
Some Mathematical Elements of Graphics

(lecture notes for Advanced Graphics)

Neil Dodgson∗

University of Cambridge Computer Laboratory

Overview

The course is in two halves. The first taught by Dr Alex Benton, the second by Prof. Neil

Dodgson. These notes are for Prof. Dodgson’s part of the course.

Lecture handouts and supervision material Some of the lecture course material

is available on the web. This material is also printed out to provide these lecture notes.

Book list and their abbreviations The following books were used in preparation of

these notes. Each is preceded by the abbreviation used in these notes to refer to that

book. The B-spline part of the course is based on material from R&A and P&M.

• S&M Shirley, P. & Marschner, S. (2009).
Fundamentals of Computer Graphics.

A K Peters Ltd (3rd ed.).

A good, up-to-date, general computer graphics text book. Chapter 15 covers curves

(Bézier, B-spline, and NURBS). Chapter 17 covers computer animation in more

detail than this course. For Dr Benton’s part of the course, it also covers ray tracing

(Ch. 4, 13), and implicit modelling (Ch. 16).

• R&A Rogers, D.F. & Adams, J.A. (1990).
Mathematical Elements for Computer Graphics.

McGraw-Hill (2nd ed.).

A good coverage of the mathematics of the 2D and 3D representation of shape as it

was understood in the year of publication. Explains Bézier, B-spline, and NURBS

curves and surfaces in great detail. Also covers conics and quadrics.

• P&M Patrikalakis, N. M. & Maekawa, T. (2002).
Shape Interrogation for Computer Aided Design and Manufacturing.

Springer.

This book, available online, is one of the textbooks for the graduate course “Compu-

tational Geometry” at MIT. Much of the book goes well beyond what is required for

∗Written 10/99, modifications made 09/00, 10/02, 09/04, 04/06, 03/07, 01/10, 03/12, 01/14. Thanks to

Malcolm Sabin, Alex Benton, and Jiřı́ Kosinka for useful advice. c©1999–2014 Neil A. Dodgson

1

http://www.cl.cam.ac.uk/Teaching/current/AdvGraph
http://web.mit.edu/hyperbook/Patrikalakis-Maekawa-Cho/


2 Advanced Graphics Lecture Notes

this course, but Chapter 1 provides a good alternative explanation of the material

on Bézier and B-spline curves and surfaces.

• Buss Buss, S.R. (2003).
3-D Computer Graphics.

Cambridge University Press.

A book that has the best description of radiosity (Ch. XI) that I have ever read. It

also contains chapters on Bézier curves (VII), B-Splines (VIII), ray tracing (IX and

X) and animation (XII).

• W&WWarren, J. & Weimer, H. (2002).
Subdivision Methods for Geometric Design.

Morgan Kaufmann.

The first book devoted entirely to subdivision methods.

• P&R Peters, J. & Reif, U. (2008).
Subdivision Surfaces.

Springer.

The second book on subdivision. Much more concerned with mathematical proof

thanW&W.

• Sabin Sabin, M. (2010).
Analysis and Design of Univariate Subdivision Schemes.

Springer.

Somewhere between W&W and P&R in the mathematical fluency needed to un-

derstand it.

Note on copyright material I have included, in this handout, two extracts from

textbooks. The extract from Buss is his excellent chapter on radiosity. The extract

from Rogers and Adams (R&A) comprises parts of sections 5–8 (Bézier curves), 5–9 (B-

splines), and 5–13 (NURBS).

These extracts are provided under the University of Cambridge’s license from the

Copyright Licensing Agency. This allows us to make one copy for each student and su-

pervisor (“tutor”) on the course within certain limits. These are: no more than three

works and no more than 5% or one whole article or chapter from each work. This mate-

rial is provided solely for the student’s own study. Further copying of this handout is a

breach of copyright.

Be warned: to fit inside the limits I have had to heavily edit the extracts fromR&A.

In particular, I have included none of the worked examples. To thoroughly understand

the material I suggest that you read this extract and then borrow a copy ofR&A in order

to go through the examples. There should be a copy in your College’s library.

1 The polygon

Today, almost all computer graphics rendering is done via the graphics processing unit

(GPU) on a dedicated graphics card. These processors are optimised for drawing trian-

gles. Therefore almost all computer graphics comprises drawing a large number of small

http://www.math.ucsd.edu/~sbuss/MathCG/


Neil Dodgson 3

triangles very quickly. Modern graphics cards are capable of a wide range of operations

on both vertices and pixels and therefore an enormous range of visual effects can be

achieved that are far more than just “filling a triangle.”

A consequence of this is that anything that must be drawn has to be converted into a

mesh of triangles. However, it would be enormously inconvenient to a designer to have

to edit a triangle mesh directly. Owing to the huge number of triangles involved in any

good model, it is practically impossible to edit a triangle mesh by individually moving

the vertices of the triangles. Therefore some higher-level representation is needed.

We will spend six lectures considering the two principal mechanisms by which we

represent arbitrary curved surfaces for computer graphics: splines and subdivision.

These mechanisms have been developed to make it easy for a designer to achieve the

shape she wants. That is, the mechanisms allow the designer to affect the shape at the

appropriate level of resolution: not so fine that a ridiculous number of manipulations

are required (as would be the case with operating directly on the triangle mesh) and not

so coarse that the designer cannot get the shape she wants.

2 Introduction to splines

While polygons are good for rendering, a designer cannot be expected to manipulate,

directly, the millions of polygons that comprise the rendered model. We need some better

way of generating curved surfaces. We need a general way of specifying arbitrary curved

surfaces, which can then be converted to polygons for rendering. Ideally, we want a

mechanism which allows us to specify any smooth curved surface which we desire. This

problem was first faced in the 1960s for the design of aeroplanes and cars. We will look

at two solutions: (1) B-spline curves and surfaces (including NURBS) and (2) subdivision

curves and surfaces. Both methods were invented in the 1970s and they are today the

two industry standard representations. The Computer-Aided Design (CAD) industry

uses NURBS surfaces as its standard definition mechanism. The visual effects and

animation industry uses both NURBS surfaces and subdivision surfaces.

A cubic B-spline is shown in Figure 1. The curve is generated from a sequence of

control points and a mathematical function (Equation 1). The sequence of points can

be thought of as the vertices of a polygon or polyline. The curve can be thought of as

a refinement of that polyline. The designer is able to move the control points, and this

changes the shape of the curve.

The basic formula defining any such curve is:

P(t) =
n
∑

i=1

Ni(t)Pi (1)

for n control points, Pi. The Ni(t) are called basis functions.

A fundamental property of any valid set of basis functions is that they partition unity.

That is:
n
∑

i=1

Ni(t) = 1, ∀t. (2)

This is because Equation 1 must be invarient under translation of all of the control

points. So, if we move all of the control points a fixed distance, P′

i = Pi + D, then we



4 Advanced Graphics Lecture Notes

Figure 1: The dark blue curve is a uniform cubic B-spline curve. It is generated from

the control points, shown as red circles, taken in the order indicated by the dotted red

line. The purple points show different positions of one of the control points. The pale

blue curves show how moving that control point changes the curve.

want the resulting curve to move by the same fixed distance, P′(t) = P(t) + D.

P′(t) =
n
∑

i=1

Ni(t)(Pi + D)

=
n
∑

i=1

Ni(t)Pi +
n
∑

i=1

Ni(t)D

=
n
∑

i=1

Ni(t)Pi + D, if
n
∑

i=1

Ni(t) = 1, ∀t

3 Bézier curves and surfaces

Bézier curves and surfaces were covered in the Part IB Computer Graphics and Image

Processing course.

Béziers are a particular type of spline. They were developed in the 1960s for use in

designing the bodies of cars. They are one of the earliest forms of spline implemented

on computer for geometric design. Most textbooks (including R&A and P&M) introduce

Béziers before B-splines and NURBS, because they provide a good introduction to the

mathematics and the concepts involved.



Neil Dodgson 5

This section gives some of the mathematical details, as does R&A Section 5-8. An

extract from this Section of R&A is included in the handout. Please read that extract

before continuing.

If you want to experiment with Bézier curves then there are a number of on-line

tutorials. One such is available from the Technion.

A Bézier curve is a weighted sum of n + 1 control points, P0,P1, . . . ,Pn, where the

weights are the Bernstein polynomials:

P(t) =
n
∑

i=0

(

n
i

)

(1 − t)n−itiPi, 0 ≤ t ≤ 1 (3)

The Bézier curve of order n + 1 (degree n) has n + 1 control points. Below are the first
three orders of Bézier curve definitions.

linear P(t) = (1 − t)P0 + tP1 (4)

quadratic P(t) = (1 − t)2P0 + 2(1 − t)tP1 + t2P2 (5)

cubic P(t) = (1 − t)3P0 + 3(1 − t)2tP1 + 3(1 − t)t2P2 + t3P3 (6)

3.1 Ways of thinking about Bézier curves

There are several useful ways in which you can think about Bézier curves. Here are the

ones that I use.

Linear interpolation. Equation 4 is obviously a linear interpolation between two points.

Equation 5 can be rewritten as a linear interpolation between linear interpolations

between points:

P(t) = (1 − t)[(1 − t)P0 + tP1] + t[(1 − t)P1 + tP2] (7)

Equation 6 can be rewritten as a linear interpolation between linear interpolations

between linear interpolations between points. This is left as an exercise for the

reader.

Weighted average. A Bézier curve can be seen as a weighted average of all of its con-

trol points. Because all of the weights are positive, and because the weights sum

to one, the Bézier curve is guaranteed to lie within the convex hull of its control

points.

Refinement of the control polygon. A Bézier curve can be seen as some sort of re-

finement of the polygon made by connecting its control points in order. The Bézier

curve starts and ends at the two end points and its shape is determined by the rel-

ative positions of the n − 1 other control points, although it will generally not pass
through any of these other control points. The tangent vectors at the start and end

of the curve pass through the end point and the immediately adjacent point.

R&A list the properties of the Bézier curve on page 291.

http://www.cs.technion.ac.il/~cs234325/Applets/applets/bezier/GermanApplet.html


6 Advanced Graphics Lecture Notes

3.2 Continuity

One of the most important problems of using Bézier curves (and surfaces) is getting

different pieces of curve (or patches of surface) to connect smoothly together, that is:

with continuity of position (C0), slope (C1) and curvature (C2). These are continuity
of the function, its first and its second derivatives, respectively. Much of the ensuing

discussions consider how to achieve such continuity.

You should note that each Bézier curve is independent of any other Bézier curve. If

we wish two Bézier curves to join with any type of continuity, then we must explicitly

position the control points of the second curve so that they bear the appropriate rela-

tionship with the control points in the first curve.

Any Bézier curve is infinitely differentiable within itself, and is therefore continu-

ous to any degree (Cn-continuous, ∀n). We therefore only need concern ourselves with
continuity across the joins between curves. Assume that we have two Bézier curves of

the same order: P(t), defined by (P0,P1, . . . ,Pn), and Q(t), defined by (Q0,Q1, . . . ,Qn).
C0-continuity (continuity of position) can be achieved by setting P(1) = Q(0). This gives
a formula for Q0 in terms of the Pis:

Q0 = Pn. (8)

Similarly for C1-continuity, we need C0-continuity and P′(1) = Q′(0), giving:

Q1 − Q0 = Pn − Pn−1 (9)

Combining Equations 9 and 8 gives a formula for Q1 in terms of the Pis:

Q1 = 2Pn − Pn−1 (10)

= Pn + (Pn − Pn−1) (11)

Continuing in this vein, we find that the requirements forC2-continuity (i.e. C1-continuity

and P′′(1) = Q′′(0)) give:

Q2 − 2Q1 + Q0 = Pn − 2Pn−1 + Pn−2 (12)

Combining Equations 12, 9, and 8 gives a formula for Q2 in terms of the Pis:

Q2 = 4Pn − 4Pn−1 + Pn−2 (13)

= Pn−2 + 4(Pn − Pn−1) (14)

3.3 Bézier surfaces

We learnt in the IB course that a Bézier surface is constructed by taking something

known as the tensor product of Bézier curves. A tensor product Bézier surface of order

n + 1 is defined by (n + 1)2 control points. It is called a Bézier patch.

P(s, t) =
n
∑

i=0

(

n
i

)

(1 − s)n−isi
n
∑

j=0

(

n
j

)

(1 − t)n−jtjPi,j (15)

You can think about this as moving the control points of one Bézier curve along a set of

Bézier curves to sweep out a surface. Continuity across a boundary between two Bézier

patches is only guaranteed if each of the Bézier curves across the join obey the curve

continuity conditions. Again, this was covered in the IB course.



Neil Dodgson 7

3.4 Exercises

1. Explain what C0-, C1-, C2-, Cn-continuity mean.

2. Equations (9) and (12) give the constraints on control point positions which ensure

that Bézier curves join with C1- and C2-continuity. Derive these equations for
two quartic Bézier curves by using the fact that the end-points must be identical,

Q0 = Pn, and then setting P′(1) = Q′(0) and P′′(1) = Q′′(0).

4 B-splines

B-spline curves are the general case of a particular type of curve that was originally

derived to meet certain mathematical properties. In particular, they maximise the con-

tinuity of the curve while minimising the support. The support is the length of curve

that is modified by moving a single control point. The importance of minimising support

is that is means any change made by a designer is local. For example, if a designer is

changing the shape of the nose of an animated character, she wants that change to be

local to the control point she is moving. She does not want that change to affect, for

example, the feet of the character. R&A section 5–9 (extract included in the handout)

discusses B-splines curves.

In a B-spline curve each control point is associated with a basis function, Ni,k(t).

P(t) =
n
∑

i=1

Ni,k(t)Pi, tmin ≤ t < tmax (16)

There are n control points1, P1,P2, . . . ,Pn. The Ni,k basis functions are of order k. They
are piecewise polynomial functions. That is, they are made up of pieces that are each

polynomial but that each piece is a different polynomial to the pieces on either side.

Figure 2 shows an example.

The degree of the polynomial pieces is one less than the order, so they are of degree

k − 1. k must be at least 2 (linear), and can be no more than n (the number of control
points). The order of the curve (2 [linear], 3 [quadratic], 4 [cubic],. . . ) is not dependent

on the number of control points. This is one important way in which B-splines differ from

Béziers and means that we do not need to worry about the continuity between pieces of

the same B-spline curve, because the continuity is guaranteed automatically (see details

later).

Equation 16 defines a piecewise polynomial function. The Ni,k are defined by a knot

vector, [t1, t2, . . . , tk+n], which we consider in detail below. The knot vector specifies the
values of the parameter t at which the pieces of curve join, by analogy to knots joining
bits of string. It is necessary that the ti form a non-decreasing sequence of real numbers:

ti ≤ ti+1,∀i (17)

The Ni,k depend only on the value of k and the values, ti. Ni,k is defined recursively

as:

Ni,1(t) =

{

1, ti ≤ t < ti+1

0, otherwise
(18)

1Note that this differs by one from R&A, who use n + 1 control points labelled from 1 to n + 1.



8 Advanced Graphics Lecture Notes

Figure 2: The same example as Figure 1 showing the piecewise nature of the curve. The

curve is a uniform cubic B-spline curve generated from the control points. Each piece

of the curve is shown in a different colour. Each piece of the curve is a cubic. Each

piece of the curve is generated from four control points. The colours within each control

point show which pieces of the curve are affected by moving that control point. You can

see that each control point affects up to four pieces of curve. The points at which we

transition from one curve to another are the knot points. At such a point, the position

of the curve is controlled by only those control points common to the pieces either side.

Therefore, in this case (cubic), the knot point’s position depends on only three control

points.

Ni,k(t) =
t − ti

ti+k−1 − ti
Ni,k−1(t) +

ti+k − t

ti+k − ti+1
Ni+1,k−1(t) (19)

When computing this recursive function it is possible for the denominator to be zero.

In these cases the numerator is also always zero and we use the convention that 0/0 =
0. This can be justified formally by considering limits as the spacing between knots
approaches zero.

Figure 3 shows the generation of functions, up to the cubic (n = 4) from the knot
vector [1, 2, 3, 4, 5].

Let us work through the mathematical derivation of some of these functions. Con-

sider the first two functions, N1,1 and N2,1. These are generated directly from the base

case:

N1,1(t) =

{

1, 1 ≤ t < 2
0, otherwise

N2,1(t) =

{

1, 2 ≤ t < 3
0, otherwise



Neil Dodgson 9

1

0

4 5

0

1

3 4

0

1

2 3

0

1

1 2

0

1

1 2 3

0

1

2 3 4

0

1

3 4 5

0

1

1 2 3 4

0

1

2 3 4 5

0

1

1 2 3 4 5

1

2

3

4

5

N
i,1

t
i

N
i,2

N
i,3

N
i,4

Figure 3: The knot vector on left, [1, 2, 3, 4, 5], generates the Ni,1 basis functions using

the base case of the recursive definition. The higher order functions are generated by

the recursive part of the definition. Notice that, for these uniformly-spaced knots, each

basis function for a given order is simply a shifted version of all the others of that same

order.

The next function up, N1,2 is generated from these two by the recursive case:

N1,2(t) =
t − t1
t2 − t1

N1,1(t) +
t3 − t

t3 − t2
N2,1(t)

=
t − 1

2 − 1
N1,1(t) +

3 − t

3 − 2
N2,1(t)

= (t − 1)N1,1(t) + (3 − t)N2,1(t)

Notice two things: first, the multiplier in front of each function is simply a straight

line that varies between 0 and 1 over the range for which the function is non-zero. Fig-
ure 4 shows these two linear functions. For N1,1, the multiplier increases linearly from 0
to 1 over the non-zero range of N1,1. For N2,1, the multiplier decreases linearly from 1 to
0 over the non-zero range of N2,1. This pattern for the multiplication factors is the same

at every level and for every function.

Second, notice that N1,1 and N2,1 are piecewise functions, therefore the definition of

N1,2 is also going to be piecewise. Its pieces are drawn from the ranges of the two simpler

functions. There will be three separate sections to the function: a piece from t = 1 to
t = 2, a piece from t = 2 to t = 3, and something to handle the “otherwise” case.

N1,2(t) =











t − 1, 1 ≤ t < 2
3 − t, 2 ≤ t < 3
0, otherwise



10 Advanced Graphics Lecture Notes

0

1

2 3

0

1

1 2

0

1

1 2 3

0

1

1 2 3

0

1

2 3 4

0

1

1 2 3 4

(t–1)×N
1,1

(3–t)×N
2,1

N
1,2

½(t–1)×N
1,2

½(4–t)×N
2,2

N
1,3

Figure 4: Two examples of the recursive step in Equation 19. In each case the two

functions of order k − 1 are combined to produce one function of order k. The combining
factors are simple linear functions that rise from 0 to 1 or fall from 1 to 0 over the range
for which the Ni,k−1 is non-zero.

N2,2 is generated by a similar process and, as you can see, N2,2(t) = N1,2(t − 1):

N2,2(t) =











t − 2, 2 ≤ t < 3
4 − t, 3 ≤ t < 4
0, otherwise

We now turn to the case of generating a N1,3: a piecewise quadratic function. That is,

it will be comprised of several pieces, each of which will be a quadratic. N1,3 is generated

from the two piecewise linear functions above:

N1,3(t) =
t − t1
t3 − t1

N1,2(t) +
t4 − t

t4 − t2
N2,2(t)

=
t − 1

3 − 1
N1,2(t) +

4 − t

4 − 2
N2,2(t)

=
t − 1

2
N1,2(t) +

4 − t

2
N2,2(t)

Again, notice two things. First, Figure 4 confirms that the multipliers on the two func-

tions are simply linear ramps ranging between 0 and 1 for the range over which the
function is non-zero.

Second, this is a piecewise function. It needs to have pieces that match each piece

of the two functions that combine to create it. Of course, those functions are generated

from one knot vector, so the places at which the pieces join will be knot values. In this

case, the function will be of this form:

N1,3(t) =



















?, 1 ≤ t < 2
?, 2 ≤ t < 3
?, 3 ≤ t < 4
0, otherwise



Neil Dodgson 11

with three quadratic functions to derive, one for each of the three question marks.

Using the appropriate ranges from N2,1 and N2,2 we get this:

N1,3(t) =























t−1
2 (t − 1) + 4−t

2 × 0, 1 ≤ t < 2
t−1
2 (3 − t) + 4−t

2 (t − 2), 2 ≤ t < 3
t−1
2 × 0 + 4−t

2 (4 − t), 3 ≤ t < 4

0, otherwise

=



























(t−1)2

2 + 0, 1 ≤ t < 2
(t−1)(3−t)

2 + (4−t)(t−2)
2 , 2 ≤ t < 3

0 + (4−t)2

2 , 3 ≤ t < 4

0, otherwise

=























1
2(t − 1)2, 1 ≤ t < 2
1
2(t − 1)(3 − t) + 1

2(4 − t)(t − 2), 2 ≤ t < 3
1
2(4 − t)2, 3 ≤ t < 4

0, otherwise

At this point it would be instructive for you to work out N1,1, N2,1, N3,1, N1,2, N2,2,

N1,3 for the knot vector [0, 2, 3, 6]. It helps if you draw the graphs for these functions.

4.1 Features of B-splines

Earlier, I mentioned that B-splines had originally been derived mathematically as the

set of basis functions that minimise support while maximising continuity. These are

both important properties of B-splines. There are several properties that we should note

about these equations:

1. Each Ni,k(t) depends only on the k + 1 knot values from ti to ti+k. In particular,

remember that Ni,k(t) does not depend on the positions of the control points.

2. Ni,k(t) = 0 for t < ti or t ≥ ti+k so Pi only influences the curve for ti ≤ t < ti+k.

3. Ni,k(t) is a polynomial of order k (degree k − 1) on each interval ti < t < ti+1.

4. P(t) is continuous in all its derivatives between the knots. This property follows
from the fact that each of the Ni,k(t) is a polynomial between each pair of knots
because a polynomial can be differentiated infinitely many times.

5. Across the knotsP(t) is Ck−2-continuous. This is because theNi,k(t) are continuous
in k − 2 derivatives across the knots but they have discontinuities in the k − 1
derivative. Notice that the base case (Equation 18, k = 1) has discontinuities and
therefore is not even C0. You can consider each step of recursion (Equation 19) to
add one extra level of continuity to the function, so k = 2 is C0, with discontinuities
in the first derivative; k = 3 is C1, with discontinuities in the second derivative;
and so on.



12 Advanced Graphics Lecture Notes

6. Equation 16 shows that P(t) is only valid for tmin ≤ t < tmax. The values of these

are: tmin = tk and tmax = tn+1. This is because a weighted sum of points only makes

sense if the weights sum to one. It is therefore validly defined only where

n
∑

i=1

Ni,k(t) = 1.

It thus starts at tk, the lowest knot value for which there are k basis functions that
are not in their “otherwise” condition and ends at tn+1 the equivalent knot value

at the other end of the knot vector (i.e., tn+1 is k knots away from the end of the
vector, which is at tn+k).

4.2 The knot vector

The above should have led you to realise that the knot vector is important. The knot

vector can be any sequence of numbers provided that each one is greater than or equal

to the preceding one. There is a limit on how many knots can be coincident (i.e., have

equal values). The multiplicity of a knot is limited to the degree of the curve; since a

higher multiplicity would split the curve into disjoint parts and it would leave control

points unused.

The shapes of the Ni,k basis functions are determined entirely by the relative spacing

between the knots. Scaling (t′i = αti,∀i) or translating (t′i = ti + ∆t,∀i) the knot vector
has no effect on the shapes of the Ni,k nor on the shape of the actual curve P(t).
Some types of knot vector are more useful than others. Knot vectors are generally

placed into one of three categories: uniform, open uniform, and non-uniform.

Uniform. These are knot vectors for which

ti+1 − ti = constant,∀i (20)

For example:
[1, 2, 3, 4, 5, 6, 7, 8]
[0, 1, 2, 3, 4, 5]
[0, 0.25, 0.5, 0.75, 1.0]
[−2.5,−1.4,−0.3, 0.8, 1.9, 3.0]

A basis function’s shape depends only on the relative spacing of the knots involved.

Because all the knots are equally spaced, all of the basis functions, Ni,k(t) for a
given k, are just shifted versions of one another, as can be seen in Figure 5.

Open Uniform. These are uniform knot vectors which have k equal knot values at each
end:

ti = tk, i ≤ k
ti+1 − ti = constant, k ≤ i < n + 1

ti = tn+1, n + 1 ≤ i
(21)

For example:

[0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4] (k = 4)
[1, 1, 1, 2, 3, 4, 5, 6, 6, 6] (k = 3)
[0.1, 0.1, 0.1, 0.1, 0.1, 0.3, 0.5, 0.7, 0.7, 0.7, 0.7, 0.7] (k = 5)



Neil Dodgson 13

1 2 3 4 5 6 7 8 9 10 11 12
0

0.2

0.4

0.6

0.8

1

Figure 5: An example of a set of uniform basis functions. These cubic basis functions

are generated from the knot vector [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. They are simply shifted
versions of one another: Nb,4(t) = Na,4(t − b + a).

Figure 6: An example of the practical difference between a uniform and an open uniform

knot vector. The curve (light blue) generated by the open uniform vector passes through

the two end points, while the curve (dark blue) generated by the uniform knot vector

does not. In this cubic case, the difference between the two curves is limited to the two

pieces of curve at each end. All of the other pieces of curve are identical.

This is a simple modification to the uniform case that allows the curve to go through

its two end points. This arrangement of knots at the ends is known as “Bézier end-

conditions.” Figure 6 shows an example of the practical difference between uniform

and open uniform knot vectors. Figure 7 shows the similarities and differences

between the basis functions.

A Bézier curve of order n is a special case of an open uniform B-spline curve with



14 Advanced Graphics Lecture Notes

1 2 3 4 5 6 7 8 9 10 11 12
0

1

13

1 2 3 4 5 6 7 8 9 10 11 12 13
0

1

11

Figure 7: The basis functions for a uniform (red) and an open uniform (green) knot vector.

Both are cubic with order k = 4 and a for n = 9 control points. The knot vector for the
uniform case is [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13]. The knot vector for the open uniform
case is [4, 4, 4, 4, 5, 6, 7, 8, 9, 10, 10, 10, 10]. Both define valid curves between knots t4 = 4
and t10 = 10. Notice that, in this cubic case, only the three basis functions at each end
are different. The basis functions in the middle are identical.

the knot vector comprising n zeros followed by n ones. For example, the cubic
Bézier has the knot vector [0, 0, 0, 0, 1, 1, 1, 1].

Non-uniform. This is the general case, the only constraint being the standard ti ≤
ti+1,∀i (Equation 17). For example:

[1, 3, 7, 22, 23, 23, 49, 50, 50]
[1, 1, 1, 2, 2, 3, 4, 5, 6, 6, 6, 7, 7, 7]
[0.2, 0.7, 0.7, 0.7, 1.2, 1.2, 2.9, 3.6]

The above gives a description of the various types of knot vector but it does not

give you any insight into how the knot vector determines the shape of the curve. The

following subsections look at the different types of knot vector in more detail. However,

the best way to get to feel for these is to derive and draw the basis functions yourself.

4.2.1 Uniform knot vector

For simplicity, let ti = i (this is allowable given that the scaling or translating the
knot vector has no effect on the shapes of the Ni,k). The knot vector thus becomes

[1, 2, 3, . . . , k + n] and Equation 19 simplifies to:

Ni,1(t) =

{

1, i ≤ t < i + 1
0, otherwise



Neil Dodgson 15

Ni,k(t) =
t − i

k − 1
Ni,k−1(t) +

i + k − t

k − 1
Ni+1,k−1(t) (22)

You should be easily able to graph the first few of these for yourself. The principle thing

to note about the uniform basis functions is that, for a given order k, the basis functions
are all simply shifted versions of one another. See Figure 7(top) and R&A Figure 5-36.

With a uniform B-spline, you obviously cannot change the basis functions (they are

fixed because all the knots are equispaced). However you can alter the shape of the curve

by modifying a number of other things:

Moving control points. Moving the control points obviously changes the shape of the

curve. This is the usual way in which a designer will change the shape of a B-spline

curve.

Multiple control points. Sticking two adjacent control points on top of one another

causes the curve to pass closer to that point. Stick enough adjacent control points

on top of one another and you can make the curve pass through that point (R&A,

Figure 5-45).

Order. Increasing the order k increases the continuity of the curve at the knots, in-
creases the smoothness of the curve, and tends to move the curve farther from its

defining polygon. (R&A, Figure 5-44).

Joining the ends. You can join the ends of the curve to make a closed loop. Say you

have M points, P1, . . . ,PM . You want a closed B-spline defined by these points.

For a given order, k, you will need M + (k − 1) control points (repeating the first
k − 1 points): P1, . . . ,PM ,P1, . . . ,Pk−1. Your knot vector will thus haveM + 2k − 1
uniformly spaced knots. An example is shown in Figure 8.

4.2.2 Open uniform knot vector

The final paragraph in the previous section tells you that uniform B-splines can be used

to describe closed curves: all you have to do is join the ends as described above. If you

do not want a closed curve, and you use a uniform knot vector, you find that you need

to specify control points at each end of the curve which the curve does not go near (e.g.

Figure 6, the dark blue curve, and R&A, Figure 5-44, the order 4 curve).

If you wish your B-spline to start and end at your first and last control points then

you need an open uniform knot vector (e.g. Figure 6, the light blue curve, and R&A,

Figure 5-41). The only difference between this and the uniform knot vector being that

the open uniform version has k equal knots at each end.

As mentioned earlier, an order k open uniform B-spline with n = k points is the
Bézier curve of order k. It would be a useful exercise for you to prove this for k = 3. For
ease of calculation take the knot vector to be [0, 0, 0, 1, 1, 1].

4.2.3 The difference between uniform and open uniform

It may help, at this stage, to compare a particular uniform and an equivalent open

uniform knot vector. This is a uniform knot vector for n = 7, k = 3:



16 Advanced Graphics Lecture Notes

P
1

P
2

P
3

P
4

P
5

P
6

P
7

P
8

P
1

P
2

P
3

P
9
=

P
10
=

P
11
=

P
4

P
5

P
6

P
7

P
8

t=t
4

t=t
9

t=t
4

t=t
12

Figure 8: Two curves defined by a uniform knot vector. At left is the curve defined by

eight points. At right is the equivalent closed curve. In order to get a closed curve, we

duplicate the first k−1 control points at the end of the list of control points. In this cubic
case, k = 4, so the first three points are copied to the end of the list, producing a control
polygon with eleven points and a curve that is closed because its end, at t = tn+1 = t12,
perfectly meets its start, at t = tk = t4.

1 2 3 4 5 6 7 8 9 10P1

P2

P3

P4

P5

P6

P7

overall

The lines show the range of t over which each Ni,k is non-zero. The B-spline itself (the

overall line in the diagram) is defined over the range t3 ≤ t < t8, i.e. over the range
3 ≤ t < 8.

By comparison an open uniform knot vector for n = 7, k = 3 is:

1 1 1 2 3 4 5 6 6 6P1

P2

P3

P4

P5

P6

P7

overall

The B-spline itself is defined over the range t3 ≤ t < t8, i.e. over the range 1 ≤ t < 6. By
the definition of a open uniform knot vector t3 = t1 and t8 = t10 and so an open uniform



Neil Dodgson 17

B-spline is defined over the full range of t from t1 to tk+n.

4.2.4 Non-uniform knot vector

Any B-spline whose knot vector is neither uniform nor open uniform is non-uniform.

Non-uniform knot vectors allow any spacing of the knots, including multiple knots (ad-

jacent knots with the same value). We need to know how this non-uniform spacing af-

fects the basis functions in order to understand where non-uniform knot vectors could be

useful. Owing to the knot vector being scale- and translation-invariant, there are only

three cases to consider: (1) multiple knots (adjacent knots equal); (2) adjacent knots

more closely spaced than the next knot in the vector; and (3) adjacent knots less closely

spaced than the next knot in the vector. Obviously, case (3) is simply case (2) turned the

other way round.

Multiple knots. A multiple knot reduces the degree of continuity at that knot value.

Across a normal knot the continuity is Ck−2. Each extra knot with the same value

reduces continuity at that value by one. This is the only way to reduce the conti-

nuity of the curve at the knot values. If there are k − 1 (or more) equal knots then
you get a discontinuity in the curve.

Close knots. As two knots’ values get closer together, relative to the spacing of the

other knots, the curve moves closer to the related control point.

Distant knots. As two knots’ values get further apart, relative to the spacing of the

other knots, the curve moves further away from the related control point.

Standard procedure is to use uniform or open uniform B-splines unless there is a

good reason not to do so.

There are some who advocate using a form of non-uniform knot spacing where knots

are spaced relative to the spacing of the associated control points. Figure 9 shows an

example. Having said that, moving two knots closer together or further apart tends

to change the curve only slightly and so there seems little advantage from having this

non-uniform spacing.

Today, the main use of non-uniform B-splines seems to be to allow for multiple knots,

which adjust the continuity of the curve at the knot values.

However, non-uniform B-splines are the general form of the B-spline, incorporating

both open uniform and uniform B-splines as special cases. Thus we will talk about non-

uniform B-splines when we mean the general case, incorporating both uniform and open

uniform.

4.2.5 What can you do to control the shape of a B-spline?

• Move the control points.

• Add or remove control points.

• Use multiple control points.

• Change the order, k.



18 Advanced Graphics Lecture Notes

Figure 9: Two curves illustrating the difference between a uniform knot vector (blue)

and a knot vector based on the relative spacing between control points (green). The

principal differences to notice are in the region where the control points are far apart

(top left), where the non-uniform version is farther from the control polygon, and the

region where the control points are close together (top right) where the non-uniform

version is closer to the control polygon. This is a cubic B-spline, so k = 4. The relative
spacing between control points is [2, 1, 8, 7, 1, 1, 7, 1], so the non-uniform knot vector used
here is [0, 0, 0, 2, 3, 11, 18, 19, 20, 27, 28, 28, 28]. Note that there are n − 1 intervals between
control points but n + k − 1 intervals between knots, therefore k knot values are not
determined by the intervals between control points. For this example, I have simply

duplicated the knots at each end of the knot vector until there are enough knot values.

• Change the type of knot vector.

• Change the relative spacing of the knots.

• Use multiple knot values in the knot vector.

4.2.6 What should the defaults be?

If there are no pressing reasons for doing otherwise, your B-spline should be defined by:

• k = 4 (cubic);

• no multiple control points;

• uniform (for a closed curve) or open uniform (for an open curve) knot vector.

4.3 Evaluating a B-spline

A B-spline curve can be evaluated at parameter value, t, using the de Boor algorithm.
This is essentially a rewriting of Equation 16 using the recursion in Equation 19. For a

value of t such that tj ≤ t < tj+1:

P(t) =
j
∑

i=j−k+1

Ni,k(t)Pi, tj ≤ t < tj+1 (23)



Neil Dodgson 19

5/6

3/6

1/6

3/4 1/41/2

P
1

0

P
2

0

P
3

0

P
4

0

P
2

1

P
3

1

P
4

1

P
3

2

P
4

2P
4

3

Figure 10: An example of the construction of a cubic uniform B-spline. This example

shows the construction of the central point in the piece of curve. The knot vector for

this piece of curve is [1, 2, 3, 4, 5, 6, 7, 8], the curve is defined in the range t4 ≤ t < t5, the
construction is shown for the point t = 41

2 . Keeping in mind that, in this example, ti = i,
we can see that the weights, αm

i , are: α1
2 = t−2

5−2 = 5
6 , α1

3 = t−3
6−3 = 3

6 , α1
4 = t−4

7−4 = 1
6 ; α2

3 =
t−3
5−3 = 3

4 , α2
4 = t−4

6−4 = 1
4 ; α3

4 = t−4
5−4 = 1

2 .

=
j
∑

i=j−k+1+m

Ni,k−m(t)Pm
i (t), tj ≤ t < tj+1, 0 ≤ m ≤ j − 1 (24)

= Pk−1
j (t), tj ≤ t < tj+1 (25)

where:

Pm
i (t) = (1 − αm

i )Pm−1
i−1 (t) + αm

i Pm−1
i (t) (26)

P0
i (t) = Pi ∀t (27)

αm
i =

t − ti
ti+k−m − ti

(28)

Figure 10 shows an example of this construction, where you should be able to see that

the construction is simply combinations of linear blends of two points (Equation 26).

Figure 11 provides an example comparing how the evaluation of a point on the curve

relates to the construction of the basis functions that define the curve.

When implementing B-spline curve drawing, it is convenient to rescale the knot vec-

tor to the range [0,1], that is so that tmin = 0 and tmax = 1. This is claimed to improve
numerical accuracy in floating point arithmetic computation owing to the higher desinty

of floating point numbers in this interval.



20 Advanced Graphics Lecture Notes

P
1

0

P
2

0

P
3

0

P
4

0

P
2

1

P
3

1

P
4

1

P
3

2

P
4

2

P
4

3

N
3,1

N
3,2

t–t
3

t
4
–t
3

t–t
4

t
5
–t
4

1–
t–t

4

t
5
–t
4

1–
N
4,1

N
4,2

t–t
4

t
5
–t
4

t–t
5

t
6
–t
5

1–

N
3,3

t–t
3

t
5
–t
3

t–t
4

t
6
–t
4

1–

N
3,4

t–t
3

t
6
–t
3

t–t
4

t
7
–t
4

1–
N
4,3

t–t
4

t
6
–t
4

t–t
5

t
7
–t
5

1–

N
5,1

N
5,2

t–t
5

t
6
–t
5

t–t
6

t
7
–t
6

1–
N
6,1

t–t
4

t
5
–t
4

t–t
3

t
5
–t
3

t–t
4

t
6
–t
4

1–

t–t
3

t
6
–t
3

t–t
4

t
7
–t
4

t–t
4

t
7
–t
4

1–

t–t
3

t
5
–t
3

1–

t–t
2

t
5
–t
2

t–t
3

t
6
–t
3

1–

t–t
2

t
5
–t
2

1–

t–t
4

t
6
–t
4

Figure 11: A comparision of the construction of basic functions (left, using Equation 19)

and the evaluation of a point on the curve (right, using Equation 26). At left, we see the

construction of basis function N3,4 from the knots [t3, t4, t5, t6, t8]. At right, we see the
evaluation of a point P3

4, which is in the range [t4, t5). The important thing to notice is
that the weights on the arrows are identical for equivalent arrows in the two diagrams.

For example, P3
4 receives a contribution of α

3
4 = t−t4

t5−t4
from P2

4, which is exactly the same

contribution that N4,2 receives from N4,1.

4.4 Knot insertion

When a designer is editing a B-spline curve, she may wish to add extra detail in an

area that has insufficient control points to represent the detail. It is therefore useful

to be able to add extra control points. The initial insertion of a new point should not

change the shape of the existing curve: it should simply provide one extra control that

the designer can subsequently edit. Knot insertion allows us to provide this capabiity.

Knot insertion inserts a new knot into the knot vector, which causes a new control

point to be inserted into the control polygon and also (except in the case k = 2) causes
some of the existing control points to move.

A B-spline of order k over knot vector [t1, t2, . . . , tj , tj+1, . . . , tk+n] is (Equation 1):

P(t) =
n
∑

i=1

Ni(t)Pi.

Let us now insert a new knot, t̂, between tj and tj+1. That is: tj ≤ t̂ ≤ tj+1. This creates

a new knot vector with k + n + 1 knots, [t1, t2, . . . , tj , t̂, tj+1, . . . , tk+n], and a new B-spline
curve:

P̂(t) =
n+1
∑

i=1

N̂i(t)P̂i.



Neil Dodgson 21

5/6

3/6

1/6

P
1
=P

1

P
5
=P

4

P
2 P

3

P
2

P
3

P
4

^ ^

^

^

^

Figure 12: An example of the insertion of a new knot in a cubic uniform B-spline. This

example shows the insertion of a new knot half-way along the curve. The knot vector for

the original curve is [1, 2, 3, 4, 5, 6, 7, 8], the curve is defined in the range t4 ≤ t < t5, and
there are four control points. The new knot is inserted at t̂ = 41

2 , making the new knot

vector [1, 2, 3, 4, 41
2 , 5, 6, 7, 8]. There are five control points in the new control polygon; the

fractions in the diagram show the weights used to generate the new points from the

two old points either side. Both control polygons produce exactly the same curve. You

should be able to see the relationship between knot insertion (here) and the recursive

construction of points on the curve (Figure 10).

All we now need to do is work out the locations of the new points so that P̂(t) = P(t). This
is straightforward, and the new points are blends of the old points in a way reminiscent

of Equation 26:

P̂i =























Pi, i ≤ j − k + 1

ti+k−1 − t̂

ti+k−1 − ti
Pi−1 +

t̂ − ti
ti+k−1 − ti

Pi, j − k + 1 < i ≤ j

Pi−1, i ≥ j + 1

(29)

That is: most of the control points do not move, and k − 2 existing points are replaced by
k−1 points around the location of the inserted knot. Figure 12 shows an example of this
construction, where you should be able to see that the new points are made as simple

linear blends of two points (Equation 29).



22 Advanced Graphics Lecture Notes

4.5 B-spline patches

We generalise from B-spline curves to B-spline surfaces by taking what is called the

“tensor product” of two versions of Equation 16.

P(s, t) =
m
∑

i=1

n
∑

j=1

Pi,jNi,k(s)Nj,l(t), smin ≤ s < smax, tmin ≤ t < tmax (30)

where it is usual for the patch to have the same order (i.e. k = l) in both directions.
Patches are thus defined by a quadrilateral grid of control points of size m × n.

4.6 Why B-splines?

B-splines have many nice properties when compared to other families of curves which

could be used. They:

• minimise the order of the polynomial pieces (order k)

• maximise the continuity between pieces (continuity C(k − 2))

• minimise the number of control points controlling a piece (k points)

• have positive basis functions

• have basis functions which partition unity, implying that each piece lies inside its
control points’ convex hull

• are invariant with respect to affine transforms

4.7 Exercises

1. How many control points are required for a quartic Bézier and how many for a

quartic B-spline?

2. Why are cubics the default for B-spline use?

3. Explain the difference between Uniform, Open Uniform, and Non-Uniform knot

vectors. What are the advantages of each type?

4. Work out N1,1, N2,1, N3,1, N1,2, N2,2, N1,3 for the knot vector [0, 2, 3, 6]. Draw the
graphs of these functions. [This is the exercise on page 11.]

5. [2000/9/4] (b) A B-spline has knot vector [1, 2, 4, 7, 8, 10, 12]. Derive the first of the
third order (second degree) basis functions, N1,3(t), and graph it.
If this knot vector were used to draw a third order B-spline, how many control

points would be required? [7 marks]

6. [2001/8/4] (a) For a given order, k, there is only one basis function for uniform B-
splines. Every control point uses a shifted version of that one basis function. How

many different basis functions are there for open-uniform B-splines of order k with
n control points, where n >= 2k − 2? [6 marks]
(b) Explain what is different in the cases where n < 2k−2 compared with the cases



Neil Dodgson 23

where n ≥ 2k − 2. [3 marks]
(c) Sketch the different basis functions for k = 2 and k = 3 (when n ≥ 2k − 2). [4
marks]

(d) Show that the open-uniform B-spline with k = 3 and knot vector [0, 0, 0, 1, 1, 1]
is equivalent to the quadratic Bézier curve. [7 marks]

7. [2002/7/9] (d) Derive the formula of and sketch a graph of N3,3(t), the third of the
quadratic B-spline basis functions, for the knot vector [0, 0, 0, 1, 3, 3, 4, 5, 5, 5]. [6
marks]

5 NURBS

NURBS are covered below and in some detail in R&A Section 5-13. An extract of this

Section of R&A are included in the handout. Please read that before continuing here.

Non-uniform rational B-splines are the industry-standard for computer-aided design

(CAD). In most cases, you would actually use the special case of non-rational B-splines

(those described in the previous section) but it is useful to have the more general rational

versions available for certain types of curve and surface.

NURBS surfaces are usually rendered by converting them to lots of small polygons

and then using polygon scan conversion. They can also by ray traced, but a general

analytic ray-NURBS intersection algorithm is challenging, so numerical techniques are

used to find the intersection point.

NURBS curves incorporate – as special cases – uniform B-splines, non-rational B-

splines, Bézier curves, lines, and conics. NURBS surfaces incorporate planes, quadrics,

and tori. Note that this does not quite mean what it says. It is tricky to get NURBS

to represent infinite surfaces, but they can certainly represent finite sections of infinite

surfaces such as planes, paraboloids, and hyperboloids.

If you want to experiment with NURBS curves then there are a number of on-line

tutorials. One such is available from the Technion.

Rational B-splines have all of the properties of non-rational B-splines plus the fol-

lowing two useful features:

• They produce the correct results under projective transformations (while non-rational
B-splines only produce the correct results under affine transformations).

• They can be used to represent lines, conics, non-rational B-splines; and, when gen-
eralised to patches, can represent planes, quadrics, and tori.

In this case rational means “one polynomial divided by another” (see Equation 31).

The antonym of rational is non-rational (i.e. a non-rational B-spline is just a polynomial,

see Equation 16). Non-rational B-splines are a special case of rational B-splines, just

as uniform B-splines are a special case of non-uniform B-splines. Thus, non-uniform

rational B-splines encompass almost every other possible 3D shape definition. Non-

uniform rational B-spline is a bit of a mouthful and so it is generally abbreviated to

NURBS.

We have already learnt all about the the B-spline bit of NURBS and about the non-

uniform bit. So now all we need to know is the meaning of the rational bit and we will

fully understand NURBS.

http://www.cs.technion.ac.il/~cs234325/Applets/applets/bspline/GermanApplet.html


24 Advanced Graphics Lecture Notes

Rational B-splines are defined simply by applying the B-spline equation (Equation 16)

to homogeneous coordinates, rather than normal 3D coordinates. We discussed homo-

geneous coordinates in the IB course. You will remember that these are 4D coordinates

where the transformation from 4D to 3D is:

(x′, y′, z′, w) →
(

x′

w
,
y′

w
,
z′

w

)

(31)

Last year we said that the inverse transform was:

(x, y, z) → (x, y, z, 1) (32)

This year we are going to be more cunning and say that:

(x, y, z) → (xh, yh, zh, h) (33)

Thus our 3D control point, Pi = (xi, yi, zi) gains an extra variable, hi, and becomes the

homogeneous control point, Ci = (xihi, yihi, zihi, hi).
A NURBS curve is thus defined as:

PH(t) =
n
∑

i=1

Ni,k(t)Ci, tmin ≤ t < tmax (34)

Compare Equation 34 with Equation 16 to see just how easy this is.

We now want to see what a NURBS curve looks like in normal 3D coordinates, so we

need to apply Equation 31 to Equation 34. In order to better explain what is going on, we

first write Equation 34 in terms of its individual components. Equation 34 is equivalent

to:

x′(t) =
n
∑

i=1

xihiNi,k(t) (35)

y′(t) =
n
∑

i=1

yihiNi,k(t) (36)

z′(t) =
n
∑

i=1

zihiNi,k(t) (37)

h(t) =
n
∑

i=1

hiNi,k(t) (38)

Equation 31 tells us that, in 3D:

x(t) = x′(t)/h(t) (39)

y(t) = y′(t)/h(t) (40)

z(t) = z′(t)/h(t) (41)

Thus the 4D to 3D conversion gives us the curve in 3D:

P(t) =

n
∑

i=1

Ni,k(t)Pihi

n
∑

i=1

Ni,k(t)hi

, tmin ≤ t < tmax (42)



Neil Dodgson 25

This looks a lot more fierce than Equation 34, but is simply the same thing written a

different way.

So now, we need to define an additional parameter, hi, for each control point, Pi. The

default is to set hi = 1,∀i. This results in the denominator of Equation 42 becoming one
(because the Ni,k(t) partition unity), and the NURBS equation (Equation 42) therefore
reducing to the non-rational B-spline equation (Equation 16).

Increasing hi pulls the curve closer to point Pi. Decreasing hi pushes the curve far-

ther from point Pi. Setting hi = 0 means that Pi has no effect on the curve at all. See

R&A Figure 5-58 for an example, and play with an on-line NURBS tutorials such as the

one mentioned above.

5.1 An example: a circle defined by NURBS

This subsection provides an example of a shape which cannot be represented by non-

rational B-splines: a circle. A non-rational B-spline or a Bézier curve cannot exactly

represent a circle. An interesting exercise is to place a cubic Bézier curve’s end points at

(0, 1) and (1, 0), with the other control points at (α, 1) and (1, α). Now see how close this
“quarter circle” comes to the real quarter circle defined by x2 + y2 = 1, i.e. what is the
value of α for which the Bézier curve most closely matches the quarter circle. You will
find that you can get a match which is almost, but not quite, circular.

NURBS can be used to represent circles, and all of the other conics. NURBS surfaces

can be used to represent quadric surfaces. As an example, let us consider one way in

which NURBS can be used to describe a true circle. R&A cover this on pages 371–375.

The ways in which this is done require the designer to specify several things correctly at

the same time.

The method is as follows. Construct eight control points in a square. Let P1, P3, P5,

and P7 be the vertices of the square. Let P0, P2, P4, and P6 be the midpoints of the

respective sides, so that the vertices are numbered sequentially as you proceed around

the square. Finally, you need a ninth point to join up the curve, so let P8 = P0.

Use a quadratic B-spline basis function with the knot vector

[0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4]. This means that the curve will pass through P0, P2, P4, P6

and P8, and allows us to essentially treat each quarter of the circle independently. That

is, we can just examine P0, P1, and P2, along with the knot vector [0, 0, 0, 1, 1, 1]. If this
makes a quarter circle then the other three quarters will also be correct.

We finally need to specify the homogeneous co-ordinates. As a circle is symmetrical

it should be obvious that that h1 = h3 = h5 = h7 = α and h0 = h2 = h4 = h6 = h8 = β. As
we would like the curve to pass through the even numbered points, the easiest thing to

do is set β = 1. All we therefore need to determine is α, the value of the odd numbered
homogeneous co-ordinates.

If α = 1 then the NURBS curve will bulge out more than a circle. If α = 0, it will bow
in. This gives us limits on the value of α. To find the exact value we take the NURBS
curve definition for the quarter circle:

P(t) =
(1 − t)2P0 + 2αt(1 − t)P1 + t2P2

(1 − t)2 + 2αt(1 − t) + t2
, 0 ≤ t < 1 (43)

Assume now that P0 = (0, 1), P1 = (1, 1), and P2 = (1, 0). Insert Equation 43 into the



26 Advanced Graphics Lecture Notes

equation for the unit circle (x(t)2 + y(t)2 = 1). The resulting equation is:

((1 − t)2 + 2αt(1 − t))2 + (2αt(1 − t) + t2)2

((1 − t)2 + 2αt(1 − t) + t2)2
= 1, 0 ≤ t < 1 (44)

Now solve this for α. Equation 44 is essentially:

aN t4 + bN t3 + cN t2 + dN t + eN

aDt4 + bDt3 + cDt2 + dDt + eD

= 1, 0 ≤ t < 1 (45)

From this we can conclude that we require aN = aD, bN = bD, cN = cD, dN = dD, and

eN = eD. The first three all solve to give the result that α = 1/
√

2, while the last two
cancel out totally to give the tautology 0 = 0. Thus2 α = 1/

√
2.

An alternative way to calculate α is to realise that it is the only degree of freedom.
Therefore, you need simply find the value of α that makes the curve pass through a fixed
point on the circle, such as the intersection of the circle with 45 degree line.
This derivation is not intuitive and similar cleverness is required to handle repre-

sentations of other conics. The beauty of NURBS is that they allow us to do this sort of

thing and unify all shapes into a single representation. The difficulty is that, in order to

achieve this unification, we need to have this rather complicated but general mathemat-

ical mechanism.

5.2 Exercises

1. Review from IB: What are homogeneous coordinates and what are they used for in

computer graphics?

2. Explain how to use homogeneous coordinates to get rational B-splines given that

you know how to produce non-rational B-splines.

3. What are the advantages of NURBS over Bézier curves? (i.e. why have NURBS, in

general, replaced Bézier curves in CAD?)

4. Show that you understand why NURBS includes Uniform B-splines, Non-Rational

B-splines, Béziers, lines, conics, quadrics, and tori.

5. [1998/7/12] Consider the design of a user interface for a NURBS drawing system.
Users should have access to the full expressive power of the NURBS representa-

tion. What things should users be able to modify to give them such access and what

effect does each have on the resulting shape? [6 marks]

6. For each of the items (in the previous question) that the user can edit: (i) Give sen-

sible default values; (ii) Explain how they would be constrained if a ‘demo’ version

of the software was to be limited to cubic Uniform Non-rational B-Splines.

7. [1999/7/11] (c) Show how to construct a circle using non-uniform rational B-splines
(NURBS). [8 marks]

Note: this question is challenging unless you remember and follow the worked

example in these notes or R&A pages 371-375.

2If we had not set β = 1 above, then we would find that α = β/
√

2.



Neil Dodgson 27

(d) Show how the circle definition from the previous part can be used to define a

NURBS torus. [4marks]

Note: you need explain only the general principle and the location of the torus’

control points.

6 Subdivision

Subdivision schemes work by taking a coarse polygon mesh and introducing new vertices

to create a finer mesh. Iterating this process several times creates a very fine mesh of

polygons. In computer graphics, we are interested in drawing things only to a certain

level of accuracy: there is no point in having polygons that are much smaller than pixels.

This means that subdivision need only iterate until the polygons are about pixel-sized.

Subdivision schemes have been around for a long time. Subdivision methods for

curves were first mathematically analysed in 1947. Their use in computer graphics

dates from 1974 when Chaikin used them to derive a simple algorithm for generating

curves quickly. In 1978 Doo & Sabin and Catmull & Clark generalised Chaikin’s work

from curves to surfaces.

Subdivision schemes are now the industry-standard modelling approach in com-

puter animation and visual effects. NURBS remain the industry-standard approach

in computer-aided design. The two approaches have the same foundations. The princi-

pal subdivision scheme used in practice is the Catmull-Clark scheme, invented in 1978,

by Ed Catmull and Jim Clark, and commercialised in 1998 by Tony DeRose’s team at

Pixar. In the limit, as we subdivide infinitely finely, the Catmull-Clark scheme produces

exactly the same surface as the uniform cubic B-spline, except around the so-called ex-

traordinary points of the surface.

W&W and P&R both survey the field and the related mathematical tools. The course

handout contains a slide presentation that presents the concepts from this section of the

notes.

6.1 Subdivision curves

Take an arbitrary control polygon, comprised of a set of vertices connected in sequence.

We use the positions of the current vertices to determine the location of the new vertices

in a new, refined, more detailed, control polygon (see Figure 13). The standard approach

is for each old vertex to give rise to two new vertices. For example, you could place new

vertices one-quarter and three-quarters of the way between each adjacent pair of old

vertices. Connecting all the new vertices together, in the appropriate order, produces a

more refined control polygon. Repeat this process several times and you produce a good

approximation to the curve that you would get if you were able to subdivide infinitely

many times. For practical purposes, we need subdivide only a sufficient number of times

that we cannot tell the refined polygon from a curve. For computer graphics, that is

when the polygon segments have become a little smaller than a pixel.

Let the initial control polygon be defined by the sequence of control points:

Pi = (. . . ,pi
−1,p

i
0,p

i
1,p

i
2, . . .)



28 Advanced Graphics Lecture Notes

Figure 13: Chaikin’s corner-cutting method. The first three diagrams show an original

polygon with the subdivided version superimposed. The output polygon from the left

hand diagram becomes the input to the second diagram, and its output becomes the

input for the third. The right hand diagram shows all four polygons superimposed. The

final two are very similar.

Subdivision maps this sequence of control points to a new sequence, Pi+1 by applying

subdivision rules. This process doubles3 the number of points, and there is one rule for

the odd numbered points and one for the even.

Chaikin’s corner-cutting method introduces new points one-quarter and three-quarters

of the way between each adjacent pair of old vertices. Informally, it “cuts the corners off”

the original control polygon. Mathematically, it can be described thus:

pi+1
2j =

3

4
pi

j +
1

4
pi

j+1 (46)

pi+1
2j+1 =

1

4
pi

j +
3

4
pi

j+1 (47)

Figure 13 shows a polygon defined by four points subdivided three times using Chaikin’s

corner cutting. The difference in the polygons in the final two iterations is already small.

Figure 14(a) shows a larger example with four levels of subdivision.

In the limit, after infinitely many steps of subdivision, Chaikin’s corner-cutting method

produces a curve identical to the quadratic uniform B-spline. As you will notice from Fig-

ure 14(a), it does not take many steps to produce a curve that is extremely close to the

limit curve. In practice, therefore, we might need to take five or six steps of subdivision

to produce a curve that looks smooth on a computer screen (say 100 dpi), and only three

or four more steps to produce a curve that looks smooth on a printout (say, 1200 dpi).

Chaikin’s corner-cutting method can be generalised to surfaces, producing the Doo-

Sabin surface subdivision scheme (see Section 6.2).

3It doesn’t quite double the number of points when the sequence is open and of finite length. If we are

dealing with a finite-length vector Pi = (pi

1,p
i

2, . . . ,p
i

m), then the subdivided vector, using the rules in
equations 46 and 47, would have 2m − 2 points.



Neil Dodgson 29

(a) (b)

Figure 14: (a) An example of Chaikin’s corner-cutting method, whose limit curve is the

quadratic uniform B-spline. (b) An example of the subdivision method whose limit curve

is the cubic uniform B-spline. In both cases, the original polygon is blue and there are

four levels of subdivision: red, green, yellow, grey.

The industry-standard surface subdivisionmethod isCatmull-Clark subdivision. The

curve subdivision rules on which the Catmull-Clark surface method is based are only

slightly more complicated than the ones we have seen above. They are:

pi+1
2j =

1

8
pi

j−1 +
6

8
pi

j +
1

8
pi

j+1 (48)

pi+1
2j+1 =

4

8
pi

j +
4

8
pi

j+1 (49)

An example of a polygon subdivided by these rules can be seen in Figure 14(b). The limit

curve generated by these rules is the cubic uniform B-spline.

As is the way with much mathematics, we can write it in a more compact, more

general, but less obvious, form as:

pi+1
j =

∞
∑

k=−∞

α2k−jp
i
k (50)

where the αj are coefficients depending on the subdivision rules. Note that the index

2k − j alternately selects the even indexed αj and the odd indexed αj . So, the two

schemes given above, can be compactly described as:

α =
1

4
(. . . , 0, 0, 1, 3, 3, 1, 0, 0, . . .) (51)

and

α =
1

8
(. . . , 0, 0, 1, 4, 6, 4, 1, 0, 0, . . .) (52)

respectively. You will recognise the sequences in parentheses as being two rows from

Pascal’s triangle.



30 Advanced Graphics Lecture Notes

Figure 15: Doo-Sabin subdivision. On left a mesh (solid dots and solid lines) that has

been refined (open dots and dashed lines). At right the weights used to generated one of

the refined vertices.

6.2 Subdivision surfaces

The above subdivision methods can be easily extended from a control polygon to a

quadrilateral mesh. This is a mesh where every polygon is a quadrilateral and every

vertex is connected to four other vertices.

The Doo-Sabin subdivision method for surfaces is a generalisation of Chaikin’s cor-

ner cutting method for curves. It introduces four new vertices in each quadrilateral,

and connects up vertices accordingly. The new vertices are blended mixtures of the old

vertices in the proportions 9 : 3 : 3 : 1 (derived from the tensor product of the univariate
case: 3 × 3 : 3 × 1 : 1 × 3 : 1 × 1). This is illustrated in Figure 15.
This all works beautifully for quadrilateral meshes. In this case it produces a limit

surface that is identical to the uniform quadratic B-spline surface, defined with the same

control points. The surface has C1-continuity everywhere, as this is a property of the

uniform quadratic B-spline surface.

Now, suppose we have a quadrilateral mesh that contains extraordinary polygons,

that is, polygons that are not quadrilateral, such as the pentagon in Figure 16. The

Doo-Sabin scheme copes with meshes that have such polygons. For a k-sided polygon,
the weights, αk on the k vertices need to be chosen. Doo and Sabin demonstrated that
good results are achieved if we let:

α0 =
1

4
+

5

4k
(53)

αi =
1

4k

(

3 + 2 cos
2iπ

k

)

(54)

The resulting limit surface can be shown to be C1 everywhere.

Now consider extraordinary vertices, that is, vertices with other than four immediate

neighbours. You will see in Figure 16 that such vertices become extraordinary polygons

in the first step of subdivision. It is impossible for the Doo-Sabin to introduce new

extraordinary vertices: every vertex in the subdivided mesh has four neighbours. It is



Neil Dodgson 31

Figure 16: A Doo-Sabin mesh before (blue points, thin lines) and after (red points, thick

lines) one level of subdivision. Notice that every polygon produces a smaller polygon

of the same type (quadrilaterals produce quadrilaterals, pentagons produce pentagons),

every edge generates a new quadrilateral, every vertex generates a polygon of the same

valency, and that every new vertex is of valency four.

also impossible for the Doo-Sabin method to introduce new extraordinary polygons after

the first step. At each step, every extraordinary polygon shrinks to a smaller polygon

of the same type. All the new polygons are quadrilaterals. As we subdivide further,

every extraordinary polygon becomes surrounded by a “sea” of quadrilaterals. Thus you

can see that the limit surface is the uniform quadratic B-spline defined by all of these

quadrilaterals, except at the centres of the extraordinary polygons, where additional

mathematical analysis is needed to demonstrate that the limit surface is also C1 at

these points.

Catmull-Clark subdivision is a surface method that generalises the 1
8(1, 4, 6, 4, 1) sub-

division curve method. It is similar in spirit to Doo-Sabin, with some important differ-

ences. The first difference is that is there are three types of new vertex in the normal

regions of the mesh: a vertex is introduced in the centre of each quadrilateral (a face

vertex), in the centre of each edge (an edge vertex), and near to each old vertex (a vertex

vertex). Each of these three types of vertex has a different set of weights as illustrated

in Figure 17.

Catmull-Clark subdivision needs special rules for extraordinary vertices. The edge

vertex and face vertex rules remain unchanged, but we need a new rule for the vertex

vertex generated by the extraordinary vertex. Catmull and Clark solved this by creating



32 Advanced Graphics Lecture Notes

Figure 17: Catmull-Clark subdivision. Above: a mesh (solid dots and solid lines) that

has been refined (open dots and dashed lines). Below: the weights used to generated

each type of refined vertex: centre, edge, and modified old vertex.

a new set of weights, one set of weights for each vertex valence (the valence of vertex is

a number of other vertices to which it is connected). There has since been considerable

work on finding the optimal weights to give the best result. For example, instead of

weights of 1/64, 6/64, and 36/64 you can use Denis Zorin’s weights of 1/4n2, 3/2n2, and

1 − 7/4n, where n is the valence of the vertex.

The limit surface of the Catmull-Clark scheme is C2 almost everywhere. It is, how-

ever, only C1 at the limit positions of the extraordinary vertices. It has been proven that

the only way to make a Catmull-Clark limit surface C2 at the extraordinary vertices is

for its curvature to be zero at those points. This produces unsightly “flat spots” that we

would rather avoid. This means that we either have to accept “flat spots” or have to

accept that the surface is not everywhere C2.

There are other subdivision schemes. The most notable are the Butterfly scheme,

which interpolates the control points and the Loop scheme (named after Charles Loop),

which works on triangular meshes.

6.3 Exercises

1. Draw an arbitrary control polygon and perform a couple of subdivision steps us-

ing the first of the two subdivision schemes above. Once you feel happy that you



Neil Dodgson 33

understand what is going on, you may like to try the second scheme.

2. Draw an arbitrary control polygon and consider what happens if you try to use

the previous row from Pascal’s triangle 1
2(1, 2, 1). You will find that 1

2(1, 2, 1) has a
minimal effect on the shape of the control polygon.

3. What happens if you try to use the next row of Pascal’s triangle, 1
16(1, 5, 10, 10, 5, 1)?

Which uniform B-spline do you think this produces in the limit?

4. Explain how Doo-Sabin subdivision works for an arbitrary polygon mesh.

5. Explain how the Catmull-Clark scheme handles extraordinary polygons.


	The polygon
	Introduction to splines
	Bézier curves and surfaces
	Ways of thinking about Bézier curves
	Continuity
	Bézier surfaces
	Exercises

	B-splines
	Features of B-splines
	The knot vector
	Uniform knot vector
	Open uniform knot vector
	The difference between uniform and open uniform
	Non-uniform knot vector
	What can you do to control the shape of a B-spline?
	What should the defaults be?

	Evaluating a B-spline
	Knot insertion
	B-spline patches
	Why B-splines?
	Exercises

	NURBS
	An example: a circle defined by NURBS
	Exercises

	Subdivision
	Subdivision curves
	Subdivision surfaces
	Exercises


