Security Il: Cryptography

Markus Kuhn

UNIVERSITY OF
7 CAMBRIDGE

Computer Laboratory

Lent 2012 — Part Il

http://www.cl.cam.ac.uk/teaching/1213/SecurityIl/

Private-key (symmetric) encryption

A private-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen, Enc, Dec) and sets K, M, C such that

@ the key generation algorithm Gen receives a security parameter /¢
and outputs a key K + Gen(1%), with K € K, key length |K| > ¢;

@ the encryption algorithm Enc maps a key K and a plaintext
message M € M = {0,1}™ to a ciphertext message C < Ency(M);

@ the decryption algorithm Dec maps a key K and a ciphertext
CeC=1{0,1}" (n> m) to a plaintext message M := Deck(C);

e for all £, K < Gen(1%), and M € {0,1}™: Deck(Enck(M)) = M.

Notes:

A “probabilistic algorithm” can toss coins (uniformly distributed, independent).

Notation: < assigns the output of a probabilistic algorithm, := that of a deterministic algorithm.

A "“polynomial-time algorithm” has constants a, b, ¢ such that the runtime is
always less than a- £° + ¢ if the input is £ bits long. (think Turing machine)

Technicality: we supply the security parameter £ to Gen here in unary encoding (as a sequence of ¢
“1" bits: 1‘)‘), merely to remain compatible with the notion of “input size” from computational
complexity theory. In practice, Gen usually simply picks £ random bits K €r {0, 1}1{.

Related textbooks

@ Jonathan Katz, Yehuda Lindell:

Introduction to Modern Cryptography
Chapman & Hall/CRC, 2008

o Christof Paar, Jan Pelzl:
Understanding Cryptography
Springer, 2010

http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/

@ Douglas Stinson:
Cryptography — Theory and Practice
3rd ed., CRC Press, 2005

@ Menezes, van Oorschot, Vanstone:
Handbook of Applied Cryptography
CRC Press, 1996

http://www.cacr.math.uwaterloo.ca/hac/

When is an encryption scheme “secure”?

If no adversary can ...
@ ...find out the key K?
.. find the plaintext message M?
.. determine any character/bit of M?

. .determine any information about M from C?

..compute any function of the plaintext M from ciphertext C?
= “semantic security”

Note: we explicitly do not worry here about the adversary being able to infer something about the
length m of the plaintext message M by looking at the length n of the ciphertext C.

Therefore, we consider for the following security definitions only messages of fixed length m.
Variable-length messages can always be extended to a fixed length, by padding, but this can be
expensive. It will depend on the specific application whether the benefits of fixed-length padding
outweigh the added transmission cost.

http://www.cl.cam.ac.uk/teaching/1213/SecurityII/
http://www.cs.umd.edu/~jkatz/imc.html
http://www.springerlink.com/content/978-3-642-04100-6/
http://www.crypto-textbook.com/
http://cacr.uwaterloo.ca/~dstinson/CTAP3/CTAP3.html
http://www.cacr.math.uwaterloo.ca/hac/

What capabilities may the adversary have?

280 steps) computation time?

@ unlimited / polynomial / realistic (<

@ only access to ciphertext C?

@ access to some plaintext/ciphertext pairs (M, C) with
C < Enck(M)?

@ how many applications of K can be observed?

@ ability to trick the user of Enck into encrypting some plaintext of
the adversary’s choice and return the result?
(“oracle access” to Enc)

@ ability to trick the user of Deck into decrypting some ciphertext of
the adversary’s choice and return the result?
(“oracle access” to Dec)?

@ ability to modify or replace C en route?
(not limited to eavesdropping)

Wanted: Clear definitions of what security of an encryption scheme
means, to guide both designers and users of schemes, and allow proofs.

Security definitions for encryption schemes

We define security via the rules of a game played between two players:
@ a challenger, who uses an encryption scheme I = (Gen, Enc, Dec)
@ an adversary A, who tries to demonstrate a weakness in [1.

Most of these games follow a simple pattern:
@ the challenger uniformly randomly picks a secret bit b €g {0,1}
@ A interacts with the challenger according to the rules of the game
© At the end, A has to output a bit b'.

The outcome of such a game X4 n(¢) is 1 if b= b, otherwise

Xan(¢)=0.

An encryption scheme I1 is considered “X secure” if for all probabilistic

polynomial-time (PPT) adversaries A there exists a “negligible” function
negl such that

P(Xan(t) =1) < % + negl(?)

A function negl(¢) is "negligible” if it converges faster to zero than any
polynomial over ¢ does, as ¢ — oo.

In practice, we want negl to drop below a small number (e.g., 2’80) for modest key lengths ¢
(e.g., logip £~ 2...3).

Recall: perfect secrecy, one-time pad

Definition: An encryption scheme (Gen, Enc, Dec) over a message space
M is perfectly secret if for every probability distribution over M, every
message M € M, and every ciphertext C € C with P(C) > 0 we have

P(M|C) = P(M).

In this case, even an eavesdropper with unlimited computational power cannot learn anything about
M by looking at C that they didn’t know in advance about M = eavesdropping C has no benefit.

Shannon’s theorem: Let (Gen, Enc, Dec) be an encryption scheme over
a message space M with |[M| = |[K| = |C|. It is perfectly secret if and
only if
@ Gen chooses every K with equal probability 1/|K|;
© for every M € M and every C € C, there exists a unique key K € K
such that C := Encx M.

The one-time pad scheme implements this:

Gen: Kegr{0,1}7 (m uniform, independent coin tosses)
Enc: C=KaoM (bit-wise XOR)
Dec: M:=KoC

Indistinguishability in the presence of an eavesdropper

Private-key encryption scheme M = (Gen, Enc, Dec), M = {0, 1}", security parameter £.

Experiment/game PrivK%'(£):

¢ — - 1¢
ber {0,1} Mo, M
K <+ Gen(1%) A
C «+ EnCK(Mb)
b = challenger C adversary =~ B
Setup:

© The challenger generates a bit b €g {0,1} and a key K < Gen(1%).
© The adversary A is given input 1¢
Rules for the interaction:
@ The adversary A outputs a pair of messages:
Mo, My € {0,1}™.
@ The challenger computes C < Enck(M}) and returns
Cto A
Finally, A outputs b’". If b’ = b then A has succeeded = PrivK$ 7 (¢) = 1

Indistinguishability in the presence of an eavesdropper

Definition: A private-key encryption scheme I has indistinguishable
encryption in the presence of an eavesdropper if for all probabilistic,

polynomial-time adversaries A there exists a negligible function negl,
such that

1
P(PrivK{'h(¢) =1) < 5+ negl(¢)

In other words: as we increase the security parameter £, we quickly reach the point where no
eavesdropper can do significantly better just randomly guessing b.

The above definition is equivalent to demanding
Advpivke (1) = |P(b=1and b' = 1) — P(b=0 and b’ = 1)| < negl(¢)

The “advantage” Adv that A can achieve is a measure of A’s ability to
behave differently depending on the value of b.

Encrypting using a pseudo-random generator

We define the following fixed-length private-key encryption scheme
Mpre = (Gen, Enc, Dec):
Let G be a pseudo-random generator with expansion factor e(+),
K =1{0,1}*, M =C = {0,1}*®

@ Gen: on input 1° chose K €g {0,1}* randomly

@ Enc: C:=G(K)e M

@ Dec: M:=G(K)@ C
Such constructions are known as “stream ciphers”.
We can prove that lNprg has “indistinguishable encryption in the
presence of an eavesdropper”’ assuming that G is a pseudo-random
generator: if we had a polynomial-time adversary A that can succeed
with non-negligible advantage against lNprg, we can turn that using a

polynomial-time algorithm into a polynomial-time distinguisher for G,
which would violate the assumption.

Pseudo-random generator

G :{0,1}" — {0,1}e(" where ¢(+) is a polynomial (expansion factor)

Definition: G is a pseudo-random generator if both
@ e(n) > n for all n (expansion)

@ for all probabilistic, polynomial-time distinguishers D there exists a
negligible function negl such that

|P(D(r) = 1) = P(D(G(s)) = 1)| < negl(n)

where both r €g {0,1}(" and the seed s €g {0,1}" are chosen at
random, and the probabilities are taken over all coin tosses used by
D and for picking r and s.

A brute-force distinguisher D would enumerate all 2" possible outputs of G, and return 1 if the
input is one of them. It would achieve P(D(G(s)) = 1) = 1 and P(D(r) = 1) = 2"/2°(" the
difference of which converges to 1, which is not negligible.

But a brute-force distinguisher has a exponential run-time O(2"), and is therefore excluded.

We do not know how to prove that a given algorithm is a pseudo-random generator, but there are

many algorithms that are widely believed to be. Some constructions are pseudo-random generators
if another well-studied problem is not solvable in polynomial time.

10

Security proof for a stream cipher

Claim: Tpgrg has indistinguishability in the presence of an eavesdropper
if G is a pseudo-random generator.

Proof: (outline) If Mprg did not have indistinguishability in the presence
of an eavesdropper, there would be an adversary A for which

e(l) = P(PrivaZj’,—,PRG(E) =1)-— %
is not negligible.
Use that A to construct a distinguisher D for G:
@ receive input W € {0,1}¢()
@ pick b egr {0,1}
o run A(1%) and receive from it My, M; € {0,1}¢()
o return C:=W o M,to A
@ receive b’ from A
@ return 1 if b’ = b, otherwise return 0
Now, what is |[P(D(r) = 1) — P(D(G(K)) = 1)|?

12

Security proof for a stream cipher (cont'd) Security proofs through reduction

Some key points about this style of “security proof”:

What is |P(D(r) = 1) — P(D(G(K)) =1)|? @ We have not shown that the encryption scheme lMpgrg is “secure”.
o What is P(D(r) = 1)? (We don't know how to do this!)

Let 1 be an instance of the one-time pad, with key and message @ We have shown that lNprg has one particular type of security

length e(?), i.e. compatible to lNprg. In the D(r) case, where we property, if one of its building blocks (G) has another one.

feed it a random string r €g {0, 1}8(”), then from the point of view @ We have “reduced” the security of construct lMNprg to another

of A being called as a subroutine of D(r), it is confronted with a problem X:

. ad ~ . . _ _ l 3
one-time pad . The perfect secrecy of I implies P(D(r) = 1) = 5. instance of tamce of
e What is P(D(G(K)) = 1)? problem X Reduction scheme N A
. U . . eav !

In this case, A participates in t-he game Pr|vKA7|-,PRG£€). Thus we wolution A

have P(D(G(K)) = 1) = P(PrivK{", .. (£) = 1) = 5 + €(¥). S o X attack
Therefore Here: X = distinguishing output of G from random string

|P(D(r) =1) — P(D(G(K)) = 1)| = (¢) @ We have shown how to turn any successful attack on lMpgrg into an
which we have assumed not to be negligible, which implies that G is not equally successful attack on its underlying building block G.
a pseudo_random generator, contradicting the assumption. ™ @ “Successful attack” means flndlng a polynomial—time probabilistic
Katz/Lindell, pp 73-75 adversary algorithm that succeeds with non-negligible success
probability in winning the game specified by the given security
definition.
13
Security proofs through reduction Security for multiple encryptions

Private-key encryption scheme N = (Gen, Enc, Dec), M = {0, 1}", security parameter £.

Experiment/game PrivKﬂt‘ﬁ(f):

1 — 1 ag2 . - 1¢
_ _ beg (0.1} MY M2, M
In the end, the provable security of some cryptographic construct (e.g., K < Gen(1Y) M M2, ME A
Mprc, some mode of operation, some security protocol) boils down to C « Enck(Mp)
these questions: b = challenger N adversary =
@ What do we expect from the construct?
Setup:

@ What do we expect from the underlying building blocks?
© The challenger generates a bit b €g {0,1} and a key K < Gen(1%).

@ Does the construct introduce new weaknesses? o ,
@ The adversary A is given input 1

@ Does the construct mitigate potential existing weaknesses in its
underlying building blocks? Rules for the interaction:
@ The adversary A outputs two sequences of t messages:
Mg, M3, ..., M§ and Mi, M, ... M{, where all M/ € {0,1}™.
@ The challenger computes C' < Enck(M]) and returns
CL,C?...,Ctto A
Finally, A outputs b’. If b’ = b then A has succeeded = PrivKﬂt‘ﬁ(ﬁ) =1

Security for multiple encryptions (cont'd)

Definition: A private-key encryption scheme [1 has indistinguishable
multiple encryptions in the presence of an eavesdropper if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

1
P(PrivK i (0) = 1) < 5 + negl(?)

Same definition as for indistinguishable encryptions in the presence of an eavesdropper, except for
referring to the multi-message eavesdropping experiment Priij“y‘,t-l(K).

Example: Does our stream cipher lNprg offer indistinguishable multiple
encryptions in the presence of an eavesdropper?

Adversary A, outputs four messages , and

: : [
returns b’ = 1 iff . P(PrivK . (0) = 1) =
Actually: Any encryption scheme is going to fail here!

Security against chosen-plaintext attacks (CPA)
Private-key encryption scheme I = (Gen, Enc, Dec), M = {0, 1}, security parameter £.
Experiment/game PrivKyT, (4):

MY M2 Mt

¥ —=| ber{0,1} ol = 1
K — Gen(lz)_ Mo, My
C' + Enci(M') A
C«+ EncK(Mb) 1 ¢ ’
b = challenger I\g:tv'.‘.'.v AZ_:: adversary =

Setup: (as before)
© The challenger generates a bit b €g {0,1} and a key K «+ Gen(1°).
@ The adversary A is given input 1°

Rules for the interaction:

© The adversary A is given oracle access to Enck:
A outputs M?, gets Encx(M?), outputs M2, gets Encx(M?), ...
@ The adversary A outputs a pair of messages: My, M; € {0,1}™.
@ The challenger computes C < Encx(M,) and returns C to A
@ The adversary A continues to have oracle access to Enck.
Finally, A outputs b'. If b = b then A has succeeded = PrivK%7,(¢) = 1

Securing a stream cipher for multiple encryptions

How can we still use a stream cipher if we want to encrypt multiple
messages My, My, ..., M; using a pseudo-random generator G7

Synchronized mode

Let the PRG run for longer to produce enough output bits for all

messages:
G(K)=FRilR| ... IR, CG=RoM,

|| is concatenation of bit strings

@ convenient if My, M5, ..., M; all belong to the same communications
session and G is of a type that can produce long enough output

@ requires preservation of internal state of G across sessions

Unsynchronized mode

Some PRGs have two separate inputs, a key K and an “initial vector”
IV. The private key K remains constant, while /V is freshly chosen at
random for each message, and sent along with the message.

for each i IVi er {0,1}", G = (IV;,G(K, IVi)® M)

@ what exact security properties do we expect of a G with /V input?
18

Security against chosen-plaintext attacks (cont'd)

Definition: A private-key encryption scheme I has indistinguishable
multiple encryptions under a chosen-plaintext attack (“is CPA-secure") if
for all probabilistic, polynomial-time adversaries A there exists a
negligible function negl, such that

1
P(PrivKTh(6) = 1) < 5t negl(¢)
Advantages:

@ Eavesdroppers can often observe their own text being encrypted,
even where the encrypter never intended to provide an oracle.
(WW?2 story: Midway Island/AF, server communication).

@ CPA security provably implies security for multiple encryptions.

@ CPA security allows us to build a variable-length encryption scheme
simply by using a a fixed-length one many times.

20

Pseudo-random function CPA-secure encryption using a pseudo-random function

F:{0,1}* x {0,1}* — {0,1}* efficient, keyed, length preserving We define the following fixed-length private-key encryption scheme
key input output linput|=|output| Mpre = (Gen, Enc, Dec):
Definition: F is a pseudo-random function if for all probabilistic, Let F be a pseudo-random function.
polynomial-time distinguishers D there exists a negligible function negl @ Gen: on input 1 choose K €g {0,1}* randomly
such that @ Enc: read K € {0,1}¢ and M € {0,1}*, choose R € {0,1}*
P(DF<()(1") = 1) — P(D)(1") = 1)| < negl(n) randomly, then output

= (R, Fx(R)® M
where K €r {0,1}" is chosen uniformly at random and f is chosen C = (R, Fi(R) & M)

uniformly at random from the set of functions mapping n-bit strings to @ Dec: read K € {0,1}, C = (R, S) € {0,1}*, then output
n-bitstrings. .
Notation: D) means that algorithm D has oracle access to function f. M= FK(R) ®S
How does this differ from a pseudo-random generator? Strategy for proving lNprr to be CPA secure:
The distinguisher of a pseudo-random generator examines a string. Here, © Show that a variant scheme I1 in which we replace Fi with a
the distinguisher examines entire functions Fx and f. random function f is CPA secure (just not efficient).
There are 272" different functions mapping n-bit strings to n-bit strings, © Show that replacing f with a pseudo-random function Fx cannot
so any description of f would be at least n- 2" bits long, which cannot be make it insecure, by S_hOWIng .ho}N an attacker on the scheme using
read in polynomial time. Therefore, we need to provide oracle access. Fk can be converted into a distinguisher between f and F,
Block ciphers: practical constructions believed to provide pseudo-random functions/permutations. violating the assumption that FK is a pseudo—random function.
21
Security proof for encryption scheme [lpgr Security proof for encryption scheme [Mpgr (cont’d)
First consider [1, a variant of Mpge in which the pseudo-random function Assume we have an attacker A with non-negligible
Fyx was replaced with a random function f. Claim: cpa 1
PPHVKS (1) — 1) < - q(¢) Lol | €(0) = P(PrivK{T, .. (0) = 1) — 5
kP oy 1) < L 90 i+ .
(Priv A*”())< 2 * 2¢ with q(€) oracle queries Its performance is also limited by
Recall: when the challenge ciphertext C in PrivK®P2 () is computed, the 1 /¢
. . anl!) P(PrivK (1) = 1) < £ + 4
challenger picks R¢ €r {0,1}¢ and returns C := (Rc¢, f(Rc) & Mp). A 2 2¢
Case 1: Rc is also used in one of the oracle queries. In which case Combining those two equations we get
A can easily find out f(R¢) and decrypt M. A makes at most g(¢) /
: , q(¢)
oracle queries and there are 2¢ possible values of R¢, this case happens P(P”VKSE?HPRF(@) =1)- P(P”VKj?ﬁ(g) =1) > e(l) - o

with a probability of at most q(¢)/2°.

Case 2: Rc is not used in any of the oracle queries. For A the value
Rc¢ remains completely random, f(R¢) remains completely random, my, is

which is not negligible either, allowing us to distinguish f from F:
cpa

Build distinguisher D® using oracle O to play PrivKA’n(E) with A:

returned one-time pad encrypted, and .4 can only make a random guess, @ Run A(1%) and for each of its oracle queries M’ pick R €g {0, 1},
so in this case P(b' = b) = 3. then return C' := (R', O(R") & M') to A.
P(PrivK®?. (0) = 1) @ When A outputs My, My, pick b €g {0,1} and Rc €g {0,1}¢, then

return C := (Rc, O(Rc) © Mp) to A.

© Continue answering A's encryption oracle queries. When A outputs

- cpa £ 1 . .
< P(Case 1) + P(Prvijyﬁ(Z) = 1|Case 2) < % +3 b, output 1 if b’ = b, otherwise 0.
23

= P(Priij\”aﬁ(E) =1ACasel)+ P(Priij\’?ﬁ(E) = 1A Case 2)

Security proof for encryption scheme Npge (cont'd)

How effective is this D?
Q If D’s oracle is Fx: A effectively plays PrivK37, _(¢) because if K

was chosen randomly, Df¥ behaves towards A just like Mpgre, and
therefore

P(DFK()(]-Z) o]_) = P(PrivaEj—,PRF(@ = 1)

Q If D’s oracle is f: likewise, A effectively plays Priijaﬁ(é) and
therefore ’
P(D'O(1") = 1) = P(PrivK?=.(¢) = 1)

if fer ({0, 1}2){0*1}[is chosen uniformly at random.
All combined the difference
. . q(t)
P(DFrO)(1%) = 1) — P(DFO) (1Y) = 1) > () — =T

not being negligible implies that Fy is not a pseudo-random function,
which contradicts the assumption, so Mprg is CPA secure. O

Katz/Lindell, pp 90-93
25

Probability of collision / birthday problem

Throw b balls into n bins, selecting each bin uniformly at random.
With what probability do at least two balls end up in the same bin?

1

o
I Upper bound 10
‘ lower bound

upper bound
lower bound

o
@
S,

o
@

o
IS

collision probability
collision probability

o
o

o 0 10 20 30 ‘07m 0 10 20 \30 40
10 10 10 10 10 10 10 10 10 10

number of balls thrown into 10°° bins number of balls thrown into 10 bins

Remember: for large n the collision probability
@ is near 1 for b>> +/n

. . . b2
@ is near 0 for b < +/n, growing roughly proportional to =
Expected number of balls thrown before first collision: /5n (for n — o)
No simple, efficient, and exact formula for collision probability, but good approximations:

http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf

27

Pseudo-random permutation

F:{0,1}* x {0,1}* — {0,1}*

key input output

Fk is a pseudo-random permutation if

efficient, keyed, length preserving
linput|=|output|

o for every key K, there is a 1-to-1 relationship for input and output
@ Fx and F,;l can be calculated with polynomial-time algorithms

@ there is no polynomial-time distinguisher that can distinguish Fy
(with randomly picked K) from a random permutation.

Note: Any pseudo-random permutation is also a pseudo-random function. A random function f
looks to any distinguisher just like a random permutation until it finds a collision x # y with
f(x) = f(y). The probability for finding one in polynomial time is negligible (“birthday problem™).

A strong pseudo-random permutation remains indistinguishable even if
the distinguisher has oracle access to the inverse.

Definition: F is a strong pseudo-random permutation if for all
polynomial-time distinguishers D there exists a negligible function negl
such that

P(DFsOF (1) = 1) — P(DFOF ' O)(17) = 1)| < negl(n)

where K €g {0,1}" is chosen uniformly at random, and f is chosen
uniformly at random from the set of permutations on n-bit strings.

Iterating a random function

f:{1,...,n} = {1,...,n} n" such functions, pick one at random

Functional graph: vertices {1, ..., n}, directed edges (i, f(i))
el T

- N

Several components, each a directed cycle and trees attached to it.

\

<~

Some expected values for n — oo, random u €g {1,...,n}:
o tail length E(t(u)) = \/7n/8 Fru)(y) = fFH+e@)i(y), vi € N,
e cycle length E(c(u)) = \/7n/8 where t(u), c(u) minimal
@ rho-length E(t(u) + c(u)) = \/7n/2
e predecessors E(|{v|f/(v) = uAi>0}|)=+/7n/8
@ edges of component containing u: 2n/3

If f is a random permutation: no trees, expected cycle length (n+ 1)/2

Menezes/van Oorschot/Vanstone, §2.1.6. Knuth: TAOCP, §1.3.3, exercise 17.
Flajolet/Odlyzko: Random mapping statistics, EUROCRYPT’'89, LNCS 434.

26

28

http://cseweb.ucsd.edu/~mihir/cse207/w-birthday.pdf
http://cacr.uwaterloo.ca/hac/
http://cacr.uwaterloo.ca/hac/about/chap2.pdf#page=7
http://link.springer.com/chapter/10.1007/3-540-46885-4_34

Modes of operation

Given a fixed-length pseudo-random function F, we could encrypt a
variable-length message M||Pad(M) = My ||Ma]| ... ||M, by applying MNprr
to its individual blocks M;, and the result will still be CPA secure:

Enck (M) = (Ry, Enck(R1)®M;, Ro, Encik(R2)EM,, . .. Ry, Enck(R,)®M,)
But this doubles the message length!

“Modes of operation” that have also been proven to be CPA secure:
Cipher-block chaining (CBC)

G €Rr {0, 1}m, C = GK(M,' D C,',l)
Output feedback mode (OFB)

G = Ry €r {0, 1}m’ R; := GK(R,',l), C =M ®dR;
Randomized counter mode (CNT)

G €Rr {07 1}m’ C =M FK(CO + I)
Enck (M| M| ... [[Mn) = (Gl GGl - - | Ca)

Above, F is a pseudo-random function and G is a pseudo-random permutation. The security
depends on both their key size and block size.

29

Malleability

We call an encryption scheme (Gen, Enc, Dec) malleable if an adversary
can modify the ciphertext in a way that causes a predictable/useful
modification to the plaintext.

Example: stream ciphers allow adversary to XOR the plaintext with
arbitrary value X:

C = Enck(M) = (R, Fk(R) & M)
C' = (R,(Fk(R) & M) & X)
P" = Deck(C') = Fk(R) @ (Fk(R) e M) & X) = Mo X

Malleable encryption schemes are usually not CCA secure.
CBC, OFB, and CNT are all malleable and not CCA secure.

Malleability is not necessarily a bad thing. If carefully used, it can be an essential building block to
privacy-preserving technologies such as digital cash or anonymous electonic voting schemes.

Homomorphic encryption schemes are malleable by design, providing anyone not knowing the key a
means to transform the ciphertext of M into a valid encryption of f(M) for some restricted class of
transforms f.

31

Security against chosen-ciphertext attacks (CCA)

Private-key encryption scheme N = (Gen, Enc, Dec), M = {0, 1}, security parameter £.

Experiment/game PrivK™(¢):

M C2 .
¥ —=| ber{0,1} ’Mz’ i -
YA))
K «— Gen(l) MO: Ml
C' + Ency (M) A

M’ + Deck(C")

C
M1 Cct+2 C....
b =—| C«+ EnCK(Mb) ’ 7 ¢,

2 1
., M2t

adversary — p

Setup:
@ handling of ¢, b, K as before
Rules for the interaction:

© The adversary A is given oracle access to Enck and Deck:
A outputs M?, gets Enck(M?), outputs C?, gets Deck(C?), ...

@ The adversary A outputs a pair of messages: My, M; € {0,1}™.
© The challenger computes C < Enck(M}) and returns C to A

@ The adversary A continues to have oracle access to Enck and Deck
but is not allowed to ask for Decy(C).

Finally, A outputs b'". If b" = b then A has succeeded = PrivK§T(¢) = 1

At a glance, all security definitions for private-key encryption schemes:

1t —= = 1¢
beg {0,1} Mo, My
K «+ Gen(1%) A
C + EncK(Mb)
b = challenger ¢ adversary —
1¢ — 1 ag2 : - 1¢
beg {0,1} M(i,Mg,...,M0
K <+ Gen(1%) My, Mg, ..., Mf A
C«+ EncK(Mb) n 3
t
b = challenger ¢, C adversary =
ML M2 ME
¢ — ber {0,1} Ct7 : 2 7C1 = U
K < Gen(1%) ’.I\}I(.):l\/ll’
C' + Ency (M) A
C + Enck(My) c ,
b = challenger MtH; o, M adversary = p
cttt’ . cttl
ML C? ...
1Y —= b er {0,1} ’M2’ i - 1¢
K <+ Gen(1%) ”',\},0 Ml
C' + Ency (M) A
M’ + Deck(C") i1 tfz
b <=—| C <+ Enck(My) MO 2C adversary —

2 1
., M2 ctt

30

32

Message authentication code (MAC)

A message authentication code is a tuple of probabilistic
polynomial-time algorithms (Gen, Mac, Vrfy) and sets K, M such that
@ the key generation algorithm Gen receives a security parameter ¢
and outputs a key K < Gen(1%), with K € K, key length |K| > ¢;
@ the tag-generation algorithm Mac maps a key K and a message
Me M ={0,1}* to a tag T < Mack(M);
@ the verification algorithm Vrfy maps a key K, a message M and a
tag T to an output bit b := Vrfy, (M, T) € {0,1}, with b=1
meaning the tag is “valid” and b = 0 meaning it is “invalid”.

e for all £, K + Gen(1%), and M € {0,1}™: Vrfy, (M, Mack(M)) = 1.

MACs versus security protocols

MACs prevent adversaries forging new messages. But adversaries can still
@ replay messages seen previously (“pay £1000", old CCTV image)
@ drop or delay messages (“smartcard revoked”)
© reorder a sequence of messages
© redirect messages to different recipients

A security protocol is a higher-level mechanism that can be built using

MAG s, to prevent such manipulations. This usually involves including

into each message additional data before calculating the MAC, such as
@ nonces

e message sequence counters

@ message timestamps and expiry times

o random challenge from the recipient

o MAC of the previous message
@ identification of source, destination, purpose, protocol version
@ “heartbeat” (regular message to confirm sequence number)

Security protocols also need to define unambiguous syntax for such
message fields, delimiting them securely from untrusted payload data.

33

35

MAC security definition: existential unforgeability

Message authentication code I = (Gen, Mac, Vrfy), M = {0,1}", security parameter £.
Experiment/game Mac-forge 4 (£):

1 = K Gen(19) =
. ; MY, M2, M
T' + Mack(M") Tt T2 T A
[b := Vrfy, (M, T) M. T adversary

Mg{ML M2,... Mt}
@ challenger generates random key K < Gen(1¢)

@ adversary A is given oracle access to Mack(+); let
Q = {M*, ..., M'} denote the set of queries that A asks the oracle
@ adversary outputs (M, T)
@ the experiment outputs 1 if Vrfy, (M, T)=1and M & Q
Definition: A message authentication code N = (Gen, Mac, Vrfy) is
existentially unforgeable under an adaptive chosen-message attack

(“secure”) if for all probabilistic polynomial-time adversaries A there
exists a negligible function negl such that

P(Mac-forge s n(¢) = 1) < negl(¢)

34

MAC using a pseudo-random function

Let F be a pseudo-random function.
@ Gen: on input 1 choose K €g {0,1}* randomly

@ Mac: read K € {0,1}* and M € {0,1}™,
then output T := Fx(M) € {0,1}"

e Vrfy: read K € {0,1}*, M € {0,1}™, T € {0,1}",
then output 1 iff T = Fx(M).

If F is a pseudo-random function, then (Gen, Mac, Vrfy) is existentially
unforgeable under an adaptive chosen message attack.

36

MAC using a block cipher: CBC-MAC

Blockcipher E : {0,1}¢ x {0,1}™ — {0,1}™

Ml M2 Mn
{ } /
—® —D

} /

EK EK N EK

S B

CBC-MACg, (M)

Similar to CBC: IV = 0™, last ciphertext block serves as tag.

Provides existential unforgeability, but only for fixed message length n:
Adversary asks oracle for T! := CBC-MACg, (M) = Ex(M?') and then
presents M = M{|(T! & M) and T := CBC-MACg, (M) =
Ex(M*& TY) & Ex(MY)) = Ex(M* & TY) & Th) = Ex(MY) = T

37

Variable-length MAC using a block cipher: CMAC

Blockcipher E : {0,1}¢ x {0,1}™ — {0,1}™ (typically AES: m = 128)

Derive subkeys K1, K» € {0,1}™ from key K € {0,1}*:
® Koy := Ek(0)
o if msb(Ky) =0 then K := (Ky < 1) else K1 := (Ko < 1) & J
o if msb(Ki) =0 then K; := (K; < 1) else Ky := (K1 < 1)@ J

This merely clocks a linear-feedback shift register twice, or equivalently multiplies a value in
GF(2™) twice with x. J is a fixed constant (generator polynomial), < is a left shift.

CMAC algorithm:
MMy .. My =M
r:=|M,|
ifr=mthen M, = Kio M,
else M, := K, & (M,||10m 1)
return CBC-MACk (M| Mzl ... [|M,)

Provides existential unforgeability, without the disadvantages of ECBC.
NIST SP 800-38B, RFC 4493

39

Variable-length MAC using a block cipher: ECBC-MAC

Blockcipher E : {0,1}¢ x {0,1}™ — {0,1}™

My M, M,
| |

—D —D
' '

Ek, Ek, Ex,

Padding: M||10° J
p=m— (M| +1) mod m) Ee

2

Disadvantages:
@ up to two additional
applications of block cipher
@ need to rekey block cipher
@ added block if m divides |M|

ECBC-MACE, ., (M)

Birthday attack against CBC-MAC, ECBC-MAC, CMAC

Let E be an m-bit block cipher, used to build MACk with m-bit tags.

Birthday/collision attack:

@ Make t &~ v/2™ oracle queries for T/ := MACk ({i}||R:||(0)) with
R er{0,1}" 1 <i<t.

Here (i) € {0,1}" is the m-bit binary integer notation for i.
@ Look for collision T = T7 with i # j
@ Ask oracle for T' := MACk((/)||Ri|l(1))
o Present M := (j)||R;||(1) and T := T’ = MACk(M)

The same intermediate value (i) Ri {0)
G, occurs while calculating the I i
MAC of %ELB %Gf
DIR10), G)IR1(0).

(DNRIL), GIIR;IL). Ex Ex Ex

Possible workaround:
Truncate MAC result to less than m bits, % % i

such that adversary cannot easily spot col-

lisions in G, from Cs. Cl C2 MACK
Solution: big enough m.

38

40

http://csrc.nist.gov/publications/nistpubs/800-38B/SP_800-38B.pdf
http://www.ietf.org/rfc/rfc4493.txt

Ciphertext integrity

Private-key encryption scheme N = (Gen, Enc, Dec), Dec can output error: L

Experiment/game Cl 4 n(¢):

L = - £
1 K <+ Gen(1%) 1
ML, M2, Mt
ct,...,c2,ct A

C' < Encx(M')

1, Decy(M) # L M adversary
ME{M1,M2,..., Mt}

@ challenger generates random key K <+ Gen(1%)

b b {0, Decjc(M) = L
P -

@ adversary A is given oracle access to Enck(+); let
Q = {M!,... M'} denote the set of queries that A asks the oracle

© adversary outputs M
@ the experiment outputs 1 if Deck(M, T) # L and M ¢ Q

Definition: An encryption scheme N = (Gen, Enc, Dec) provides
ciphertext integrity if for all probabilistic polynomial-time adversaries A
there exists a negligible function negl such that

P(Clan(f) = 1) < negl(¢)

41

Combining encryption and message authentication

Warning: Not every way of combining a CPA-secure encryption scheme
(to achieve privacy) and a secure message authentication code (to
prevent forgery) will necessarily provide CPA security:

Encrypt-and-authenticate: (Enck, (M), Mack,,(M))
Unlikely to be CPA secure: MAC may leak information about M.

Authenticate-then-encrypt: Enck,(M|Macg,,(M))

May not be CPA secure: the recipient first decrypts the received
message with Deck,, then parses the result into M and Mack,, (M) and
finally tries to verify the latter. A malleable encryption scheme, combined
with a parser that reports syntax errors, may reveal information about M.

Encrypt-then-authenticate: (Enck, (M), Mack,, (Enck.(M)))
Secure: provides both CCA security and existential unforgeability.

If the recipient does not even attempt to decrypt M unless the MAC has been verified successfully,
this method can also prevent some side-channel attacks.

Note: CCA security alone does not imply existential unforgeability.

43

Autenticated encryption

Definition: An encryption scheme N = (Gen, Enc, Dec) provides
authenticated encryption if it provides both CPA security and ciphertext
integrity.

Such an encryption scheme will then also be CCA secure.

Example:
Private-key encryption scheme Mg = (Geng, Enc, Dec)

Message authentication code Ny = (Genm, Mac, Vrfy)
Encryption scheme " = (Gen', Enc’, Dec’):
Q Gen'(1%) := (Kg, Ku) with Kg + Geng(1%) and Ky + Genw(1%)
Q Ency, x,)(M) :=(C, T) with C ¢ Enck(M) and T « Mac, (C)
© Dec’ on input of (Kg, Ku) and (C, T) first check if
Vrfyy,, (C, T) = 1. If yes, output Decy.(C), if no output L.
If Mg is a CPA-secure private-key encryption scheme and [y is a secure

message authentication code with unique tags, then N’ is a CCA-secure
private-key encryption scheme.

A message authentication code has unique tags, if for every K and every M there exists a unique
value T, such that Vrfy, (M, T) = 1.

Padding oracle

TLS record protocol:

Recipient steps: CBC decryption, then checks and removes padding,
finally checks MAC.

Padding: append n times byte n (1 < n < 16)
Padding syntax error and MAC failure (used to be) distinguished in error
messages.

Co=1V G G G

| |
l l

42

44

Padding oracle (cont'd)

Attacker has Gy, ..., C3 and tries to get M,:

@ truncate ciphertext after C;

@ a = actual last byte of My, GC=1V G G
g = attacker’s guess of a
(try all g € {0,...,255})
@ XOR the last byte of C; with
1
g @ 0x0 DK DK
@ last byte of M, is now V '
a® g ®0x01 S3) — 3D
@ g = a: padding correct = MAC failed error l l

g # a: padding syntax error (high prob.) M, M,

Then try 0x02 0x02 and so on.

Serge Vaudenay: Security flaws induced by CBC padding, EUROCRYPT 2002

45

Trusted third party — key distribution centre

@ Communal trusted server S shares key Kas with each participant A.
@ A informs S that it wants to communicate with B.
@ S replies to A with Enck, (B, Kag, Enck,s (A, Kag))

Enc is a symmetric authenticated encryption scheme

@ A checks name of B, stores Kag, and forwards the “ticket”
EnCK‘,35 (A, KAB) to B

@ B also checks name of A and stores Kap.
Q A and B now share secret key Enck,, to secure their communication.

An extension of the above Needham—Schroeder protocol is now widely used in corporate computer
networks between desktop computers and servers, in the form of Kerberos and Microsoft's Active
Directory. Kas is generated from A’s password (hash function).

Extensions include:
@ timestamps and nonces to prevent replay attacks

@ a “ticket-granting ticket” is issued and cached at the start of a session, replacing the
password for a limited time, allowing the password to be instantly wiped from memory again.

@ a pre-authentication step ensures that S does not reply with anything encrypted under Kas
unless the sender has demonstrated knowledge of Kjas, to hinder offline password guessing.

@ mechanisms for forwarding and renewing tickets

@ support for a federation of administrative domains (“realms”)

47

Key distribution problem

In a group of n participants, there are n(n — 1)/2 pairs who might want
to communicate at some point, requiring O(n?) keys to be exchanged
securely in advance.

This gets quickly unpractical if n > 2 and if participants regularly join

and leave the group.
P |

[P [—[TTP]—[Ps

Alternative 1: introduce an intermediary “trusted third party”

46

Key distribution problem: other options

Alternative 2: hardware security modules + conditional access

© A trusted third party generates a global key K and embeds it
securely in tamper-resistant hardware tokens (e.g., smartcard)

@ Every participant receives such a token, which also knows the
identity of its owner and that of any groups they might belong to.

© Each token offers its holder authenticated encryption operations
Enck(-) and Deck (A,).

@ Each encrypted message Enck (A, M) contains the name of the
intended recipient A (or the name of a group to which A belongs).

© A's smartcard will only decrypt messages addressed this way to A.
Commonly used for “broadcast encryption”, e.g. pay-TV, navigation satellites.

Alternative 3: Public-key cryptography

@ Find an encryption scheme where separate keys can be used for
encryption and decryption.

@ Publish the encryption key: the “public key”
@ Keep the decryption key: the “secret key”

Some form of trusted third party is usually still required to certify the correctness of the published
public keys, but it is no longer directly involved in establishing a secure connection.
48

http://www.iacr.org/cryptodb/archive/2002/EUROCRYPT/2850/2850.pdf

Public-key encryption

A public-key encryption scheme is a tuple of probabilistic
polynomial-time algorithms (Gen, Enc, Dec) such that

o the key generation algorithm Gen receives a security parameter /¢
and outputs a pair of keys (PK, SK) + Gen(1), with key lengths
|PK| > ¢, |SK| > ¢;

@ the encryption algorithm Enc maps a public key PK and a
plaintext message M € M to a ciphertext message C < Encpi(M);

@ the decryption algorithm Dec maps a secret key SK and a
ciphertext C to a plaintext message M := Decsk(C), or outputs L;

e for all £, (PK, SK) < Gen(1%): Decsk(Encpx(M)) = M.

In practice, the message space M may depend on PK.

In some practical schemes, the condition Decsk(Encpx(M)) = M may fail with negligible
probability.

49

Security against chosen-ciphertext attacks (CCA)

Public-key encryption scheme M = (Gen, Enc, Dec)
. cca .
Experiment/game PubK%(¢):

ctc2,... ¢t
¥ —= beR{Ozl} Mt M2 MY = 1
(PK, SK) « Gen(1%) Mo, My
M’ « Decsi(C') C A
h — C + Encpx(M,) Ct+ﬂlﬂi2c;\),;4;l adversary -
Setup:

@ handling of ¢, b, PK, SK as before
Rules for the interaction:
@ The adversary A is given oracle access to Decgsk:
A outputs C?, gets Decsi(C?), outputs C?, gets Decsk(C?), ...
@ The adversary A outputs a pair of messages: My, M; € {0,1}™.
© The challenger computes C < Encsk (M) and returns C to A

@ The adversary A continues to have oracle access to Decsk
but is not allowed to ask for Decsk(C).

Finally, A outputs b". If b" = b then A has succeeded = PubKG™(¢) = 1

51

Security against chosen-plaintext attacks (CPA)

Public-key encryption scheme M = (Gen, Enc, Dec)
. cpa .
Experiment/game PubK'{(¢):

1 — - 1
(PK, SK) + Gen(1%) PK
bER {0,1} Mo,Ml A
C «+ EncPK(Mb)
b = challenger C adversary —
Setup:

@ The challenger generates a bit b €g {0,1} and a key pair
(PK, SK) + Gen(1%).

@ The adversary A is given input 1°
Rules for the interaction:

@ The adversary A is given the public key PK

@ The adversary A outputs a pair of messages: My, M; € {0,1}™.

© The challenger computes C < Encpx(Mp) and returns C to A
Finally, A outputs b'. If b’ = b then A has succeeded = PubK%7,(¢) = 1

Note that unlike in PrivK®®® we do not need to provide A with any oracle access:
here A has access to the encryption key PK and can evaluate Encpg(+) itself.

Security against chosen-plaintext attacks (cont'd)

Definition: A public-key encryption scheme I1 has indistinguishable
encryptions under a chosen-plaintext attack (“is CPA-secure") if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PUbKE (1) = 1) < % + negl(?)

Definition: A public-key encryption scheme [1 has indistinguishable
encryptions under a chosen-ciphertext attack (*is CCA-secure") if for all
probabilistic, polynomial-time adversaries A there exists a negligible
function negl, such that

P(PUbKES,(¢) = 1) < % + negl()

What about ciphertext integrity / authenticated encryption?

Since the adversary has access to the public encryption key PK, there is
no useful equivalent notion of authenticated encryption for a public-key
encryption scheme.

50

52

Number theory: basic concepts and notation

Set of integers: Z=1{...,-2,—-1,0,1,2,...}
@ if there exists ¢ € Z such that ac = b, we say a divides b, or a | b
e if 0 < athen ais a “divisor” of b
e if 1 < a< bthenaisa “factor” of b
o if a does not divide b: atb
@ if p > 1 has no factors (only 1 and p as divisors), it is “prime”
@ every integer n > 1 has a unique prime factorization n =[], p;’

@ The modulo operator performs integer division and outputs the
remainder:

amodb=c = 0<c<bAN3ITdeZ:a—db=c

Examples: 7mod5 =2, —1 mod 10 =9

Modular arithmetic

Set of integers modulo n: Z, ={0,1,...,n— 1}

When working in Z,, we apply after each addition, subtraction,
multiplication or exponentiation the modulo n operation.
We add/subtract the integer multiple of n needed to get the result back into Z,.

Examples in Zs: 4+3=2,4-2=3,42=1

(Z,,+) is an abelian group and (Z,, +,) is a commutative ring.

This means: that all the usual rules of arithmetic apply, such as
commutativity and associativity.

Example: a(b+ c) = ab+ ac = ca + ba

53

55

Greatest common divisor

ged(a, b) is the largest c € Z with c |aand c | b
Examples: gcd(18,12) = 6, ged(15,9) = 3, ged(15,8) =1
o gcd(a, b) = ged(b, a)
@ Euclids algorithm (WLOG a > b > 0):

acd(a, b) = b, |fb\a-
gcd(b, a mod b), otherwise

@ gcd(a, b) =1 means a and b are “relatively prime”

o for all positive integers a, b, there exist integers x and y such that
ged(a, b) = ax + by
@ Euclids extended algorithm (a > b > 0):

(ged(a, b), x,y) ==

(b,0,1), ifb|a

(d,y,x — yq), otherwise,
with (d, x, y) := eged(b, r),
where a=gb+r, 0<r<b

eged(a, b) =

Modular inversion: division in Z,

In Z,, element a has a multiplicative inverse a—1 (with aa—! = 1) if and
only if ged(n, a) = 1.
In this case, the extended Euclidian algorithm gives us

nx+ay=1

and since nx = 0 in Z, for all x, we have ay = 1.

Therefore y = a—! is the inverse needed for dividing by a.

@ We call the set of all elements in Z, that have an inverse the
“multiplicative group” of Zj:

Z,={a€Zy|ged(na) =1}

@ If pis prime, then Z, is a (finite) field, that is every element except
0 has a multiplicative inverse:

Zy={l,....p—1}

54

56

Groups

A group (G, e) is a set G and an operator e : G x G — G that have

closure: aebe Gforall a,be G
associativity: ae(bec)=(aeb)ec forall a,b,c e G
neutral element: there exists an e € G such that for all a € G:
aee—cea=—a
inverse element: for each a € G there exists some b € G such that
aeb=bea=c¢e
If ae b= beaforall a,b e G, the group is called commutative (or abelian).
A subgroup H of G is a subset H C G that is also a group (same operator).
Alternative notations:
“Additive” group: think of group operator as a kind of “+"
@ write 0 for the neutral element and —g for the inverse of g € G.
o witeg-i:=gege---eg (gcG,ic€Z)
i times
“Multiplicative” group: think of group operator as a kind of "“x"
@ write 1 for the neutral element and g~! for the inverse of g € G.
o writeg' :=gege---eg(g€G,icZ)

i times 57

Cyclic groups

Let G be a finite (multiplicative) group of order m = |G]|.

For g € G consider the set
(g) ={eg"¢g" &% ..}

Note that |{g)| = ord(g) and (g) = {g° &', &>, ...,g°E) 1}

Definitions:
o We call g a generator of G if (g) =G.
o We call G cyclic if it has a generator.
Useful facts:
@ Every cyclic group of order m is isomorphic to (Zm,+). (g' +— i)
@ (g) is a subgroup of G (subset, a group under the same operator)

o If |G| is prime, then G is cyclic and all g € G\ {1} are generators.

Recall that ord(g) | |G|. We have ord(g) € {1, |G|} if |G| is prime, which makes g either 1
or a generator.

Proofs: Katz/LindeII, sections 7.3

59

Finite groups

Let (G, o) be a group with a finite number of elements |G|.
Practical examples here: (Z,, +), (2%,), (GF(2"), ®), (GF(2") \ {0}, ®)

Terminology:

o . Related notion: the characteristic of
@ The order of a group G is its size |G| a ring is the order of 1 in its
additive group, i.e. the smallest i

@ order of group element g in G is withl+1+---+1=0.
N e

ordg(g) =min{i >0| g’ =1}.

i times

Useful facts regarding any element g € G in a group of order m = |G]:

°eg"=1g=¢g
gi — gi mod ord(g)

i mod m

°

0 g¥=g¥< x=y (mod ord(g))

e ord(g) | m “Lagrange’s theorem”

e if gcd(e, m) = 1 then g +— g© is a permutation, and g — g? its
inverse (i.e., g = g) if ed mod m =1

Proofs: Katz/Lindell, sections 7.1 and 7.3

58

How to find a generator?

Let G be a cyclic (multiplicative) group of order m = |G|.
o If m is prime, any non-neutral element is a generator. Done.
But |Z;| = p — 1 is not prime (for p > 3)!
o Directly testing for |(g)| Z m is infeasibe for crypto-sized m.

o Fast test: if m= H,.pf' is composite, then g € G is a generator if
and only if g™/P # 1 for all i.

@ Sampling a polynomial number of elements of G for the above test
will lead to a generator in polynomial time (of log, m) with all but
negligible probability.

= Make sure you pick a group of an order with known prime factors.
One possibility:

@ Chose a “strong prime” p = 2q + 1, where g is also prime
= |Z;| = p — 1 = 2q has prime factors 2 and gq.

60

(Z,,+) is a cyclic group

For every prime p every element g € Z, \ {0} is a generator:
Zp=(g)={g-imodp|0<i<p-—1}

Note that this follows from the last fact on slide 59: Z,, is of order p, which is prime.
Example in Z;:
(1-0,1-1,1-2,1-2,1-4,1-5,1-6)=(0,1,2,3,4,5,6)
(2-0,2-1,2.2,2-2,2-4,2-5,2-6) =(0,2,4,6,1,3,5)
(3-0,3-1,3-2,3-2,3-4,3-5,3-6) =(0,3,6,2,5,1,4)
(4-0,4-1,4-2,4-2,4-4,4-54-6) = (0,4,1,5,2,6,3)
(5-0,5-1,5-2,5-2,5-4,5-55-6) =(0,5,3,1,6,4,2)
(6-0,6-1,6-2,6-2,6-4,6-5,6-6)=(0,6,5,4,3,2,1)

@ All the non-zero elements of Z7 are generators
@ ord(0) =1, ord(1) = ord(2) = ord(3) = ord(4) = ord(5) = ord(6) = 7

Fermat's and Euler's theorem

Fermat'’s little theorem: (1640)

p prime and gcd(a,p) =1 = & 'modp=1

Euler’s phi function:
¢(n) = |Z,| = {a € Zy | ged(n, a) = 1}

e Example: ¢(12) = |{1,5,7,11}| = 4

@ primes p, q:
P P w(p)—p—l

e(p) =P Hp-1)
o(pq) = (p 1)(g - 1)
© ged(a, b) =1 = (ab) = p(a)e(b)
Euler’s theorem: (1763)
gaed(a,n)=1 & a*Mmodn=1

o this implies that in Z,: a¥ = ax™4¢(" forany a€ Z,, x € Z

61

63

(Z3,,) is a cyclic group

For every prime p there exists a generator g € Z;, such that
Z,={g'modpl0<i<p-2}

Note that this does not follow from the last fact on slide 59: Z; is of order p — 1, which is usually

even, not prime.

Example in Z7:

,1h1%,1%,1%,1%) = (1,1,1,1,1,1)
202122 23 2 2°%) =(1,2,4,1,2,4)
3°,3%,3%, 33 3 35) (1,3,2,6,4,5)

°)=(1,4,2,1,4,2)
5°,5',52,5° 5% 5°) = (1,5,4,6,2,3)

,6',6%,6%,6",6°) =(1,6,1,6,1,6)

Fast generator test (p. 60), using |Z7| =6 = 2-3:
@ 3 and 5 are generators of Z7 30/2 = 6,30/3 =2 ,5%/2 =6 55/3 = 4 all #1.
@ 1, 2, 4, 6 generate subgroups of Z7: {1}, {1,2,4}, {1,2,4}, {1,6}
] Ord(l) =1, Ol’d(2) =3, The order of g in Z, is the size of the subgroup (g).
ord(3) =6, ord(4) =3, Lagrange's theorem: ordZ; (g) I p—1forallg €Z;
ord(5) = 6, ord(6) =2

(1°
(
(
(4°
(
(6”

62

Chinese remainder theorem

Definition: Let (G,e) and (H, o) be two groups. A function f : G — H
is an isomorphism from G to H if

o f is a 1-to-1 mapping (bijection)
o f(greg)="(g1)of(g)forall g1, €G

Chinese remainder theorem:
For any p, g with gcd(p, g) = 1 and n = pq, the mapping

fiZy Zpx Ly f(x) = (x mod p, x mod q)
is an isomorphism, both from Z, to Z, x Z4 and from Z to Z;; X ZZ.
Inverse: To get back from x, = x mod p and x; = x mod g to x, we first use Euclid’'s extended

algorithm to find a, b such that ap + bg = 1, and then x = (x,bq + xqap) mod n.

Application: arithmetic operations on Z, can instead be done on both
Zp and Zg after this mapping, which may be faster.

64

Taking roots in Z,

If x¢ = c in Z,, then x is the “et" root” of ¢, or x = cl/e.

Case 1: gcd(e,p—1)=1
Find d with de = 1 in Z,_; (Euclid's extended), then c/¢ = ¢9 in Z,,.
Proof: (Cd)e — cde — de mod w(p) — cdemodp—1 _ 1 _ -

Case 2: e = 2 (taking square roots)
ged(2,p— 1) # 1 if p odd prime = Euclid’s extended alg. no help here.

Quadratic residues

In Z7, x — x? is a 2-to-1 function: x? = (—x)?.

Example in Z3: (12,2232 42 52 62) = (1,4,2,2,4,1)

If x has a square root in Z,, x is a “quadratic residue”.
Example: Z; has 3 quadratic residues: {0,1,2 4}.

If pis an odd prime: Z, has (p — 1)/2 + 1 quadratic residues.
Euler’s criterion:

P2 modp=1 < cisa quadratic residue in Z,

Example in Z: (7—1)/2 =3, (13,23,33,43 5%.6%) = (1,1,6,1,6,6)

cP=1/2 is also called the Legendre symbol
65

Working in subgroups of Z

How can we construct a cyclic finite group G where all non-neutral
elements are generators?

Recall that Z, has (p — 1)/2 + 1 quadratic residues. That includes 0, so:
Zy has g = (p — 1)/2 quadratic residues, exactly half of its elements.

Quadratic residue: an element that is the square of some other element.

Choose p to be a strong prime, that is where g is also prime.

Let G = {g? | g € Z%} be the set of quadratic residues of Z%. G with
operator “multiplication mod p” is a subgroup of Z%, with order |G| = g.

Since G has prime order |G| = g: for all g € G\ {1}: (g) =G.

GENERATE_GROUP(1%):
p €r {(£ + 1)-bit strong primes}

q = (P - 1)/2 This technique is widely used to obtain a cyclic
x €r Zp \ {-1,1} finite group of order q and associated genera-

. 2 tor g for which the Discrete Logarithm Problem
& =X mod P and the Decision Diffie-Hellmann Problem are
return p, q, g believed to be hard.

67

Taking square roots in Z,

If pmod 4 =3 and ¢ € Z7 is a quadratic residue: /c = cPtD)/4in 7,
Proof: [c(P1)/4]% = clp1)/2 — lp1/2 o — ¢
N——
=1

If p mod 4 =1 this can also be done efficiently (details omitted here).

Application: solve ax? + bx + ¢ =0 in ZLp
—b+Vb? —4ac
2a
Algorithms: /b2 — 4ac as above, (2a)~! using Euclid’s extended

Solution: x =

Taking roots in Z,

If nis composite, then we know how to test whether cl/¢ exists, and how

to compute it efficiently, only if we know the prime factors of n.

Modular exponentiation
In cyclic group (G, e) (e.g., G = Z):
How do we calculate g© efficiently? (g € G, e € N)

Naive algorithm: g¢=gege-..eg
N————
e times

Far too slow for crypto-size e (e.g., e ~ 2128)!

Square and multiply algorithm:
n

Binary representation: e = Z &2, n=|logye|], e =|%|mod?2

i=0
Computation:
. _ N2 SQUARE_AND_MULTIPLY(g, €):
20 2 2!~ o
g =8 & = (g) =g
, b:=1
e 2\ & for i :== 0 to n do
] if |e/2'] mod 2 =1 then
i=0 b:=bea <+ multiply
Side-channel vulnerability: the if statement leaks the a:=aea < square
binary representation of e. “Montgomery’s ladder” return b

is an alternative algorithm with fixed control flow.

66

68

Number theory: easy and difficult problems Trapdoor permutations

Easy:.)] A trapdoor permutation is a tuple of polynomial-time algorithms

@ given composite n and x € Z%: find x~! € Z? (Gen, F, F~1) such that

@ given prime p and polynomial f(x) € Z,[x]:
find x € Z,, with f(x) =0

runtime grows linearly with the degree of the polynomial

o the key generation algorithm Gen receives a security parameter /¢
and outputs a pair of keys (PK, SK) + Gen(1), with key lengths
|PK| > ¢, |SK| > ¢;

Difficult: @ the sampling function F maps a public key PK and a value x € X

@ given prime p, generator g € Zy: to a value y 1= Fpi(x) € X;

o given value a € Z;: find x such that a = g*. @ the inverting function F~! maps a secret key SK and a value
— Discrete Logarithm Problem y e X to a value x := FSTKl (y) S X;
o given values g*, g” € Z: find g*'. o for all ¢, (PK,SK) «+ Gen(lé), X € X: Fs}l(FpK(x)) = X.
— Computational Diffie-Hellman Problem
o given values g*, g%,z € Zj: tell whether z = g™. In practice, the domain X may depend on PK.
— Decision Diffie-Hellman Problem
e given a random n = p- g, where p and g are {-bit primes (£ > 1024): This !ooks almos.t like the definition of a public-key encryption scheme,
o find integers p and q such that n=p-qin N the difference being
— Factoring Problem @ Fis deterministic;
o given a polynomial f(x) of degree > 1: e the associated security definition.

find x € Z, such that f(x) =0 in Z,

69

Secure trapdoor permutations Public-key encryption scheme from trapdoor permutation
Trapdoor permutation: f = (Gen, £, F ™) Trapdoor permutation: Myp = (Gentp, F, F~1) with Fpx : X <+ X
Experiment/game TDInv 4 n(£): Authentic. encrypt. scheme: Mag = (Genag, Enc, Dec), key space K

1Y =1 bk, 5K) « Gen(1) Secure hash function h: X — K
, :ZG;P:((X) PK,y A We define the private-key encryption scheme M = (Gen’, Enc’, Dec’):
@ Gen’: output key pair (PK, SK) + Gentp(1¢)
X = challenger 2dversary = X @ Enc’: on input of plaintext message M, generate random x €g X,

y = F(x), K = h(x), C < Enck(M), output ciphertext (y, C);

: ¢
@ The challenger generates a key pair (PK, SK) <+ Gen(1%) and a e Dec’: on input of ciphertext message C = (y, C), recover

random value x €gr X from the domain of Fpk. K — h(F‘l(y)), output Deck(C)
@ The adversary A is given inputs PK and y := Fpk(x).
@ Finally, A outputs x’. Encrypted message: F(x), Ency()(M)
If X' = x then A has succeeded: TDanA_’n(f) =1. The trapdoor permutation is only used to communicate a “session key” h(x), the actual message

cca

is protected by a symmetric authenticated encryption scheme. The adversary A in the PubK®® 1/

A trapdoor permutation I is secure if for all probabilistic polynomial time game has no influence over the input of F.

adversaries A the probability of success P(TDInv 4 n(¢) = 1) is negligible. If hash function h is replaced with a “random oracle” (something that
just picks a random output value for each input from X), the resulting

While the definition of a trapdoor permutation resembles that of a public-key encryption scheme, . . .
: P D e P ey e public-key encryption scheme M’ is CCA secure.

its security definition does not provide the adversary any control over the input (plaintext).
71

“Textbook” RSA encryption

Key generation

@ Choose random prime numbers p and ¢ (each ~ 1024 bits long)
e(n)=(p-1)(g-1)

@ n:=pq (= 2048 bits = key length)
@ pick integer values e, d such that: ed mod ¢(n) =1
@ public key PK := (n, €)
@ secret key SK := (n,d)
Encryption

@ input plaintext M € Z, public key (n, €)
@ C:= M*®modn

Decryption
@ input ciphertext C € Z, secret key (n, d)
@ M:=C%modn

In Z,: (Me)d — Med — pjed mod w(n) — M = M.

Common implementation tricks to speed up computation:

@ Choose small e with low Hamming weight (e.g., 3, 17, P 1) for faster modular encryption

@ Preserve factors of nin SK = (p, q, d), decryption in both Z, and Z,, use Chinese

remainder theorem to recover result in Z,.

Using RSA as a CCA-secure encryption scheme

Solution 1: use only as trapdoor function to build encryption scheme

@ Pick random value x € Z}

@ Ciphertext is (x® mod n, Ency(y(M)), where Enc is from an

authenticated encryption scheme

Solution 2: Optimal Asymmetric Encryption Padding

Make M (with zero padding) the left half,

m

and a random string R the right half, of the 1.}

input of a two-round Feistel cipher, using a
secure hash function as the round function.

Interpret the result (X, Y) as an integer M".

Then calculate C := M’® mod n.
PKCS #1 v2.0

n-k0

L

|
)

Wikipedia/Ozga

73

75

“Textbook” RSA is not secure

There are significant security problems with a naive application of the
basic “textbook” RSA encryption function C := P¢ mod n:

deterministic encryption: cannot be CPA secure
malleability:
e adversary intercepts C and replaces it with C’ := X¢- C
o recipient decrypts M’ = Decsk(C’) = X - M mod n
chosen-ciphertext attack recovers plaintext:
o adversary intercepts C and replaces it with C' := R®- C mod n
o decryption oracle provides M’ = Decsk(C') = R- M mod n
o adversary recovers M = M’ - R~ mod n
Small value of M (e.g., 128-bit AES key), small exponent e = 3:

o if M® < nthen C = M® mod n = M® and then M = v/C can be
calculated efficiently in Z (no modular arithmetic!)

many other attacks exist ...

Practical pitfalls with implementing RSA

low entropy of random-number generator seed when generating p
and g (e.g. in embedded devices):

o take public RSA modulus n; and ny from two devices
?) .
o test gcd(ni, m) =1 = if no, ni and ny share this number as a
common factor

o February 2012 experiments: worked for many public HTTPS keys

Lenstra et al.: Public keys, CRYPTO 2012
Heninger et al.: Mining your Ps and Qs, USENIX Security 2012.

74

76

http://www.rsa.com/rsalabs/node.asp?id=2125
http://link.springer.com/chapter/10.1007/978-3-642-32009-5_37
https://factorable.net/paper.html

Outlook

Goals of this course were

revisit some of the constructions discussed in Part IB security,
with emphasis on concrete definitions of security

introduce some of the discrete algebra necessary to understand
public-key encryption schemes, using RSA as an example

Modern cryptography is still a young discipline (born in the early 1980s),
but well on its way from a collection of tricks to a discipline with solid
theoretical foundations.

Some important concepts that we did not cover here:

elliptic-curve groups

digital signatures

identity-based encryption

side-channel attacks

application protocols: electronic voting, digital cash, etc.

secure multi-party computation

7

	Introduction
	Symmetric encryption
	Message authenticity
	Authenticated encryption
	Asymmetric encryption
	Number theory
	RSA trapdoor function

