graph G
2 starting from the given source vertex s."""
3

4 assert(s in G.vertices())
5

6 # Initialize graph and queue:
7 for v in G.vertices():
8 v.predecessor = None
9 v.d = Infinity # .d = distance from source

10 v.colour = "white"
11 Q = Queue()
12

13 # Visit source vertex
14 s.d = 0
15 s.colour = "grey"
16 Q.insert(s)
17

18 # Visit the adjacents of each vertex in the queue
19 while not Q.isEmpty():
20 u = Q.extract()
21 assert (u.colour == "grey")
22 for v in u.adjacent():
23 if v.colour == "white":
24 v.colour = "grey"
25 v.d = u.d + 1
26 v.predecessor = u
27 Q.insert(v)
28 u.colour = "black"

In the case of breadth-first search, from any given vertex we visit all the adjacent
vertices in turn before going any deeper. This is achieved by inserting each vertex into a
queue as soon as it gets visited and, for each vertex extracted from the queue, by visiting
all its unvisited (white) adjacent vertices before considering it done (black). Only white
vertices are considered for insertion in the queue and they get painted grey on insertion
and black on extraction; as a result, the queue contains only grey vertices and there are

the cycles of the graph while navigating from one vertex to the other. I should also specify whether the
length of a path is considered to be the number of edges on it, as is the case for the graph diameter;
or—as indeed makes more sense for many other applications—the sum of the weights of the edges on it.
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no grey vertices other than those in the queue. Consider the colour grey as indicating
that a vertex has been visited by the procedure, but not completed.

Depth-first search, instead, corresponds to the most natural recursive procedure for
walking over a tree: from any particular vertex, the whole of one sub-tree is investigated
before any others are looked at at all. In the case of a generic graph rather than a
tree, a little extra care is necessary to avoid infinite loops—but the colouring, otherwise
unnecessary with trees, helps with that.

0 def dfs(G, s):
1 """Run the depth-first search algorithm on the given graph G
2 starting from the given source vertex s."""
3

4 assert(s in G.vertices())
5

6 # Initialize graph:
7 for v in G.vertices():
8 v.predecessor = None
9 v.colour = "white"

10

11 dfsRecurse(G, s)
12

13 def dfsRecurse(G, s):
14 s.colour = "grey"
15 s.d = time() # .d = discovery time
16 for v in s.adjacent():
17 if v.colour == "white":
18 v.predecessor = s
19 dfsRecurse(G, v)
20 s.colour = "black"
21 s.f = time() # .f = finish time

Breadth-first search can often avoid getting lost in fruitless scanning of deep parts of
the tree, but the queue that it uses often requires more memory than the stack implicitly
used by depth-first search.

2.2 Topological sort

The problem of topological sort is that of linearizing a directed acyclic graph (DAG): you
have a DAG and you wish to output its vertices in such an order that “all the arrows go
forward”, i.e. no edge goes from a vertex v to a vertex u that was output before v. In a
project management scenario you might think of the vertices of the DAG as actions and of
the edges as dependencies between actions; then the topological sort provides a sequence
in which the actions can actually be performed. It ought to be clear that, for a generic
DAG, there will usually be more than one valid linearizing sequence for its vertices—a
Λ-shaped three-vertex tree provides a trivial example.

46 Algorithms II (2013–2014)



2.2. Topological sort

Below is a less trivial DAG and one possible linearization for it.

A deceptively simple algorithm, due to Knuth, solves the problem in O(V +E) using a
depth-first search. The strategy is to perform an exhaustive depth-first search that visits
all the vertices in the graph (restarting from any leftover white vertex if the recursive
search returns before having painted all the vertices black) and then to output the vertices
in reverse order of finishing time, where the finishing time of a vertex is defined as the
time at which it gets coloured black. But why should this work at all?

Exercise 15
Draw a random DAG in the margin, with 9 vertices and 9 edges, and then
perform a depth-first search on it, marking each vertex with two numbers as
you proceed—the discovery time (the time the vertex went grey), then a slash
and the finishing time (the time it went black). Then draw the linearized
DAG by arranging the vertices on a line in reverse order of their finishing time
and reproducing the appropriate arrows between them. Do the arrows all go
forward?

The insight is that, in order to blacken vertex u, I must have already blackened all of
its descendents. It is easy to see that this is true for the vertices in u’s adjacency list but
a little more care is needed to deal with those further down.
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Exercise 16
Develop a proof of the correctness of the topological sort algorithm. (Requires
some thought.)

2.3 Minimum spanning tree

Textbook

Study chapter 23 in CLRS3.

Given a connected undirected graph where the edges have all been labelled with non-
negative weights, the problem of finding a minimum spanning tree is that of finding
the sub-graph of minimum total weight7 that links all vertices. This must necessarily be
a tree. Suppose it isn’t: then either it is a forest, in which case it fails to connect all
vertices, which contradicts the hypothesis; or it contains a cycle. Removing any one edge
from the cycle would leave us with a graph with fewer edges and therefore (since no edges
have negative weight) of lower or equal weight, but still connecting all the vertices, again
contradicting the hypothesis, QED. Note that a graph may have more than one minimum
spanning tree—these would be distinct trees with the same total weight.

Exercise 17
Find, by hand, a minimum spanning tree for the graph drawn in CLRS3 figure
23.4.(a) (trying not to look at nearby figures). Then see if you can find any
others.

A generic algorithm that finds minimal spanning subtrees involves growing a subgraph
A by adding, at each step, a safe edge8 of the full graph, defined as one that ensures that
the resulting subgraph is still a subset of some minimum spanning tree.

7Not, obviously, “of minimum number of edges”, as that is a trivial problem—any tree touching all
the vertices is one.

8With respect to A.
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0 def minimumSpanningTree(G):
1 A = empty set of edges
2 while A does not span all vertices yet:
3 add a safe edge to A

At this level of abstraction it is still relatively easy to prove that the algorithm is
correct, because we are handwaving away the comparatively difficult task of choosing a
safe edge.

We shall soon describe two instantiations of this generic algorithm that differ in the
criterion they use to choose a safe edge at each iteration. Before that, though, let’s develop
a criterion for recognizing safe edges.

We start with a couple of definitions. Given a graph G = (V,E), a cut is a partition
of G’s vertices into at least two sets. Given a (possibly non-connected) subgraph A of G,
a cut of G respects A if and only if no edge of A goes across the cut9.

Now the theorem: given a graph G and a subgraph A that is a subset of a minimum
spanning tree of G, for any cut that respects A, the lightest edge of G that goes across
the cut is safe for A.

To prove this, imagine the full minimum spanning tree T of which A is by hypothesis
a subgraph and call el the lightest edge across the chosen cut. If el ∈ T , the theorem is
satisfied. Are there any alternatives? If el /∈ T , then adding it to T introduces a loop
(because the two endpoints of el were already connected to each other through edges of
T , by hypothesis of T being a spanning tree of G). For topological reasons, this loop must
contain at least one other edge going across the cut and distinct from el: call it (or any
one of them if there are several) ex.

I recommend you work out the theorem as you go along on the partial graph below,
figuring out where T is and so on. With a pre-completed graph you would learn less than
with one you reconstruct by yourself. The highlighted edges are in A, whereas the dotted
lines represent the cut.

Now call Tl the spanning tree10 you get from T by substituting el for ex (note that
ex ∈ T , el ∈ Tl). Since el is the lightest edge across the cut by hypothesis, either it
weighs the same as ex (in which case Tl is another equally good minimum spanning tree,

9We say that an edge “goes across the cut” if and only if the two endpoints of the edge belong to
different sets of the partition.

10Tl is indeed a tree because we started from a tree T , we added an edge between two distinct vertices,
thus introducing a loop, then removed another edge of that loop, yielding another tree over the same
vertices. It is a spanning tree because it still connects the same set of vertices as T , which was a spanning
tree.
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and therefore el is safe since it belongs to an MST and the theorem is satisfied), or el
weighs strictly less than ex (but then Tl is a spanning tree of smaller weight than T , which
contradicts the hypothesis that T is a minimum spanning tree, so this case can’t happen).
QED.

Note that, although for a given cut there is only one safe edge (namely the lightest,
unless there are several ex aequo minimum weight edges across the cut), one still has a
wide choice of possible cuts that respect the subgraph A formed so far. The two algorithms
that follow, as announced, use this freedom in different ways.

2.3.1 Kruskal’s algorithm

Kruskal’s algorithm allows A to be a forest during execution. The algorithm maintains
a set A of edges, initially empty, that will eventually become the MST. The initial cut is
one that partitions each vertex into a separate set. The edge to be added at each step
is the lightest one that does not add a cycle to A. Once an edge is added to A, the sets
of its endpoints edge are merged, so that the partition contains one fewer set. In other
words the chosen cut is, at all times, the one that partitions each connected11 cluster of
vertices into its own set.

0 def kruskal(G):
1 """Apply Kruskal’s algorithm to graph G.
2 Return a set of edges from G that form an MST."""
3

4 A = Set() # The edges of the MST so far; initially empty.
5 D = DisjointSet()
6 for v in G.vertices():
7 D.makeSet(v)
8 E = G.edges()
9 E.sort(key=weight, direction=ascending)

10

11 for edge in E:
12 startSet = D.findSet(edge.start)
13 endSet = D.findSet(edge.end)
14 if startSet != endSet:
15 A.append(edge)
16 D.union(startSet, endSet)
17 return A

11Connected via edges in A ⊂ E, that is—not merely connected via any edges in E.
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In the main for loop starting on line 11, all the edges of the graph are analyzed
in increasing order of weight. Any that don’t add a loop to the ones already chosen are
selected and brought into A, the MST-so-far. To find out whether a candidate edge would
form a cycle when added to the edges already in set A, we maintain a disjoint-set D (see
section 1.5) which has a set for each connected component of the forest being formed in
A. If the candidate edge has its endpoints in two separate components, then it won’t add
a cycle and it is safe to take it as an edge of the MST-so-far (with appropriate updating
of D, since it will connect the two previously disconnected components); otherwise that
edge would form a cycle and so it must be rejected.

The cost of this main loop (lines 11–16) is easily estimated: |E| times the cost of two
findSet() and one union(). With the asymptotically-fastest disjoint-set implementation
known, a sequence of any m makeSet(), findSet() and union() operations will take
O(mα(n)), or in practice12 just O(m) which in our case is O(V + 3E) = O(E). So
the main loop actually costs even less than the setting-up operations in the first part
of the algorithm (lines 4–9), where the dominant cost is a standard O(E lgE) for the
sorting of the set of edges (line 9). Noting that |E| ≤ |V |2 and therefore lg |E| ≤ 2 lg |V |
and therefore O(lgE) = O(lg V ), we can also write the cost of Kruskal’s algorithm as
O(E lg V ).

2.3.2 Prim’s algorithm

Prim’s algorithm, starting from a designated root vertex r, forcesA to be a tree through-
out the whole operation. The cut is the one that partitions the vertices into just two sets,
those touched by A and the others. The edge to be added is the lightest one that joins a
new vertex to the tree built so far.

12Again, see section 1.5 for more on the disjoint-set data structure, on α(n) and on why it is OK to
treat α(n) as a constant in this formula.
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0 def prim(G, r):
1 """Apply Prim’s algorithm to graph G starting from root vertex r.
2 Return the result implicitly by modifying G in place: the MST is the
3 tree defined by the .predecessor fields of the vertices of G."""
4

5 Q = MinPriorityQueue()
6 for v in G.vertices():
7 v.predecessor = None
8 if v == r:
9 v.key = 0

10 else:
11 v.key = Infinity
12 Q.insert(v)
13

14 while not Q.isEmpty():
15 u = Q.extractMin()
16 for v in u.adjacent():
17 w = G.weightOfEdge(u,v)
18 if Q.hasItem(v) and w < v.key:
19 v.predecessor = u
20 Q.decreaseKey(item=v, newKey=w)

Each vertex is added to a priority queue, keyed by its distance to the MST-so-far. The
main while loop on lines 14–20 is executed once for each vertex. At each step we pay for
an extractMin() from the priority queue to extract the closest vertex u and add it to
the MST-so-far. All its adjacent vertices are then examined and, if appropriate (that is
to say: if reaching them via u makes them closer to the MST-so-far than they previously
were), we perform decreaseKey() on them. How many times does this happen? Since
no adjacency list is longer than |V |, the answer is at worst O(V 2). But this may be an
overestimate on sparse graphs: a tighter bound is obtained through aggregate analysis by
observing that the sum of the lengths of all the adjacency lists is 2|E| (each edge counted
twice, once by each of its endpoints); so, during a full run of the algorithm, the inner for
loop on lines 16–20 is executed a number of times bounded by O(E). This O(E) is equal to
O(V 2) in dense graphs, but can go down to O(V ) in sparse graphs13. So the cost of Prim is

13Or even less for graphs that are not connected, but this is not the case here by hypothesis.
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O(V ) times the cost of extractMin() plus O(E) times the cost of decreaseKey(). With
a regular binary heap implementation for the priority queue, these two operations cost
O(lg V ) each, yielding an overall cost for Prim of O(V lg V +E lg V ) = O(E lg V )—same
as the best we achieved with Kruskal.

If the priority queue is implemented with a Fibonacci heap (see section 1.3), where
the cost of extractMin() stays at O(lg V ) but the cost of decreaseKey() goes down to
(amortized) constant, the cost of Prim’s algorithm goes down to O(V lg V +E), improving
on Kruskal.

Exercise 18
Starting with fresh copies of the graph you used earlier, run these two algo-
rithms on it by hand and see what you get. Note how, even when you reach
the same end result, you may get to it via wildly different intermediate stages.

2.4 Shortest paths from a single source

Textbook

Study chapter 24 in CLRS3.

The problem is easily stated: we have a weighted directed graph; two vertices are
identified and the challenge is to find the shortest route through the graph from one to
the other.

An amazing fact is that, for sparse graphs, the best ways so far discovered of solving
this problem may do as much work as a procedure that sets out to find distances from
the source to all the other vertices in the entire graph. This illustrates that, if we think
in terms of particular applications (for instance distances in a road atlas in this case) but
then try to make general statements, our intuition on graph problems may be misleading.

While we are considering algorithms to discover the shortest paths from a designated
source vertex s to any others, let us indicate as v.δ the length14 of the shortest path from
source s to vertex v, which we may not know yet, and as v.d the length of the shortest
path so far discovered from s to v. Initially, v.d = +∞ for all vertices except s (for which
s.d = s.δ = 0); all along, v.d ≥ v.δ; and finally, on completion of the algorithm, v.d = v.δ.

14Or weight—we use these terms more or less interchangeably in this section, because so does the
literature. Do not get confused. In particular, we usually do not mean “number of edges” when we speak
of the “length” of a path, but rather the sum of the weights of all its edges.
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Exercise 19
Give a formal proof of the intuitive “triangle inequality”

v.δ ≤ u.δ + w(u, v)

(where w(u, v) is the weight of the edge from vertex u to vertex v) but covering
also the case in which there is actually no path between s and v.

In some graphs it may be meaningful to have edges with negative weights. This
complicates the analysis. In particular, if a negative-weight cycle exists on a path from
s to v, then there is no finite-length shortest path between s and v—because it is always
possible to find an even “shorter” path (i.e. one with a lower total weight, despite it having
more edges) by running through the negative-weight cycle one more time. On the other
hand, in graphs with negative-weight edges but no negative-weight cycles, shortest paths
are well defined, but some algorithms may not work because their proof of correctness
relies on the assumption that edge weights are never negative. For example the Dijkstra
algorithm presented in section 2.4.2, although very efficient, gives incorrect results in
presence of negative weigths. There exist, though, other algorithms capable of dealing
with non-degenerate negative weight cases: one of them is the Bellman-Ford algorithm
introduced in section 2.4.1.

An important step in most shortest-path algorithms is called relaxation: given two
vertices u and v, each with its current “best guess” u.d and v.d, and joined by an edge
(u, v) of weight w(u, v), we consider whether we would discover a shorter path to v by
going through (u, v). The test is simple: if u.d + w(u, v) < v.d, then we can improve on
the current estimate v.d by going through u and (u, v). Doing so is indicated as “relaxing
the edge (u, v)”.

A variety of useful lemmas (microtheorems) can be proved about the properties of .d
and .δ: one of them is the triangle inequality mentioned in the preceding exercise.

Another one, which we’ll use later to prove the correctness of Dijkstra’s algorithm, is
the convergence lemma: if s  u → v is a shortest path from s to v, and at some
time u.d = u.δ, and at some time after that the edge (u, v) is relaxed, then, from then on,
v.d = v.δ.

Another one, which is helpful in proving the correctness of the Bellman-Ford algorithm
to be examined next, is the path relaxation lemma: if p = (s, v1, v2, . . . , vk) is a shortest
path from s to vk, and the edges of p are relaxed in the order (s, v1), (v1, v2), . . . , (vk−1, vk),
even if other relaxation steps elsewhere in the graph are intermixed with those on the edges
of p, then after these relaxations we have that vk.d = vk.δ.

Consult your textbook for proofs, and for more lemmas.

2.4.1 The Bellman-Ford algorithm

Bellman-Ford computes shortest paths to all vertices from a designated source s, even in
the presence of negative edge weights, so long as no negative weight cycles are reachable
from s. If any are, it reports their existence and refuses to give any other results, because
in such a graph shortest paths cannot be defined.
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0 def bellmanFord(G, s):
1 """Apply Bellman-Ford’s algorithm to graph G, starting from
2 source vertex s, to find single-source shortest paths to all vertices.
3 Return a boolean indicating whether the graph is free from
4 negative cycles reachable from s.
5

6 Return the single-source-shortest-paths (only valid if the
7 above-mentioned boolean is true) by modifying G in place: for each
8 vertex v, the length of the shortest path from source to it is
9 left in v.d and the shortest paths themselves are indicated by the

10 .predecessor fields of the vertices."""
11

12 assert(s in G.vertices())
13 for v in G.vertices():
14 v.predecessor = None
15 v.d = Infinity
16 s.d = 0
17

18 repeat |V|-1 times:
19 for e in G.edges():
20 # Relax edge e.
21 if e.start.d + e.weight < e.end.d:
22 e.end.d = e.start.d + e.weight
23 e.end.predecessor = e.start
24

25 # If, after all this, further relaxations are possible,
26 # then we have a negative cycle somewhere
27 # and all the previous .d and .predecessor results are worthless.
28 for e in G.edges():
29 if e.start.d + e.weight < e.end.d:
30 return False
31 return True

Bellman-Ford works by considering each edge in turn and relaxing it if possible. This
full pass on all the edges of the graph (lines 19–23) is repeated a number of times equal
to the maximum possible length of a shortest path, |V | − 1 (lines 18–23). The algorithm
therefore has a time complexity of O(V E). It is not hard to show that, after that many
iterations, in the absence of negative-weight cycles, no further relaxations are possible and
that the distances thus discovered for each vertex are indeed the smallest possible ones.

The core of the correctness proof is based on the path relaxation lemma (page 54).
For any vertex v for which a shortest path p of finite length exists from s to it, that path
may contain at most |V | vertices. As far as this path is concerned, the purpose of the i-th
round of the outer loop in line 18 is to relax the i-th edge of the path. This guarantees
that, regardless of any other relaxations that the algorithm also performs in between, it
will eventually relax all the edges of p in the right order and therefore, by the lemma, it
will achieve v.d = v.δ.

An O(E) post-processing phase (lines 28–31) then detects any negative-weight cycles.
If none are found, the distances and paths discovered in the main phase are returned as
valid.
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2.4.2 The Dijkstra algorithm

The Dijkstra15 algorithm only works on graphs without negative-weight edges but, on
those, it is more efficient than Bellman-Ford.

Starting from the source vertex s, the algorithm maintains a set S of vertices to which
shortest paths have already been discovered. The vertex u /∈ S with the smallest u.d is
then added to S (to justify this move one should prove that, at that time, u.d = u.δ) and
then all the edges starting from u are relaxed. This sequence of operations is repeated
until all vertices are in S, in a strategy reminiscent of Prim’s algorithm.

0 def dijkstra(G, s):
1 """Apply Dijkstra’s algorithm to graph G, starting from
2 source vertex s, to find single-source shortest paths to all vertices.
3

4 Return the single-source-shortest-paths (only valid if the graph
5 has no negative-weight edges) by modifying G in place: for each
6 vertex v, the length of the shortest path from source to it is
7 left in v.d and the shortest paths themselves are indicated by the
8 .predecessor fields of the vertices."""
9

10 assert(s in G.vertices())
11 assert(no edges of G have negative weight)
12 Q = MinPriorityQueue() # using .d as each item’s key
13 for v in G.vertices():
14 v.predecessor = None
15 if v == s:
16 v.d = 0
17 else:
18 v.d = Infinity
19 Q.insert(v)
20

21 # S (initially empty) is the set of vertices of G no longer in Q.
22 while not Q.isEmpty():
23 u = Q.extractMin()
24 assert(u.d == u.delta) # NB we can’t actually _compute_ u.delta.
25 for v in u.adjacent():
26 # Relax edge (u,v).
27 if Q.hasItem(v) and u.d + G.weightOfEdge(u,v) < v.d:
28 v.predecessor = u
29 Q.decreaseKey(item = v, newKey = u.d + G.weightOfEdge(u,v))

As can be seen, if any vertex v is unreachable from s, its v.d will stay at +∞ throughout
and it will be processed, as will any others in that situation, in the final round(s) of
the while loop of lines 22–29; but the algorithm will still terminate without problems.
Conversely, any vertex v whose v.d is still +∞ after completion is indeed unreachable
from s.

15It’s a Dutch name: pronounce as ["dEIkstra].
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Computational complexity

Performance-wise, to speed up the extraction of the vertex with the smallest u.d, we keep
the unused vertices in a min-priority queue Q where they are keyed by their .d attribute.
Then, for each vertex, we must pay for one extractMin() plus as many decreaseKey()
as there are vertices in the adjacency list of the original vertex. We don’t know the length
of each individual adjacency list, but we know that all of them added together have |E|
edges (since it’s a directed graph). So in aggregate we pay for |V | times the cost of
extractMin() and |E| times the cost of decreaseKey(). With a regular binary heap
implementation for the priority queue, these two operations cost O(lg V ) each, yielding
an overall cost for Dijkstra of O(V lg V + E lg V ) = O(E lg V ). Same as Prim.

As with Prim, though, we can however do better if we make the priority queue faster:
you will recall that the development of Fibonacci heaps (section 1.3) was originally moti-
vated by the desire to speed up the Dijkstra algorithm. Using a Fibonacci heap to hold the
remaining vertices, the decreaseKey() cost is reduced to amortized O(1), so the overall
cost of the algorithm goes down to O(V lg V + E).

Correctness proof

To prove the correctness of Dijkstra’s algorithm the crucial point, as already noted, is to
prove that, for the vertex u that we extract from the queue in line 23, it is indeed the
case that the assertion on line 24, i.e. u.d = u.δ, holds. We prove this by contradiction.

Since u.d can never be < u.δ by definition of .d and .δ, the only two cases left are
“u.d = u.δ” and “u.d > u.δ”. Let’s imagine for the sake of argument that there is a vertex
u that, when extracted from Q in line 23, has

u.d > u.δ. (2.1)

Consider the first such vertex we encounter while running the algorithm and consider the
shortest path16 from s to u.

Represent this shortest path as s  x → y  u, where (x, y) is the first edge along
this path for which x ∈ S and y 6∈ S. At the time (line 23) of adding u to S, since u was
the chosen vertex and thus the one with the smallest .d among all the vertices outside S,

u.d ≤ y.d. (2.2)
16Detour: we should also prove that a shortest path exists, for which it is sufficient to prove that u is

reachable—and it is, otherwise u.d = u.δ = +∞, contradicting hypothesis (2.1)
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Since the path s  x → y matches all the conditions of the convergence lemma (the
path is a subpath of a shortest path and hence a shortest path itself; x.d = x.δ because
x ∈ S and u, found after x, is the first vertex to violate that property; and (x, y) was
relaxed when x was added to S), we have that, at the time of adding u to S,

y.d = y.δ. (2.3)

Combining equations (2.1), (2.2) and (2.3) we have u.δ < u.d ≤ y.d = y.δ, which implies

u.δ < y.δ. (2.4)

However, since s  x → y  u is a shortest path by hypothesis, on the assumption
that all edges have non-negative weights then reaching u via y must cost at least as much
as reaching y and therefore u.δ ≥ y.δ. This directly contradicts (2.4), proving that there
cannot be any vertex u satisfying (2.1) when extracted from Q at line 23, QED.

2.5 Shortest paths between any two vertices

Textbook

Study chapter 25 in CLRS3.

It is of course possible to compute all-pairs shortest paths simply by running the
single-source shortest path algorithm on each vertex. If the graph contains negative edges,
running Bellman-Ford on all vertices will cost O(V 2E), which is O(V 4) for dense graphs
and O(V 3) for sparse graphs. For a graph without negative edges, using Dijkstra and
Fibonacci heaps we can compute all-pairs shortest paths inO(V 2 lg V+V E). Interestingly,
there are ways in which we can do better.

Note that, in this section, we compute the weight of the shortest path between two
vertices without worrying about keeping track of the edges that form that path. You
might consider addressing that issue but I am not making this a boxed exercise as it may
take you a while. The most interesting way to find out about it is clearly to write an
actual program.

2.5.1 All-pairs shortest paths via matrix multiplication

Let’s first look at a method inspired by matrix multiplication, which works even in the
presence of negative-weight edges, though necessarily we require the absence of negative-
weight cycles.

Represent the graph with an adjacency matrix W whose elements are defined as:

wi,j =


the weight of edge (i, j) for an ordinary edge;
0 if i = j;
∞ if there is no edge from i to j.
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We want to obtain a matrix of shortest paths L in which li,j is the weight of the shortest
path from i to j (∞ if there is no path).

Let L(m) be the matrix of shortest paths that contain no more than m edges. Then
W = L(1).

Exercise 20
Write out explicitly the elements of matrix L(0).

Let’s build L(2):

l
(2)
i,j = min

(
l
(1)
i,j , min

k=1,n
(l

(1)
i,k + wk,j)

)
.

In other words, the shortest path consisting of at most two steps from i to j is either
the shortest one-step path or the shortest two-step path, the latter obtained by fixing
the endpoints at i and j and trying all the possible choices for the intermediate vertex k.
Similarly, we build L(3) from L(2) by adding a further step: it’s either the shortest path
of at most two steps, or the shortest path of at most three steps; the latter obtained by
trying all possible combinations for an additional last edge, with the first two steps given
by a shortest two-step path.

l
(3)
i,j = min

(
l
(2)
i,j , min

k=1,n
(l

(2)
i,k + wk,j)

)
.

We proceed using the same strategy for L(4), L(5) and so on.

We can also simplify the formula by noting that wj,j = 0 ∀j and that therefore the
term with k = j reduces from (l

(2)
i,k + wk,j) to (l

(2)
i,j + wj,j) = (l

(2)
i,j + 0) and is thus equal to

the first l(2)i,j inside the big brackets; thus we don’t need to have two “rounds” of minimum
to include it and we can simply write, in the general case:

l
(m+1)
i,j = min

(
l
(m)
i,j , min

k=1,n
(l

(m)
i,k + wk,j)

)
= min

k=1,n
(l

(m)
i,k + wk,j).

It is easy to prove that this sequence of matrices L(m) converges to L after a finite
number of steps, namely n−1. Any path with more than n−1 steps must revisit a vertex
and therefore include a cycle. Under the assumption that there are no negative-weight
cycles, the path cannot be shorter than the one with fewer edges obtained from it by
removing the cycle. Therefore

L(n−1) = L(n) = L(n+1) = . . . = L.

The operation through which we compute L(m+1) from L(m) and W is reminiscent of
the matrix multiplication

P = L(m) ·W.
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Compare

l
(m+1)
i,j = min

k=1,n
(l

(m)
i,k + wk,j)

and

pi,j =
∑
k=1,n

l
(m)
i,k · wk,j

to discover the mapping:

min ↔ +

+ ↔ ·
∞ ↔ 0

0 ↔ 1

Exercise 21
To what matrix would L(0) map? What is the role of that matrix in the
corresponding algebraic structure?

It is possible to prove that this mapping is self-consistent. Let’s therefore use a “matrix
product” notation and say that L(m+1) = L(m) ·W . One matrix “product” takes O(n3)
and therefore one may compute the all-pairs shortest path matrix L(n−1) with O(n4)
operations. Note however that we are not actually interested in the intermediate L(m)

matrices! If n is, say, 738, then instead of iterating L(m+1) = L(m) ·W to compute

L(1), L(2), L(3), L(4), . . . , L(736), L(737)

we can just repeatedly square W and obtain the sequence

L(1), L(2), L(4), L(8), . . . , L(512), L(1024).

Since all L(m) are equal to L for m = n− 1 onwards, we have that L(1024) = L(737) = L
and we don’t have to hit the target exactly—it’s OK to keep squaring until we exceed
it. Since the number of steps in the second sequence is only dlg ne instead of n− 1, this
method brings the cost down to O(n3 lg n)—also known as O(V 3 lg V ) since n, the order
of the matrix, is the number of vertices in the graph.

This repeated matrix squaring algorithm for solving the all-pairs shortest paths prob-
lem with negative edges is easy to understand and implement. At O(V 3 lg V ) it beats
the iterated Bellman-Ford whenever O(E) > O(V lg V ), although it loses on very sparse
graphs where the reverse inequality holds. Another option for the case with negative
edges, not discussed in these notes, is the Floyd-Warshall algorithm, which is O(V 3) (see
textbook). Even better, however, is Johnson’s algorithm, discussed next.
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2.5.2 Johnson’s algorithm for all-pairs shortest paths

The Johnson algorithm, like the iterated matrix squaring, the iterated Bellman-Ford and
the Floyd-Warshall algorithms, runs on graphs with negative edges but without negative
cycles. The clever idea behind Johnson’s algorithm is to turn the original graph into a
new graph that only has non-negative edges but the same shortest paths, and then to run
Dijkstra on every vertex.

The Johnson algorithm includes one pass of Bellman-Ford at a cost of O(V E); but
since the final step of iterating Dijkstra on all vertices costs, as we said, at leastO(V 2 lg V+
V E) even in the most favourable case of using Fibonacci heaps, we are not increasing the
overall complexity with this single pass of Bellman-Ford. Note that O(V E) is O(V 3) for
dense graphs but it may go down towards O(V 2) for sparse graphs; in the latter case,
therefore, Johnson’s algorithm reduces to O(V 2 lg V ), offering a definite improvement in
asymptotic complexity over Floyd-Warshall’s O(V 3).

The most interesting part of the Johnson algorithm is the reweighting phase in which
we derive a new graph without negative edges but with the same shortest paths as the
original. This is done by assigning a new weight to each edge; however, as should be
readily apparent, the simple-minded strategy of adding the same large constant to the
weight of each edge would not work, as that would change the shortest paths17.

We introduce a fake source vertex s, and fake edges (s, v) of zero weight from that
source to each vertex v ∈ V . Then we run Bellman-Ford on this augmented graph,
computing distances from s for each vertex. As a side effect, this tells us whether the
original graph contains any negative weight cycles18. If there are no negative cycles, we
proceed. If we indicate as v.δ the shortest distance from s to v as computed by Bellman-
Ford (and left in v.d at the end of the procedure), we assign to each edge (u, v) of weight
w(u, v) a new weight ŵ(u, v) = u.δ + w(u, v) − v.δ. Adding the above equality to the
triangle inequality u.δ + w(u, v) ≥ v.δ, we get

ŵ(u, v) + u.δ + w(u, v) ≥ u.δ + w(u, v)− v.δ + v.δ

and, simplifying,
ŵ(u, v) ≥ 0,

meaning that the reweighted edges are indeed all non-negative, as intended.
Let’s now show that this reweighting strategy also preserves the shortest paths of the

original graph. Let p = v0 → v1 → . . . → vk be any path in the original graph, and
let w(p) = w(v0, v1) + w(v1, v2) + . . . + w(vk−1, vk) be its weight. The weight of p in the
reweighted graph is ŵ(p) = w(p)+v0.δ−vk.δ, since all the v.δ of the intermediate vertices
cancel out. Therefore, once we fix the start and end vertices v0 and vk, whatever path we
choose from one to the other (including ones that do not visit those intermediate vertices
v1, v2 etc, and ones that visit other vertices altogether), the weight of the path in the old
and in the reweighted graph differ only by a constant (namely v0.δ− vk.δ), which implies
that the path from v0 to vk that was shortest in the original graph is still the shortest in
the new graph, QED.

17Just imagine adding such a large constant that the original weights become irrelevant.
18It does if and only if the augmented graph does, since the vertex and edges we introduced do not

add or remove any cycles to the original graph.
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So, after reweighting, we can run Dijkstra from each vertex on the reweighted graph, at
the stated costs, and obtain shortest paths. The actual lengths of these shortest paths in
the original graph are recovered in constant cost for each path: w(p) = ŵ(p)− v0.δ+ vk.δ.
The total cost of this final phase is therefore proportional to the number of shortest paths,
O(V 2), and it does not affect the overall asymptotic cost.

2.6 Maximum flow

Textbook

Study chapter 26 in CLRS3.

If the edge weights are taken to represent capacities (how many cubic metres per
second, or cars per hour, or milliamperes, can flow through this link?) an interesting
question is to determine the maximum flow that can be established between the two
designated source and sink vertices19. Whatever the entity that is flowing, be it vodka, IP
packets or lemmings, we assume in this model that it can’t accumulate in the intermediate
vertices20, that the source can generate an infinite supply of it, and that the sink can
absorb an infinite amout of it, with the only constraints to the flow being the capacities
of the edges. Note that the actual flow through an edge at any given instant is quite
distinct from the maximum flow that that edge can support. The two values are usually
separated by a slash21: for example an edge labelled 3/16 is currently carrying a flow of
3 and has a maximum capacity of 16.

19The multiple-sources and multiple-sinks problem is trivially reduced to the single-source and single-
sink setting: add a dummy super-source linked to every actual source by edges of infinite capacity and
proceed similarly at the sink side with a dummy super-sink.

20Therefore the total flow into an intermediate vertex is equal to the total flow out of it.
21Not to be taken as meaning division but rather “out of”.
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In order to deal with flow problems, we introduce a few useful concepts and definitions.
A flow network is a directed graph G = (V,E), with two vertices designated respec-

tively as source and sink, and with a capacity function c : V × V → R+ that associates
a non-negative real value to each pair of vertices u and v. The capacity c(u, v) is 0 if and
only if there is no (u, v) edge; otherwise it is noted as the number after the slash on the
label of the (u, v) edge, representing the maximum possible amount that can flow directly
from u to v through that edge. A flow is a function f : V × V → R that associates a
(possibly negative) real value to each pair of vertices, subject to the following constraints:

• f(u, v) ≤ c(u, v);

• f(u, v) = −f(v, u);

• and “flow in = flow out” for every vertex except source and sink.

Note that the flow f(x, y) can be nonzero even if there is no edge from x to y: for that it
is enough to have an edge from y to x carrying the opposite amount. Conversely, when
an (x, y) edge and a (y, x) edge both exist and each carry some amount, say a and b
respectively, then the flow between x and y is meant as the “net” flow: f(x, y) = a − b
and f(y, x) = b− a. This is consistent with the constraints presented above.

The value of a given flow f is a scalar value |f | ∈ R equal to the total flow out of the
source: |f | =

∑
v∈V

f(s, v). Owing to the properties above, it is also equal to the total flow

into the sink.
The residual capacity cf : V × V → R+ is a function that, given a flow network

G and a flow f , indicates for each pair of vertices the extra amount of flow that can be
pushed between the vertices of the pair through the edge(s) that directly join them, if
any, on top of what is currently flowing, without exceeding the capacity constraint of the
0, 1 or 2 edges that directly join the two vertices. So, for any two vertices u and v, we
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have that cf (u, v) = c(u, v) − f(u, v). Note that we do not require the original graph to
have an (u, v) edge in order for cf (u, v) to be greater than zero: if the graph has a (v, u)
edge that is currently carrying, say, 4/16, then one can, with respect to that situation,
increase the flow from u to v by up to 4 units by cancelling some of the flow that is
already being carried in the opposite direction—meaning that there is, in that situation,
a positive residual capacity from u to v of cf (u, v) = 4 (the latter not to be confused with
c(u, v), which instead stays at zero throughout in the absence of a (u, v) edge). Note also
that the residual capacity cf (u, v) can exceed the capacity c(u, v) if the current net flow
from u to v is negative: first, by increasing the flow in the direction from u to v, you
reduce the absolute value of the negative flow, eventually bringing f(u, v) to zero; then
you may keep on increasing the flow until you reach c(u, v).

Exercise 22
Draw suitable pictures to illustrate and explain the previous comments. Very
easy; but failure to do this, or merely seeing it done by someone else, will make
it unnecessarily hard to understand what follows.

The residual network Gf = (V,Ef ) is the graph obtained by taking all the edges
with a strictly positive residual capacity cf and labelling them with that capacity. It is
itself a flow network, because the residual capacity is also non-negative.

An augmenting path for the original network is a sequence of edges from source to
sink in the residual network. The residual capacity of that path is the maximum amount
we can push through it, equal of course to the residual capacity of its lightest edge.

We are now ready to describe how to find the maximum flow—or, making use of the
above definitions for greater accuracy, to describe how to find, among all the possible
flows on the given flow network G, the one whose value |f | is the highest.

2.6.1 The Ford-Fulkerson maximum flow method

We call Ford-Fulkerson a “method” rather than an “algorithm” because it is in fact an
algorithm blueprint whose several possible instantiations may have different properties and
different asymptotic complexity. The general pattern is simply to compute the residual
network, find an augmenting path on it, push the residual capacity through that path
(thereby increasing the original flow) and repeat while possible. The algorithm terminates
when there is no augmenting path in the residual network.

0 def fordFulkerson(G):
1 initialize flow to 0 on all edges
2 while an augmenting path can be found:
3 push as much extra flow as possible through it

Contrary to most other graph algorithms examined in this course, the running time
does not just depend on the number of vertices and edges of the input graph but on the
values of its edge labels.

At each pass through the loop, the value of the flow increases. Since all edge capacities
are finite, the maximum flow is finite. The method might fail to terminate if it took an
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infinite number of steps for the flow to converge to its maximum value. For this to
happen, the increments must become infinitesimal. Since the increment in line 3 is the
greatest possible given the chosen augmenting path, its value is obtained as a difference of
previously computed capacities (since we start from a null flow in line 1). Therefore, if all
capacities are integers, every increment will also be an integer and the flow will increase
by at least 1 at each pass through the loop, thereby bringing the algorithm to completion
in a finite number of steps.

So, integer capacities for all edges are a sufficient condition for termination. Con-
versely, it is indeed possible22 to construct elaborate graphs with irrational capacities
where Ford-Fulkerson does not terminate.

As for running time in the case of integer capacities, line 3 changes the flow of each
edge along the augmenting path, so its running time is proportional to the length of the
path and is therefore bounded by the length in edges of the longest path without cycles,
|V | − 1. On the other hand, finding such a path, if it exists, for example with Breadth
First Search or Depth First Search, will cost up to O(V + E). Each iteration thus costs
O(E). In the worst case, each pass increases the flow only by 1, so the loop may be
executed up to |f ∗| times (the value of the maximum flow). So, in total, the running
time is bounded by O(E · |f ∗|). Note how this growth rate is independent and therefore
potentially higher than any polynomial function of |V | and |E|, since the capacity values
on the edge labels are independent of the shape or size of the graph.

With a maximum flow of high numerical value and a consistently pessimal choice of
augmenting path, Ford-Fulkerson might take billions of operations to compute a solution
even on a tiny graph with only 5 edges. Specific implementations of Ford-Fulkerson,
however, can improve on this sad situation by defining some useful criterion for selecting
an augmenting path in line 2, as opposed to leaving the choice entirely open. The so-
called Edmonds-Karp algorithm, for example, derived from Ford-Fulkerson by choosing
as augmenting path through a breadth-first search, thereby picking one with the smallest
number of edges, can be proved to converge in O(V E2) time.

Another possibility, also suggested by Edmonds and Karp, is to select the augmenting
path based on the greatest residual capacity. There are still others.

2.6.2 Bipartite graphs and matchings

A matching in a bipartite graph23 is a collection of edges such that each vertex of the
graph is the endpoint of at most one of the selected edges. A maximal matching is
then obviously as large a subset of the edges that has this property as is possible. Why
might one want to find a matching? Well, bipartite graphs and matchings can be used
to represent many resource allocation problems. For example, vertices on the left might
be final-year students and vertices on the right might be final year project offers. An
edge would represent the interest of a student in a particular project. The maximum
cardinality matching would be the one satisfying the greatest number of student requests,

22Possible, but far from trivial or intuitive: Ford and Fulkerson’s own original example had 10 vertices
and 48 edges. The minimal example appeared years later in Uri Zwick, “The smallest networks on
which the Ford-Fulkerson maximum flow procedure may fail to terminate”, Theoretical Computer Science
148, 165-170 (1995).

23As you may recall, the definition of bipartite graph was given in section 2.1.1 on page 42.
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assuming that no two students can choose the same project and that no student can do
more than one project.

A simple direct search through all possible combinations of edges would provide a
direct way of finding maximal matchings, but would have costs growing exponentially
with the number of edges in the graph. This, even for small graphs, is not a feasible
strategy.

A particularly smart way of solving the bipartite matching problem is to recast it as
a maximum flow problem in the following way. Introduce a fake super-source to the left
of the bipartite graph and a fake super-sink to the right. Add edges of unit capacity from
the super-source to all the left side vertices and from all the right side vertices to the
super-sink. This is very similar to the construction mentioned in footnote 19 (section 2.6,
page 62) to transform a multiple-sources and multiple-sinks flow problem into one with
a single source and a single sink. Here, however, we give all edges (including the ones
touching the super-source and super-sink) unit capacity. If we constrain all flows to be
integers, assigning unit capacities to the edges ensures that no two edges will start or end
on the same internal vertex and therefore that all flows will also be valid matchings. All
that’s left is then to find the maximum flow (itself a valid matching, and necessarily the
one with the greatest number of edges) using the Ford-Fulkerson method.

A more complicated variant, which we won’t discuss, is that of the weighted matching
problem: this is where a bipartite graph has the edges labelled with values and it is
necessary to find the matching that maximizes the sum of weights on the edges selected.

66 Algorithms II (2013–2014)



Chapter 3

Parallel algorithms

Chapter contents

Dynamic multithreading. Work and span. Greedy scheduler. De-
terminacy races.
Expected coverage: about 1 lecture.

Textbook

Study chapter 27 in CLRS3.

Moore’s law, about transistor count in state-of-the-art ICs doubling every two years,
surprisingly continues to hold after decades; but clock speeds no longer increase at the
same rate. To what extent can the abundance of silicon gates be used to compensate for
lack of progress in processor speed? While it’s obvious that a processor with 4× the clock
frequency can be expected to execute a CPU-bound task four times faster, what can be
said of a processor with 4× the number of cores?

Imagine we have to perform a CPU-bound job that requires 1 trillion (1012) machine
instructions. A processor that executes 1 billion instructions per second will take 1000
seconds (about 17 minutes) to complete it. If a 10× faster processor existed1, it would
only take 100 seconds, or just over one and a half minute. What if instead we had 10
processors (or 10 cores), each with the same power as the original? For the whole 1-
trillion-instruction job to take only 100 seconds, each of the 10 processors would have
to run solidly for the whole 100 seconds, in order to execute its quota of 100 billion
instructions. If any of the 10 processors were idle for part of that time, 100 seconds would
not be sufficient to execute an aggregate 1 trillion instructions2. In order to keep each
processor busy we need to:

• partition the work equally among all the available processors; and
1But maybe it doesn’t exist—and, even if it did, it would probably cost too much.
2We ignore overheads for scheduling etc.
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• ensure that no processor is ever tied up waiting for a result that another processor
still has to produce.

Whether we are able to achieve this or not is a function of both the problem itself and
of the algorithm we write to solve it. Only in the most favourable cases will we be able
to achieve a speedup equal to the number of processors; in general, that will only be an
upper bound. We may not be able to achieve the bound if:

• we cannot split the problem into as many independent pieces as there are processors;
if we only manage to split the problem into 4 pieces, and there are 10 processors,
at least 6 of them will be idle at any time;

• we can split the problem into as many pieces as there are processors, but the pieces
are of uneven size; in that case some processors will finish before others and will
have to sit there twiddling their thumbs;

• we can split the work into many pieces, but those pieces depend on each other’s
results; so a processor, despite having an allocated piece of problem it could work
on, must wait idly until another processor finishes its piece and supplies a result
that is needed as input.

Any time one of the 10 processors is idle, for any of the above reasons, it does not
contribute towards the quota of 1 trillion instructions that need to be executed to finish
the job. Clearly, then, it will take more than 100 seconds to get to completion, and the
speedup factor gained by having 10× more processors will be less than 10×.

Taking an example from cryptography, brute-force key-search is easy to parallelize:
you can partition the key space into arbitrarily many regions and give each region to a
single processor. Trying the keys in one region is completely independent from trying the
keys in another region, so each processor can work fully independently of the others. So
long as the regions are of equal size, the speedup factor to search the whole key space3 is
equal to the number of processors assigned to the job.

Taking another example from cryptography that goes in the opposite direction, some-
times we build on purpose a function that is hard to parallelize. If, as you should, you salt
and hash your passwords in the back-end, you want the function that goes from password
to hash to take a long time to execute, so that attackers who learn the hash and salt still
won’t be able to find the original password by brute force. To do that, you might actually
compute the hash of the hash of the hash . . . a million times. And you like the fact that
there is no easy way to parallelize the computation of h1,000,000(salt , password), in which
each of the million individual hash computations in the chain requires the result of the
previous one.

So what do we do in this chapter? Well, we will barely have time to scratch the surface,
but our aim is to introduce some intellectual tools to reason about parallel algorithms and
evaluate their performance in a quantitative way.

3Of course, as soon as the sought key is found, the whole process is terminated early—and there’s no
telling whether the time to actually find the key is decreased by the same factor. But it all makes sense
again when talking of worst case execution times (search whole keyspace to find that the key was the
very last one to be tried).
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3.1 Programming model: dynamic multithreading

There are various possible architectures for parallel computing: we won’t explore them
all. We shall model the one that is common in the mainstream microprocessors that are
popular at the time of writing, where several processor cores have access to the same
memory (a shared memory architecture, as opposed to the distributed memory case in
which each processor has its own local memory not accessible to the others).

As for the programming model, with static threading there is a fixed pool of threads,
each representing a (possibly virtual) processor, all having access to a common memory.
The programmer is responsible for partitioning the work among the available threads,
and doing so in a balanced way is difficult and error-prone. A middleware layer, the
concurrency platform, can take care of this task and give the programmer the illusion
of having as many processors as necessary. Behind the scenes, the concurrency platform
allocates jobs to threads in a way that balances the load. This is dynamic multithreading,
the model we are going to discuss.

In the formulation of the CLRS3 textbook, we describe parallel algorithms by adding
three special concurrency keywords to the pseudocode: spawn, sync, parallel, with the
following meanings.

spawn: An optional prefix to a procedure call statement. Call the indicated procedure,
but in a separate thread. In the current thread, just continue. (If you were assigning
the result of the procedure call to a variable, as in y = spawn f(x), then the variable
will retain the old value until the spawned procedure returns.)

sync: Block execution until all the threads previously spawned from within the current
procedure4 have completed.

parallel: An optional prefix to the standard looping keyword for that causes each
iteration of the loop to take place in its own thread.

Note that the spawn and parallel keywords allow the concurrency platform to exe-
cute pieces of code in parallel, but they do not require it. Programs with those keywords
can generate arbitrarily many threads and it is up to the scheduler to assign them to
actual processors.

Removing all occurrences of these three keywords from the pseudocode yields the serial
version of the algorithm.

A strand is a sequence of statements that does not contain concurrency keywords. We
can visualize the execution of the algorithm as a graph (a DAG) in which each strand
is a vertex5 and the edges between vertices represent procedure calls, returns from calls,
procedure spawns, return from spawns, as well as the act of continuing sequentially within
the same procedure instance.

4Including threads spawned by spawned children down to arbitrary depths.
5In case of recursive calls, a given strand in the source code may appear in the graph as several

vertices, one per instance of the procedure.
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3.2 Performance analysis

3.2.1 Definitions

P = number of processors.

TP = running time of a computation on P processors.

T1 = work of a computation: time to execute that computation on a single processor
(hence TP with P = 1).

T∞= span of a computation: execution time of the critical path in the DAG6. Indicated
as the time for P = ∞ because, if we had infinite processors available, the time to
execute the computation would be determined by the critical path.

From these definitions come two seemingly obvious (but actually deceptively subtle)
laws that give lower bounds on the time it takes to execute the computation on P pro-
cessors.

Work law: TP ≥ T1
P

The running time on P processors can’t be any shorter than if all
of them work all the time, with no wasted cycles.

Span law: TP ≥ T∞

The running time on P processors can’t be any shorter than the
time it would take on arbitrarily many processors.

Further definitions:

• The speedup of a computation, when run on P processors, is the multiplying factor
that says how much faster the computation goes on P processors compared to when
it runs on just one processor: speedup = T1/TP .

• We call it linear speedup iff the speedup is proportional to the number of proces-
sors used, i.e. iff T1

TP
= Θ(P ).

• We call it perfect linear speedup iff the speedup is exactly equal to the number
of processors used, i.e. iff T1

TP
= P .

• The parallelism of a computation is defined as the work divided by the span:
T1/T∞. Given the definition of speedup, we can intuitively interpret the paral-
lelism of a computation as the maximum speedup factor one can possibly obtain by
providing arbitrarily many processors.

We can prove that the parallelism is also:
6Equivalent to the maximum among the execution times of all the paths in the DAG.
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– The average amount of work (in terms of number of active processors) that can
be performed in parallel at each step of the critical path.

– A limit on the number of processors that you can add before losing the ability
to achieve perfect linear speedup.

• The parallel slackness of a computation, when run on P processors, is the factor
by which the parallelism of the computation exceeds the parallelism of the machine
(i.e. the number of available processors). By definition it’s therefore T1/T∞

P
= T1

P ·T∞ .
A high parallel slackness is good for achieving high speedup factors, i.e. “not wasting
processor time”.

In the next section we shall see that, with high parallel slackness (i.e. if you give it
some margin, meaning a computation that is highly parallelizable), a good scheduler can
achieve nearly perfect linear speedup.

Exercise 23
Prove that T1/T∞ is the average amount of work that can be performed in
parallel at each step of the critical path.

Exercise 24
Prove that, if P > T1/T∞, the computation cannot achieve perfect linear
speedup.

3.2.2 Scheduling

In this programming model, the programmer doesn’t say which processor executes what
strand: the scheduler decides. The scheduler sees requests for parallelism as they come
but doesn’t know in advance what procedure is about to be spawned or when a spawned
procedure will return. What policy should the scheduler follow? How do we know if it’s
any good?

A simple but effective strategy is that of the greedy scheduler : in each step, assign as
many strands to processors as possible. We are going to prove that it’s reasonably good.

First, assume that each strand takes unit time7. At each time unit there will be zero or
more strands ready to be executed and zero or more strands blocked in a sync operation.
We call each step complete if the number of strands ready to be executed is at least P ;
incomplete otherwise.

7If not, you could always chop up longer strands into chains of unit-time strands.
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Theorem

With a greedy scheduler, the time TP to run a computation on P
processors is bounded by

TP ≤ T1
P

+ T∞.

Proof : Each step is either complete or incomplete. The total number of complete steps
(in which all processors are assigned a work unit) cannot exceed the total number of work
units divided by the number of processors8:

complete steps ≤ T1/P.

On the other hand, consider an incomplete step. There are fewer than P strands ready
to execute. Each strand ready to execute is a source vertex in the execution DAG9. Take
the longest path from a source to a sink in the DAG: after execution of the incomplete
step, that path will be shorter by at least one, because the source vertex will have been
executed (and the next vertex will be a source at that point). Therefore each incomplete
step shortens the longest path from source to sink by one. Since the longest path is the
critical path, the number of incomplete steps is bounded by the span:

incomplete steps ≤ T∞.

Each step is either complete or incomplete, hence by adding the two inequalities we
obtain the thesis.

8This is a kind of dual of the work law.
9Because, if it had any incoming arrows, it would be waiting for some other strand to complete and

it thus wouldn’t be ready to execute.
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Theorem

The performance of a greedy scheduler is within 2× of optimal.

Proof : given the bounds imposed by the work law and the span law, even the optimal
scheduler cannot take less time than T ∗P = max(T1

P
, T∞). From the previous theorem,

TP ≤ T1
P

+ T∞ ≤ 2 max(
T1
P
, T∞) = 2T ∗P

QED.

Theorem

If you use a greedy scheduler and have sufficiently high parallel
slackness, you get almost perfect linear speedup.

Proof : High parallel slackness means

T1
P · T∞

� 1 ⇒ T1
P
� T∞ ⇒ T1

P
+ T∞ ≈

T1
P
.
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Plugging this approximation into the first theorem above, and combining with the
work law,

TP ≤
T1
P

+ T∞ ≈
T1
P
≤ TP ⇒ T1

P
≈ TP ⇒ T1

TP
≈ P

QED.

3.2.3 Race conditions

A parallel algorithm is deterministic if its results on a given input do not depend on
the order in which instructions are scheduled; it is nondeterministic if the results on
the same input might change between executions (by virtue of the scheduler selecting
different combinations of ready threads in different runs).

For everyone’s sanity, especially yours, you are strongly advised not to write non-
deterministic programs. People do, but usually not on purpose. The main cause of
nondeterminism is a race condition—a fertile source of spectacular bugs that are very
hard to reproduce and hence debug.

A determinacy race occurs when two or more threads access the same memory
location in parallel and at least one performs a write.

Imagine two parallel threads accessing variable x, initialized to 0. Each thread consists
of the code x = x + 1. What is going to be the value in x after executing and syncing
the two threads? It might be reasonable to expect that the answer will be 2 regardless of
the order in which the threads execute.

However, by our definition above, this situation contains a determinacy race. Al-
though the problem is not obvious when looking at the high level instructions, when each
assignment is expanded into its machine code components, and when we consider that the
machine code instructions for the high level assignment may not be executed atomically,
we see where the race might occur. Each x = x + 1 assignment expands into a machine
code sequence similar to

LOAD R from x
INC R
STORE R into x

where R is a processor register and x is a memory address. If these low-level instruc-
tions for the two threads are interleaved, we might have a situation where both threads
read x while it is still 0, both increment it to 1 and both write it back as 1. The final
result in x is 1, different from what would have happened if all the instructions of one
thread had been executed before those of the other.

Exercise 25
Construct a minimal case of determinacy race with two threads accessing vari-
able x but only one of them writing to it. Show at least two ways of sequencing
the machine code instructions that will cause different results.

There are ways of handling races using synchronization primitives such as the mutex.
The strategy we use here is simply to ensure that strands that may execute in parallel
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are independent. Any code with a determinacy race will be deemed illegal (for this pro-
gramming model, it is possible to determine statically whether a code has a determinacy
race or not).

Exercise 26
If you can solve this one without help, you are pretty good.
As written, several listings in chapter 27 of CLRS3 (third printing) contain an
unintended determinacy race. Which listings? Where is the race? How could
such a bug occur?
(When I noticed this, I wrote to Professor Leiserson, who wrote the chapter,
and he confirmed I had found a severe bug, which would be fixed in the fourth
printing.)

3.3 Case study: chess program
The CLRS3 textbook reports an interesting tale from the development of the award-
winning chess program *Socrates.

The development machine had P = 32 processors. The target machine, not available to
the developers, was to have 512. The running time on 32 processors was 65 seconds. One
of the programmers found a way to bring this down to 40 seconds! Major improvement,
right? Yet this change to the code was not incorporated in the final version, because an
analysis based on work and span showed that it would have actually slowed down the
execution on the target machine. How is this possible? And how could they figure it out
before being able to try the code on the P = 512 machine?

The first theorem of the greedy scheduler tells us that TP ≤ T1
P

+ T∞: treating the
inequality as an equation to obtain an approximation for the running time instead of a
bound, we get TP = T1

P
+ T∞; solving it for the span we get T∞ = TP − T1

P
.

With the original code, the work was T1 = 2048, with T32 = 65. The approximation
for the span thus gave T∞ = 65− 2048/32 = 65− 64 = 1. Extrapolating these results to
P = 512 gave T512 = 2048/512 + 1 = 4 + 1 = 5.

After the change in the code, instead, the work was T ′1 = 1024, with T ′32 = 40.
The approximation for the span gave T ′∞ = T ′P −

T ′
1

P
= 40 − 1024/32 = 40 − 32 = 8.

Extrapolating to 512 processors gave T ′512 = 1024/512 + 8 = 2 + 8 = 10. In other words,
the “optimization” would have made the code twice as slow on the target machine!

We note that the original code had pretty high parallelism of T1/T∞ = 2048/1 = 2048,
which gave a parallel slackness of at least 4 even on the highly parallel target machine.
The rearranged code, instead, exhibited a much lower parallelism of 1024/8 = 128 giving
a pathetic parallel slackness factor of just 1/4 on the target machine. This meant that the
hardware parallelism of the target machine could not be fully exploited by the changed
code and that’s why the original code performed better.

The moral of this story is to trust the work and span metrics more than raw execution
times when evaluating and predicting the performance of parallel algorithms.
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Chapter 4

Geometric algorithms

Chapter contents

Intersection of segments. Convex hull: Graham’s scan, Jarvis’s
march.
Expected coverage: about 1 lecture.

Textbook

Study chapter 33 in CLRS3.

The topics included here show off some of the techniques that can be applied and
provide some basic tools to build upon. Many more geometric algorithms are presented
in the computer graphics courses. Large scale computer aided design and the realistic
rendering of elaborate scenes will call for plenty of carefully designed data structures and
algorithms.

Note that in this overview chapter we work exclusively in two dimensions: upgrad-
ing the algorithms presented here to three dimensions will not, in general, be a trivial
extension.

4.1 Intersection of line segments

Our first problem is, given two line segments p1p2 and p3p4 (4 endpoints p1, p2, p3, p4 and 8
coordinates x1, y1, x2, . . . , y4), to determine whether they intersect—that is, whether they
have any points in common. Since the input is of fixed size (8 real numbers), it should
come as no surprise that this can be solved in O(1). To make matters more interesting,
then, we shall show how to compute this result efficiently, without using any trigonometry
or even division. To that effect, let’s first take a little detour.
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4.1.1 Cross product

Our friend here, and for the rest of the chapter, is the cross product. A point p = (x, y)
in the Cartesian plane defines a point-vector ~p from the origin (0, 0) to point p. The cross
product ~p1 × ~p2 is defined as a third vector ~p3, orthogonal to the plane of ~p1 and ~p2, of
magnitude given by the area of the parallelogram of sides ~p1 and ~p2, and such that ~p1, ~p2
and ~p3 follow the “right hand rule”.

Exercise 27

• Draw a 3D picture of ~p1, ~p2 and ~p3.

• Draw a 2D picture of ~p1, ~p2 and the parallelogram.

• Prove that the absolute value of the determinant of the matrix(
x1 x2
y1 y2

)
, equal to x1y2−x2y1, gives the magnitude of ~p3 and that its

sign says whether ~p3 “comes out” of the plane (�) or “goes into” it (⊗).

Having completed the exercise, you will readily understand that the sign of the cross
product ~p1 × ~p2 tells us whether the (shortest) rotation that brings ~p1 onto ~p2 is positive
(= anticlockwise) or negative. In other words, by looking at the sign of ~p1 × ~p2, we can
answer the question “on which side of ~p1 does ~p2 lie?”. This can be used to provide efficient
solutions to several problems. Let’s get back to one of them.

4.1.2 Intersection algorithm

Do the two line segments p1p2 and p3p4 intersect? (Note that we are no longer dealing
with point-vectors.) We examine a tree of possibilities. Take the two endpoints p1 and p2
of the first segment and consider their position with respect to the second segment p3p4.
Do p1 and p2 lie on the same side or on opposite sides of p3p4? If they lie on the same
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side, it’s clear that the two segments don’t intersect. If they lie on opposite sides that’s
a good start but1, if we are unlucky, they only intersect the continuation of p3p4, not the
segment proper. So we should also turn the tables and verify the position of p3 and p4
with respect to p1p2. If these are also on opposite sides, then the two segments intersect;
if they are on the same side, the segments don’t intersect.

In the above we have nonchalantly ignored the boundary case in which one of the
endpoints being examined lies precisely on the line containing the other segment. When
this happens, the relevant cross product is ~0. We must detect all such cases and then
check whether the point, as well as being collinear with the endpoints of the segment, also
lies between them; if it does, in any of the possible configurations, the verdict will be that
the segments intersect; if this never happens, instead, the segments don’t intersect.

It is instructive to note how a substantial portion of the programming effort of pro-
ducing a correct algorithm must go into the handling of this boundary case. This is not
an isolated occurrence in computer graphics.

4.2 Convex hull of a set of points

The convex hull of a collection Q of points in the plane is the smallest convex2 polygon
such that all the points in Q are either inside the polygon or on its boundary.

Exercise 28
Sketch an algorithm (not the best possible: just any vaguely reasonable algo-
rithm) to compute the convex hull; then do a rough complexity analysis. Stop
reading until you’ve done that. (Requires thought.)

We present two algorithms3 for building the convex hull of a set Q of n points. The
first, Graham’s scan, runs in O(n lg n) time. The second, Jarvis’s march, takes O(nh)
where h is the number of vertices of the hull. Therefore the choice of one or the other

1Micro-exercise in mid-sentence: sketch in the margin a case in which they do and yet there is no
intersection.

2A convex polygon is one in which, given any two points inside the polygon (boundary included), no
point of the segment that joins them is outside the polygon. For examples of non-convex polygons think
of shapes with indentations such as a star or a cross.

3Several others have been invented—see the textbook.
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depends on whether you expect most of the points to be on the convex hull or strictly
inside it.

Both methods use a technique known as “rotational sweep”: they start at the lowest
point and examine the others in order of increasing polar angle4 from a chosen reference
point, adding vertices to the hull in a counterclockwise fashion. This leads to an interesting
sub-problem: how can you efficiently sort a group of point-vectors by the angles that they
form with the positive x axis?

The simple-minded answer is to compute that polar angle (call it θ(~p)) for each point-
vector ~p using some inverse trigonometric function of ~p’s coordinates and then to use it
as the key for a standard sorting algorithm. There is, however, a better way. Here, too,
the cross product is our friend. Actually. . .

Exercise 29
How can you sort a bunch of points by their polar coordinates using efficient
computations that don’t include divisions or trigonometry? (Hint: use cross
products.) Don’t read beyond this box until you’ve found a way.

Hey! I said stop reading! I know, the eye is quick, the flesh is weak. . . but just do the
exercise first, OK? You’ll be much better off at the exam if you work out this kind of stuff
on your own as you go along.

Anyway, the trick is that there is no need to compute the actual angles in order to
sort the point-vectors by angle—all that is needed is a plug-in replacement for the core
comparison activity of “is this point-vector’s polar angle greater than that of that other
point-vector?”. This, regardless of the actual values of the angles, is equivalent to asking
whether a point-vector is to the left or the right of another; therefore the question is
answered by the sign of their cross product, as follows:

θ(~p) S θ(~q) ⇐⇒ ~p× ~q T 0.

4.2.1 Graham’s scan

Although the details are a bit tricky, the basic idea of the algorithm is quite straightfor-
ward: starting from the bottom point, with the origin on the bottom point, we go through
all the others in order of their polar angle; each point is visited only once and is retained
in a stack if it looks (so far) as being on the hull; it may be removed later by backtracking
if we discover it wasn’t after all.

In greater detail, the algorithm is as follows. We start from the point, call it p0, with
the smallest y coordinate (the leftmost such point in case of ties). We sort all other points
based on their polar angle from p0. We then examine these points in that order to build
the boundary of the hull polygon. At any instant we have a “most recently discovered

4The polar angle of a point p1 with respect to a reference point p0 is the angle between the positive
x axis and the point-vector ~p1 − ~p0. In other words, place the butt end of an East-pointing arrow on p0,
then rotate that arrow around p0 until it points towards p1. The angle travelled is the polar angle of p1
with respect to p0.
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vertex” (initially p0) and, by drawing a segment from that to the point being examined,
we obtain a new candidate side for the hull. If this new segment “turns left” with respect
to the previous one, then good, because it means that the hull built so far is still convex.
If instead it “turns right”, then it’s bad, because this introduces a concavity. In this case
we must eliminate the “most recently discovered vertex” from the boundary (we now know
it wasn’t really a vertex of the hull after all—it must be an internal point if it’s caught at
the bottom of a concavity) and backtrack, reattaching the segment to the previous vertex
in the hull. Then we must again check which way the end segment turns with respect
to its predecessor, and we must keep backtracking if we discover that it still turns right.
We continue backtracking until the end segment does not introduce a concavity. This is
basically it: we proceed in this way until we get back to the starting point p0.

The boundary case is that in which the new segment doesn’t turn either left or right but
instead “goes straight”: this indicates a situation with more than two collinear “vertices”
along the edge of the hull and of course we must eliminate the inner ones from the list of
vertices since they’re actually just ordinary points in the middle of an edge.

The backtracking procedure may appear complex at first but it is actually easy to
implement with the right data structure—namely a stack. We just keep feeding newly
found vertices into the stack and pop them out if they are later found to contribute to
concavities in the boundary.

A formal proof of correctness of the algorithm is in the textbook.
As for complexity analysis, the initial step of sorting all the points by their polar angle

can be performed in O(n lg n) using a good sorting algorithm and the cross product trick
mentioned earlier5. It can be shown that no other section of the algorithm takes more
than O(n); therefore the overall complexity of Graham’s scan is O(n lg n).

4.2.2 Jarvis’s march

Here too we start from the bottommost leftmost point of the set and work our way
anticlockwise, but this time we don’t pre-sort all the points. Instead, we choose the point
with the minimum polar angle with respect to the current point and make it a vertex of

5Actually, the use of arcsin instead of the cross product, though much less efficient, would not, of
course, change the asymptotic complexity.
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the hull: it must definitely be on the boundary if it’s the first one we encounter while
sweeping up from the “outside” region. We then make this new-found vertex our new
reference point and we again compute the minimum polar angle of all the remaining
points. By proceeding in this way we work our way up along the right side of the hull,
eventually reaching the topmost point. We then repeat the procedure symmetrically on
the other side, restarting from the bottommost point. Finally, if necessary, we deal with
the boring but trivial boundary cases of “flat top” or “flat bottom”.

Complexity analysis is easy: finding the minimum is an O(n) operation given that
each individual comparison is O(1); this operation is repeated once for every vertex of the
hull and therefore the overall complexity of Jarvis’s march is O(nh).

Exercise 30
Imagine a complex CAD situation in which the set contains about a million
points. Which of the two algorithms we have seen would you use to compute
the convex hull if you expected it to have about 1,000 vertices? And what
is the rough boundary value (for the expected number of vertices of the hull)
above which you would use one algorithm instead of the other? (Is this a trick
question? If so, why?)

The motivation for performing distinct left and right passes is to be able to use the
cross-product trick—but there are subtleties. Let’s see.

Distinct left and right passes are needed if one considers the polar angles with respect
to the shifted (positive or negative) x axis and wants to use the cross-product trick. This
is because you can’t get accurate results from the cross-product trick if the angle spanned
by the two vectors being multiplied is greater than π.

Why? Assume p1 is at 5 degrees below the x axis and p2 is at 10 degrees above: then
the shortest rotation from p1 to p2 is positive (anticlockwise), specifically +15 degrees,
and indicates that p1 has a smaller polar angle than p2. This is indeed correct if we
consider p1 to have polar angle -5 degrees and p2 to have +10 degrees, but it’s incorrect
if we say that we normalize all angles to within the 0 to 2π range, because in that case
p1 has polar angle of +355 degrees which is not smaller than p2’s! Normalizing angles
to any other range spanning 2π (eg −π to +π) might fix the problem for this particular
counterexample but not in general: any two points on either side of the discontinuity (in
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this case at angle π; in the previous case at angle 0) and separated by less than π would
exhibit the same problem, regardless of where the discontinuity is placed.

It is possible to use a single anticlockwise pass if one computes the polar angles with
respect to the shifted positive x axis (using trigonometry), thus without using the cross-
product trick (but that costs more, by a constant factor).

A smarter programmer will however use both a single anticlockwise pass and the cross-
product trick by considering polar angles not with respect to the x axis but with respect
to the last segment of the hull found so far.

Finally, have your say
Before the end of term, please visit the online feedback pages and leave an anonymous
comment, explicitly mentioning both the good and the bad aspects of this course. If
you don’t, your own opinion of my work will necessarily be ignored. Instead, I’d be very
grateful to have a chance to hear about it.

End of lecture course

Thank you, and best wishes for the rest of your Tripos.
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