
location, x , m address
integer , n integer
thread id , t thread id

memory , M ::= memory (function from addresses to integers)

expression, e ::= expression
| n integer literal
| x read from address x
| x = e write value of e to address x
| e; e ′ sequential composition
| e + e ′ plus
| lock x lock mutex at address x
| unlock x unlock mutex at address x

process, p ::= process
| t :e thread
| p|p ′ parallel composition

state, s ::= state
| 〈p, M 〉 process p and memory M

label , l ::= label
| W x=n write
| R x=n read
| LOCK x lock
| UNLOCK x unlock
| τ internal action (tau)

thread label , t : l ::= thread label
| t :l label

e
l
−→ e ′ e does l to become e ′

x
R x=n
−−−−→ n

read

x = n
W x=n
−−−−→ n

write

e
l
−→ e ′

x = e
l
−→ x = e ′

write context

n; e
τ
−→ e

seq

e1
l
−→ e ′

1

e1; e2
l
−→ e ′

1
; e2

seq context

n = n1 + n2

n1 + n2
τ
−→ n

plus

e1
l
−→ e ′

1

e1 + e2
l
−→ e ′

1
+ e2

plus context 1

1

e2
l
−→ e ′

2

n1 + e2
l
−→ n1 + e ′

2

plus context 2

lock x
LOCK x
−−−−→ 0

lock

unlock x
UNLOCK x
−−−−−−→ 0

unlock

p
t:l
−→ p ′ p does t : l to become p ′

e
l
−→ e ′

t :e
t:l
−→ t :e ′

thread

p1
t:l
−→ p ′

1

p1|p2
t:l
−→ p ′

1
|p2

par context left

p2
t:l
−→ p ′

2

p1|p2
t:l
−→ p1|p ′2

par context right

M
t:l
−→ M ′ M does t : l to become M ′

M (x) = n

M
t :R x=n
−−−−−→ M

Mread

M
t :W x=n
−−−−−→ M ⊕ (x 7→ n)

Mwrite

M (x) = 1

M
t :LOCK x
−−−−−→ M ⊕ (x 7→ 0)

Mlock

M
t :UNLOCK x
−−−−−−−→ M ⊕ (x 7→ 1)

Munlock

s
t:l
−→ s ′ s does t : l to become s ′

p
t:l
−→ p ′

M
t:l
−→ M ′

〈p, M 〉
t:l
−→ 〈p ′, M ′〉

Ssync

p
t :τ
−−→ p ′

〈p, M 〉
t :τ
−−→ 〈p ′, M 〉

Stau

Definition rules: 19 good 0 bad

Definition rule clauses: 32 good 0 bad

2

