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Regular Languages and Finite Automata

Exercise Sheet

1 Regular Expressions

Exercise 1.1. Write down an ML data type declaration for a type constructor ’a regExp whose

values correspond to the regular expressions over an alphabet ’a.

Exercise 1.2. Find regular expressions over {0, 1} that determine the following languages:

(a) {u | u contains an even number of 1’s}

(b) {u | u contains an odd number of 0’s}

Exercise 1.3. For which alphabets Σ is the set Σ∗ of all finite strings over Σ itself an alphabet?

Tripos questions 2012.2.8 2005.2.1(d) 1999.2.1(s) 1997.2.1(q) 1996.2.1(i)

2 Finite State Machines

Exercise 2.1. For each of the two languages mentioned in Exercise 1.2 find a DFA that accepts exactly

that set of strings.

Exercise 2.2. The example of the subset construction given on Slide 17 in the lecture notes constructs

a DFA with eight states whose language of accepted strings happens to be L(a∗b∗). Give a DFA with

the same language of accepted strings, but fewer states. Give an NFA with even fewer states that does

the same job.
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3 Regular Languages

Exercise 3.1. Why can’t the automaton Star (M) required in step (iv) of Section 3.1 be constructed

simply by taking M , making its start state the only accepting state and adding new ε-transitions back

from each old accepting state to its start state?

Exercise 3.2. Construct an NFAε M satisfying L(M) = L((ε|b)∗aab∗).

Exercise 3.3. Show that any finite set of strings is a regular language.

Exercise 3.4. Use the construction in Section 4.1 to find a regular expression for the DFA M whose

state set is {0, 1, 2}, whose start state is 0, whose only accepting state is 2, whose alphabet of input

symbols is {a, b}, and whose next-state function is given by the following table.

δM : a b
0 1 2
1 2 1
2 2 1
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Exercise 3.5. The construction M 7→ Not(M) given on Slide 26 applies to both DFA and NFA; but

for L(Not(M)) to be the complement of L(M) we need M to be deterministic. Give an example of

an alphabet Σ and a NFA M with set of input symbols Σ, such that {u ∈ Σ∗ | u /∈ L(M)} is not the

same set as L(Not(M)).

Exercise 3.6. Let r = (a|b)∗ab(a|b)∗. Find a complement for r over the alphabet Σ = {a, b}, i.e. a

regular expressions ∼(r) over the alphabet Σ satisfying L(∼(r)) = {u ∈ Σ∗ | u /∈ L(r)}.
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4 The Pumping Lemma

Exercise 4.1. Show that there is no DFA M for which L(M) is the language on Slide 33. [Hint:

argue by contradiction. If there were such an M , consider the DFA M ′ with the same states as M ,

with alphabet of input symbols just consisting of a and b, with transitions all those of M which are

labelled by a or b, with start state δM (sM , c) (where sM is the start state of M ), and with the same

accepting states as M . Show that the language accepted by M ′ has to be {anbn | n ≥ 0} and deduce

that no such M can exist.]
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5 Grammars

Exercise 5.1. Why is the string the dog a not in the language generated by the context-free grammar

in Section 6.1?

Exercise 5.2. Give a derivation showing that x+(x′′) is in the language generated by the context-free

grammar on Slide 37. Prove that x+ (x)′′ is not in that language. [Hint: show that if u is a string of

terminals and non-terminals occurring in a derivation of this grammar and that ‘′’ occurs in u, then

it does so in a substring of the form v′, or v′′, or v′′′, etc., where v is either x or id.]

Exercise 5.3. Give a context-free grammar generating all the palindromes over the alphabet {a, b}.

Exercise 5.4. Give a context-free grammar generating all the regular expressions over the alphabet

{a, b}.

Exercise 5.5. Using the construction given in the proof of part (a) of the Theorem on Slide 40, convert

the regular grammar with start symbol q0 and productions

q0 → ε

q0 → abq0

q0 → cq1

q1 → ab

into an NFAεwhose language is that generated by the grammar.

Exercise 5.6. Is the language generated by the context-free grammar on Slide 35 a regular language?

What about the one on Slide 37?
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6 Pushdown Automata

Exercise 6.1. Show that if M is the NPDA from Slide 46, then L(M) is the context-free language

{anbn | n ≥ 1}.

Exercise 6.2. Give a NPDA accepting the language of palindromes over the alphabet {a, b}.
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