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Abstract

This chapter presents an overview of cognition, and reviews the factors that dictate
the nature of cognitive models of programming. The computational metaphor is
outlined, and the following issues central to information processing are described:
knowledge representation, schemas, production rules, procedural and declarative
knowledge, attentional and memory resources, semantic memory, problem solving,
skill acquisition, and mental models. These issues are fundamental to psychological
models of programming presented in later chapters.

1 The relationship between cognition and programming

The fields of cognition and programming are related in three main ways. First, cog-
nitive psychology is based on a ‘computational metaphor’, in which the human mind
is seen as a kind of information processor similar to a computer. Secondly, cogni-
tive psychology offers methods for examining the processes underlying performance
in computing tasks. Thirdly, programming is a well-defined task, and there are an
increasing number of programmers, which makes it an ideal task in which to study
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cognitive processes in a real-world domain. This chapter presents an overview of
cognition, and reviews the factors which constrain cognitive performance and which
dictate the nature of cognitive models of programming.

1.1 The computational metaphor

Cognitive psychology is the study of the mechanisms by which mental processes are
carried out, and the kinds of knowledge required for each process. Cognitive processes
include perception, attention, memory storage and retrieval, lan guage production and
understanding, problem solving and reasoning. These are all operations performed
on information by a central processing unit (CPU) with associated memory, to pro-
duce an appropriate output. Like a computer, information flows through stages of
cognitive processing and storage to give a response output. Also like a computer, in-
formation is represented in symbolic form. Recent theories of information processing
retain the concept of information in the form of symbols being stored and operated
upon before output of a response, although their components are more interactive
and less stage dependent than those of earlier theories (e.g. Broadbent, 1958).

Pylyshyn (1984) argues that, since both human and computer output result from
operations carried out on symbols, cognition is literally a kind of computation. A
computer system can be described at three levels: the software; features of the imple-
mentation of programs on the hardware (e.g. the disk-operating system, CPU speed,
RAM cache, etc.); and the hardware itself (e.g. circuit boards, keyboard input, etc.).
Adopting a literal interpretation of the computational metaphor, similar levels of
software, implementation and hardware can be used to describe a cognitive system
(e.g. Anderson, 1987a). The ‘cognitive software’ consists of the mental procedures
and knowledge representations used in performing cognitive tasks. For example,
strategies such as means-ends-analysis are equivalent to programs for undertaking
certain problem-solving tasks. The ‘cognitive implementation’ of software concerns
the mechanisms for carrying out mental procedures and knowledge representation,
such as symbol manipulation, storage, retrieval and so on. For example, limitations
of attention and memory constrain the knowledge and procedures available during
problem solving. Anderson (1987a) argues that studying cognitive implementation,
despite identifying constraints on cognitive performance, is both more difficult and
less rewarding than studying cognitive software. Although this is contentious, it is
consistent with research into programming which is mainly concerned with identify-
ing the mental procedures and knowledge used in programming,

The ‘cognitive hardware’ consists of the physiological structures, notably the
brain, upon which cognitive processes are implemented. Physiological structures are
not a central concern of cognitive. psychology, since one of the major assumptions
underlying the computational metaphor is that cognitive processes are determined
by their function, and not by the structure of the hardware upon which they are
based. The computational metaphor dominates cognitive psychology, although some
argue that accounting for cognition in terms of symbol manipulation is implausible,
and that the biological basis of cognition should not be ignored (e.g. Searle, 1980).
A recent development, which offers an alternative to the computational metaphor
for studying cognition, is ‘connectionism’ (e.g. Rumelhart and McClelland, 1986).
Connectionist modelling is closer to the level of cognitive hardware, in that it uses
the parallel processing capabilities of the brain to explain how cognitive processes
are carried out. Connectionist models are not of direct relevance to programming



Human Cognition and Programming 65

research because they focus on cognitive hardware rather than software. However,
future developments in parallel computer architectures may include concepts such as
constraint satisfaction programming (see Chapter 1.2). The cognitive skills neces-
sary to cope with programming a parallel-processing machine may therefore be an
important topic for future research.

1.2 Important themes in cognition

A division is often made between knowledge representation and the processes which
operate on representations of knowledge. At the level of cognitive implementation,
theories of representation describe the form in which individual units of knowledge
are stored. Pylyshyn (1979) claims that all information is represented as propositions,
which are language-like assertions retaining only the meaning of individual items of
knowledge, rather than representing knowledge in the exact form in which it arrives
as perceptual input. Alternatively, Paivio’s (1971) ‘dual code’ theory suggests that
verbal information is represented in linguistic form, and visual information is repre-
sented in spatial image or analogue form. Analogue representations may determine
performance in some programming tasks. For example, Ormerod et al. (1986) found
that different reasoning strategies were used in comprehending diagrammatic and list
representations of Prolog clauses. More important to programming research, how-
ever, is the organization of knowledge at the level of cognitive software (for example,
the schema and strategy accounts of programming knowledge discussed in Chapters
3.1 and 3.2).

1.2.1 Schema representations

An important approach to describing knowledge representation at a cognitive soft-
ware level is the ‘schema’. A schema (after Bartlett, 1932) consists of a set of proposi-
tions that are organized by their semantic content. A perceptual input, cognitive goal
" or output of a cognitive process may evoke a schema with a related semantic content.
Once evoked, it provides an organized body of knowledge which is appropriate for
the task in hand. For example, Figure 1 shows a schematic representation of part of
the knowledge a programmer may possess about programming languages. If a pro-
grammer is required to think of an alternative to iteration for dealing with lists, the
words ‘iteration’ and ‘lists’ will activate the schema ‘programming languages’. This
will allow the programmer to access knowledge about looping constructs, and thus
generate alternatives such as ‘recursion’. There are two basic principles of schema
theories: first, that cognitive processing is guided and limited by the application
of prior knowledge; and secondly, that schemas contain relatively abstract knowl-
edge which is independent of any one event. Thus, a schema highlights relevant
information in a task domain, and may add new information when there is insuffi-
cient information in a task domain. Figure 1 illustrates a number of components of
schemas, such as hierarchical organization, default values for generating information
which is not present in the task domain, and slots which can be filled by matching in-
formation from the task domain. A schema offers a method for limiting the amount
of inputed information, or ‘bottom-up’ control, that is needed to perform a task.
Schemas provide ‘top-down’ control, using prior knowledge to restrict the operations
that may be undertaken.
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Figure 1: The schema ‘programming languages’ represents part of the general knowledge
a person may have about programming languages. This schema is linked to others (e.g.
‘algorithms’). The particular episode represents an encounter with a previously unknown
language (such as Lisp). The shaded areas represent information available for a particular
task. Information may originate from the task domain as ‘fillers’ for the schema slots, or
from the schema as ‘defanlt values’ where no conflicting task domain information is present.
This representation of schemas, based on one devised by Cohen et al. (1986, p. 28), is only
one of many possible representations. For example, the ‘script’ shown in Figure 3. is also a
schematic representation.
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Schema theories appear in various guises, such as ‘frames’ (Minsky, 1975), which
are schemas originally employed in artificial intelligence (AI) models of vision. Schank
and Abelson (1977) identify a particular kind of schema known as the ‘script’. A
script is a sequence of abstracted actions which occur in common events, with slots
for specific instances. For example, a ‘restaurant’ script contains a sequence of gen-
eral scenes such as entering, seating, ordering, paying and leaving, along with spe-
cific exceptions (e.g. the time someone shouted for service). Schank and Abelson
(1977) also identify ‘plans’, which determine the inferences required for understanding
situations for which there are no stereotypical event sequences. Scripts describe
action sequences which have occurred many times (e.g. visiting a restaurant), whereas
plans describe the production of novel action sequences (e.g. robbing a liquor store).
The inferences determined by a script are based on prior knowledge, whereas plan
inferences are based on achieving goals in the absence of task-specific knowledge. The
processes involved in ‘planning’ have been described in a number of Al models (e.g.
Wilensky, 1981), though there have been surprisingly few empirical investigations of
planning. Somewhat confusingly, the programming plans (Soloway and Erlich, 1984)
discussed in Chapter 3.2 are closer to scripts of programming knowledge.

Schema theories have been used to account for a large number of cognitive pro-
cesses, such as memory storage and retrieval (e.g. Rumelhart and Norman, 1983),
language understanding (e.g. Schank and Abelson, 1977) and problem solving (e.g.
Gick and Holyoak, 1983). There is a danger of the term ‘schema’ being too nebulous
to be of use, and there is a tendency to use the terms ‘schema’ and ‘knowledge’ inter-
changeably. Therefore, it is important for schema theories of programming knowledge
to specify explicitly the mechanisms which mediate the acquisition and use of knowl-
edge. Also, a schema theory must be descriptive rather than prescriptive, In other
words, it must model the knowledge that programmers really use rather than the
knowledge they ought to use.

1.2.2 Production rule representations

Another representation is the ‘production rule’. Production rules emphasize the pro-
cess aspects of cognition, whereas schemas emphasize the representational aspects.
A production rule consists of two propositions forming a ‘condition-action’ pair, one
of which is a goal or desired cognitive state, the other being the action or subgoals
required to achieve that state. Figure 2 shows examples of some production rules
used in Lisp programming (Anderson et al., 1984). If the conditions of a production
rule are satisfied by matching them with a perceptual input, retrieval of knowledge
from a long-term store, or by the action of another rule succeeding, then the rule
is fired or ‘activated’ (i.e. made accessible to conscious attention) and its action 1s
undertaken. The successful firing of a production rule represents a cognitive step.
As an example from Figure 2, a novice learning Lisp by solving textbook exercises
might use the production rule P1 as the first step in ‘writing a new function. The
conditions would be matched by the existence of a goal to write a function and the
prescence of a previous example in the textbook, and the actions to compare the ex-
ample to the required function and then map the example’s solution onto the present
problem would be carried out. Production rules are described by Anderson (1987a)
as a programming language for cognitive software, in that sets of rules combine to
give a ‘production system’ for undertaking a cognitive task, where the action of one
rule provides the conditions for firing the next rule. Production systems have been
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A general production rule used by novices in the declarative stage

P1: IF the goal is to write a function and there is a previous example
THEN set as subgoals
1. to compare the example to the function
2. map the example’s solution onto the current problem.

................................................................................

Compilﬁtion of a production rule for list processing
Proceduralization

P2: IF the goal is to code a relation defined in an argument
and there is a Lisp function that codes this relation
THEN use function with the argument and set as a subgoal to code the argument.

Becomes;

P3: IF the goal is to code the first member of a list
THEN use CAR of the list and set as a subgoal to code the list.

Composition
Given another production rule P4;

P4: IF the goal is to add an element to a list
THEN use CONS on the element and the list

and set as subgoals to code the element and to code the list
Adding P3 to P4 gives;

P5: IF the goal is to add the first member of one list. to another list
THEN CONS the CAR of the first list to the second list
and set as subgoals to code the first list and to code the second list

................................................................................

A specific production rule for experts in the procedural stage

P6: IF the goal is to check that a recursive call to a function will terminate
and the recursive call is in the context of a MAP function
THEN set as a subgoal to establish that the list provided to the MAP function
will always become NIL after some number of recursive calls.

Figure 2:  Some possible production rules underlying Lisp programming skills at different
stages of skill acquisition, based on Anderson et al. (1984). In each production rules the
‘IF ...” antecedents give the conditions for the rule to be fired, and the ‘THEN ..’ consequents
give the actions that occur if the consequents are met.
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proposed to underlie many cognitive processes, notably those involved in problem
solving (e.g. Anzai and Simon, 1979).

Production rules are frequently used to represent ‘procedural’ knowledge, that is
knowledge about how to carry out a cognitive task, whereas schemas are often used
to represent ‘declarative’ knowledge, that is knowledge about what constitutes a task
domain. This parallels a distinction (described in Chapter 1.1) between declarative
Janguages (e.g. Prolog) and procedural languages (e.g. Pascal). It has been claimed
that a declarative style is more natural than a procedural style of knowledge repre-
sentation, and hence that declarative programming languages have advantages over
procedural languages (e.g. Miller, 1974). However, others suggest that the preferred
style is context dependent (e.g. Rumelhart and Norman, 1983; Gallotti and Ganong,
1985). A related issue is the extent to which a person has conscious access to their
knowledge. Whilst declarative knowledge is available to conscious inspection and
control, procedural knowledge is applied automatically without conscious control.
Again, the distinction is not absolute, and depends on the task and level of expertise
involved. The issue of control over cognitive processing has a number of implications
for programming, and is discussed in the next section.

2 Constraints on cognitive skills

Programming is a ‘high-level’ cognitive task, in that it involves problem solving
and linguistic skills which require a number of ‘lower-level’ cognitive tasks to be
carried out at the same time. These include the perception, attention to relevant
aspects, and short-term storage of task information, and the retrieval of relevant
long-term knowledge. Performance in these tasks dictates a number of constraints
on programming performance.

2.1 Resources for cognitive processing

Increasingly, theories viewing attention and short-term memory as isolated opera-
tions which restrict perceptual input (e.g. Broadbent, 1958) have been replaced
by theories of limited ‘resources’ which restrict both input and output. For exam-
ple, early theories of memory (e.g. Atkinson and Shiffrin, 1968) identified a passive
short-term store with a limited storage capacity of approximately seven items (Miller,
1956), and a long-term store of unlimited capacity. Recent accounts maintain the
distinction between short- and long-term stores, but suggest a more active role for
short-term memory. Baddeley and Hitch (1974) propose a ‘working memory’ model
of short-term.memory. The main component is a central executive, which allots
limited resources to either storage or processing. The central executive is served
by sub-systems for rehearsal of verbal and spatial information. A working memory
system is embodied in a number of cognitive theories (e.g. Anderson, 1983).

The exact nature of cognitive resources is unspecified, but the term implies a
limited availability of conscious effort and storage capacity. The performance of
two demanding tasks at the same time is difficult, not because information from
only one task is available, but because the cognitive system lacks the resources to
perform both tasks. Since the number of processes involved in programming is large,
attentional and memory resources must be divided up amongst competing processes,
thereby limiting performance. Resource theories may explain the source of some
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programming errors. For example, insufficient short-term memory resources have
been suggested to account for errors made by novice Lisp programmers (Anderson and
Jefiries, 1985). A resource account of programming errors implies that performance
can be improved if the resource requirements of a task are decreased. For example,
using appropriate perceptual cues in notations may reduce the attentional demands
of program comprehension (this is discussed further in Chapter 2.2).

2.1.1 Controlled and automatic processes in attention

Shiffrin and Schneider (1977) propose a theory of ‘controlled and automatic pro-
cesses’ in attention. Automatic processes are analogous to compiled programs in
that they are carried out directly in terms of the cognitive implementation or hard-
ware, whereas controlled processes are like interpreted program code that requires
translation into machine-specific terms at run-time. Controlled processes require at-
tentional resources, are of limited capacity, and can be used in different contexts.
Automatic processes do not require attention, are not capacity limited, but like com-
piled programs are not modifiable. For example, an expert Lisp programmer may
write the syntax of a function definition as an automatic process, but may have to
use controlled processes to specify the function itself. In the same way that compiling
code speeds up the running of a program, repeated practice reduces the attentional
demands of a task by allowing previously controlled processes to be automated.

The activation of automatic processes precludes conscious access to cognitive
processing, thereby preventing the monitoring of task performance. As a conse-
quence, the inappropriate activation of automatic processes may lead to errors in
performance (Reason, 1979). Automated knowledge of programming skills releases
resources which can be used for other programming tasks. However, automatic pro-
cesses are restricted in their application, and their use in programming tasks which
differ from the learning domain may lead to errors. For example, a common error
made by Prolog novices who are experienced in Lisp programming is to add unnec-
essary brackets at the beginning of Prolog program clauses. This kind of error is
minor if there are sufficient resources for the controlled processes required for debug-
ging, but it becomes more significant when resources are tied up by other processing
demands.

2.2 The contents of memory :

A number of factors affect the encoding, storage, and retrieval of long-term memories
(for a review, see Eysenck, 1984). Encoding is affected by the depth of processing tak-
ing place as information is presented, as well as the distinctiveness of the information
to be encoded. Storage is affected by the nature of information rehearsal, elaborative
rehearsal being move effective than maintenance rehearsal. Retrieval of information
has been shown to be a function of the cues available both at encoding and retrieval
time, and the nature of the task (e.g. whether recognition or recall is required). A
distinction is often made between semantic memories which contain general knowl-
edge about the world, and episodic memories which contain personally encountered
events and experiences linked to specific times and places. A strong division between
the two memory systems (e.g. Tulving, 1985) is contentious. In programming re-
search, usually only semantic memory is examined, although structures in semantic
memory must be constructed from individual episodes. This is important in learning
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programming, where schematic knowledge of programming concepts is developed by
generalizing across a number of repeated learning episodes.

2.2.1 Semantic networks

One of the most important representational systems proposed for long-term mem-
ory is the ‘semantic network’ (Collins and Quillian, 1970). In a semantic net-
work, semantically related propositions are represented as nodes linked together in a
hierarchical fashion. So, in a network of semantic knowledge about animals, ‘animal’
would be above ‘bird’, which would be above ‘robin’, and so on. To store information
with minimal redundancy, features common to a number of concepts are associated
with the highest level they have in common, and lower-level nodes inherit all the
features of higher-level nodes. For example, information such as ‘can fly’ and ‘has
feathers’ would be associated with the ‘bird’ node, but could be accessed from lower
nodes such as ‘robin’. A parallel can be drawn between the concept of inheritance in
semantic networks and in object-oriented programming languages such as Smalltalk
(Goldberg and Robson, 1986), where changes made in parent classes of objects are
propagated to subclasses. Inheritance and access to semantically related nodes in
semantic networks occur through ‘spreading activation’ (Collins and Loftus, 1975),
where activation of a source node spreads over time to allow retrieval of information
embodied in other related nodes (for a discussion see Anderson, 1984). Semantic

networks represent a long-term store of declarative knowledge in Anderson’s (1983)
ACT* model.

2.2.2 Schemas in semantic memory

At a higher level of organization, it has been proposed that semantic memory is
organized into schemas (as discussed earlier). Alba and Hasher (1983) identify four
features of schemas which dictate the contents of semantic memory. These are selec-
tion, abstraction, interpretation and integration. Activation of an existing schema
selects new information for encoding, restricting it to salient or atypical events. For
example, giving advance information to activate a relevant schema improves the re-
call of a complex abstract passage (Bransford and Johnson, 1972). Information in
schemas is abstracted so that only the semantic content is stored and episodic details
are lost, often leading to distortions in retrieval (Bransford et al., 1972). Schemas
use default values to make inferences and simplifications, and new information is in-
tegrated with the products of these interpretations to update or form new schemas.
Alba and Hasher (1983) suggest that evidence for schema models of memory is
equivocal. They argue that schemas cannot account for the richness of recall, and
that semantic memory must contain an episodic component. However, schemas ex-
plain the flexibility of cognitive processing in the absence of complete information.
For example, schematic organization accounts for the chunking of expert knowledge
found in program recall studies (e.g. Adelson, 1981).

3 Programming as a problem-solving skill

" Newell and Simon (1972) identify four features of a problem: the initial state; the

goal state; the operators available for moving from the initial state to the goal;
and restrictions on the operators. Programming may be seen as a problem-solving
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activity, where the initial state is the problem for which a program is required, and
the goal state is both the solution which the program can calculate, and also the
program itself. The operators consist of the syntactic and semantic features of the
language and the cognitive skills of the programmer, and the operator restrictions
are imposed by limitations of the language and the problem description. Problems
are often described as having a ‘state space’, which consists of all the features of a
problem, and all the possible moves that may be made between initial and goal states.
This may be contrasted with a ‘problem space’ (Simon, 1978), which is the mental
representation of a problem, together with the problem solver’s prior knowledge. A
goal of programming research is to examine differences between the state space and
the problem space of the programming task.

3.1 Acquisition of cognitive skills
3.1.1 Expert-novice differences

One approach to studying cognitive skills is to compare the performance of novices
and experts. Much of the research on expert-novice differences has examined pro-
gramming, although other domains have been studied (e.g. physics, chess and
medicine). Novices and experts differ in many aspects of problem solving, notably in
the ways they represent problems, the strategies they choose for tackling problems,
and the ways in which their knowledge about problem domains is organized. For
example, differences in problem representation have been identified by Weiser and
Shertz (1983). They found that novice programmers group programs according to
superficial characteristics such as the application area, whereas experts group prob-
lems according to algorithms. Larkin (1981) found strategy differences, where novices
solving physics problems tend to work backwards from the problem goal, whereas ex-
perts work forwards from the problem givens to the goal. Anderson (1985) suggests
that in programming novices work forwards, writing a program line by line, whereas
experts work backwards, breaking the program goal into modular units. Physics
problems have a large number of givens, which are more predictive of the solution
than are the problem goals. In programming, the problem givens are programming
languages themselves, which are less predictive of the solution than the programming
goal.

An expert-novice difference with important implications for programming re-
search is the apparent schematic organization of expert knowledge (discussed further
in Chapter 3.1). For example, studies of the recall of chess positions by novices and
experts (Chase and Simon, 1973) showed that grandmasters recall game positions
from long-term memory as ‘chunks’ of information. Grandmasters had greater recall
of positions from realistic games than novices, but were no better than novices at
recalling random positions. Similarly, McKeithen ef al. (1981) found that experts
recalled more lines from real Algol programs than novices, but there was no differ-
ence between experts and novices in the recall of scrambled programs. The difference
between experts and novices increased over a number of trials, which contrasts with
the findings of Chase and Simon (1973), who found that the advantage for experts
declined. Grandmasters have chunks representing whole chess boards, but programs
are too complex to be represented by individual chunks. Therefore it 1s necessary to
reconstruct a program over a number of trials, by accessing schematic knowledge of
programming concepts.
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3.1.2 The ACT* model of skill acquisition

Another method of investigating cognitive skills is to study the changes an individual
goes through in acquiring a skill. Anderson’s (1983) ACT* model of skill acquisition
is based on studies of individuals acquiring skills such as programming. Anderson
proposes three stages in acquiring a cognitive skill. The first is a ‘declarative’ stage,
where novices apply very general production rules to the declarative information
given in a task or stored in long-term memory in order to solve a problem. The
declarative stage does not commit the learner to task-specific procedures at too early
a stage. However, the demands placed on the capacity of working memory by using
general production rules requiring large amounts of declarative knowledge mean that
performance is slow and error prone. A second stage of ‘knowledge compilation’
reduces the demands on the capacity of working memory by developing task-specific
rules. This is achieved by ‘composition’, where production rules are combined into
a single rule, and ‘proceduralization’, where task-specific information is added to
production rules. The final stage is ‘procedural’ learning, where production rules
are strengthened by a process of ‘tuning’, in which the speed and accuracy of rule
application increases with practice. '

Anderson et al. (1984) investigated the acquisition of Lisp programming skills
by studying protocols (subjects’ verbal reports and keystrokes made during problem
solving) of novices learning to write functions. Figure 2 illustrates some examples
of production rules which underlie different stages in the acquisition of Lisp pro-
gramming skills. P1 is a rule applied by novices in problem solving by a process
of analogy. A function is constructed by mapping the declarative knowledge of an
example solution onto the declarative task information. Anderson (1987a) describes
general production rules as ‘weak method problem solutions’. These are used when
a novice has no task-specific production rules, and must use very general methods
to solve novel problems. Another example of a weak method problem solution is
working backwards from a given solution. Knowledge compilation is illustrated by
rules P2 to P5. Proceduralization of P2 produces a rule P3 which is specialized for
operating on the head of a list. The composition of rules P3 and P4 produces a
single rule P5 for adding the first element of one list to another list. P6 is an ex-
ample of a ‘tuned’ rule that an expert would possess. Knowledge compilation may
be characterized as ‘success-driven’ learning, that is, learning that results from the
successful application of production rules. Anderson (1987b) argues that compilation
often leads to one-trial learning, and that verbalization of performance is not possible
once a procedural stage has been reached. Also, different production rules underlie
different procedural tasks carried out in the same declarative domain. For exam-
ple, McKendree and Anderson (1987) found that the skills acquired in learning to
evaluate simple Lisp functions did not transfer to the task of writing Lisp functions.

3.1.3 The ‘dynamic memory’ approach to skill acquisition

The ‘success-driven’ learning in ACT* contrasts with ‘failure-driven’ learning in
Schank’s (1982) ‘dynamic memory’ theory, which is an extension of Schank and
Abelson’s (1977) scripts theory. Figure 3 shows a script of a possible program de-
bugging session. Each event in the script is an instantiation of a ‘scene’, which is
a generally defined sequence of actions. Scenes which commonly occur together are
grouped into scripts by ‘memory-organization packets’ (M OPs) which represent high-
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Figure 3: A hypothetical model of knowledge a novice might employ in a program
debugging task, based on Schank’s ‘dynamic memory’ theory (Schank 1982, p. 89). The
MOPs (Memory Organization Packets) show two different sources of high-level knowledge
that might generate expectancies in a debugging task. These MOPs may also guide per-
formance in other tasks. For example, the MOP ‘M-correction’ might be accessed when
mending a car, and the MOP ‘M-trial and error’ might be accessed when solving a maze
puzzle. The five scenes generated by the MOP ‘M-correction’ represent events that gener-
ally occur together when correcting objects that function incorrectly. This MOP is linked
to other MOPs which dictate strategies for making changes, such as the MOP ‘M-trial and
error’. The four scenes generated by the MOP ‘M-trial and error’ represent a possible novice
debugging strategy, which is to generate potential corrections randomly and test them for
success. The expectations raised by each scene in the script guide the debugging process.
When an expectation fails, the MOP that organizes that scene must be adjusted to account
for the failure. For example, the absence of an error message in running a faulty program
may indicate a semantic rather than syntactic error. The novice must learn to discriminate
between these sources of bugs, by adding additional scenes to the relevant MOPs.
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Jevel knowledge about scripted events. Figure 3 illustrates how MOPs which have
different semantic contents (e.g. ‘correction’ and ‘trial and error’ MOPs) are used in
the same task. MOPs control the learning of new skills by generating expectations
about events. Learning is ‘failure driven’ in that it takes place when an expectation
fails, under which circumstances the causal chain of events that led up to the failure
is traced, and the MOP is then altered. ACT* and dynamic memory theory are
not necessarily mutually exclusive, but may describe the learning of different skills.
For example, learning to construct program code may be success driven, whereas
debugging and testing may require failure-driven learning.

3.1.4 Transfer of problem-solving skills

Limitations of knowledge organization, representation and strategy provide major
constraints on the problem space of a problem solver (for a review see Kahney, 1986).
The acquisition of expertise overcomes these constraints and allows experts to tackle
a broader range of related problems. One mechanism for doing this is to transfer
skills from one problem domain to another. Transfer is an increasingly important
area of research in problem solving, as well as in programming (discussed in Chap-
ter 2.4). For example, Gick and Holyoak (1980) found that subjects were able to
use an analogous example problem with a worked solution to solve Duncker’s (1945)
‘radiation problem’. Gick and Holyoak (1983) suggest that subjects learn to solve
similar problems by using analogical transfer mechanisms, and develop schemas for
particular classes of problem by ‘schema induction’. Schemas are induced by form-
ing an analogy between two or more training problems and solutions. A schematic
representation of an abstracted solution is formed, which can then be evoked by the
presence of appropriate context in a new problem.

Not all experiments have found successful transfer. Reed et al. (1985) found
that transfer occurred only between equivalent algebra problems, and not between
similar problems requiring a small manipulation of the problem solution. Positive
transfer was found between similar problems, however, when a complex practice
problem preceded a more simple transfer problem. This suggests that the transfer
attributable to an analogy between equivalent practice and transfer problems is based
on a shallow understanding of the problem features. When a deeper understanding
of the problem is required, it is necessary to give practice problems where all the
steps of the transfer problem solution are explicated. The conditions under which
transfer may occur have important implications for training programming skills. For
example, negative transfer of performance arising from inappropriate analogizing
was found between Prolog comprehension tasks with different thematic content and
representation (Ormerod et al., 1990). The real-world familiarity of the training tasks
prevented subjects from developing domain-independent comprehension strategies.
Similarly, White (1988) found evidence of inappropriate transfer of knowledge by
Pascal experts in solving Prolog debugging tasks. In other words, the Prolog task
was carried out in terms of the subjects’ Pascal knowledge.

3.2 Deductive reasoning

The process of constructing and testing a computer program may be compared to
constructing and testing hypotheses by deductive reasoning. Deductive reasoning has
traditionally been separated from other problem-solving activities, partly because
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formal ‘competence’ models exist for this skill. Piaget amongst others proposed
that formal logic underlies human reasoning abilities (for a review see Gross, 1985),
such that reasoning is carried by applying the rules of formal logic to propositions,
independent of their real-world content or representation, to derive inferences. Thus,
a programmer should be able to derive a program specification by formal logical
reasoning, a process which should be unaffected by the programming domain or
language notation. Indeed, some proponents of logic programming (e.g. Kowalski,
1982) have suggested that languages such as Prolog are closer to human-reasoning
processes than conventional languages such as Pascal, because of an assumed match
between the formal logic underlying Prolog and human reasoning. '

A large body of empirical evidence exists showing systematic biases in reason-
ing, determined by the thematic content and representation of reasoning tasks (for
a review see Evans, 1986). In the context of programming, this evidence is consis-
tent with evidence of the influence of prior experience and problem representation
on programming (e.g. Ormerod et al., 1986; White, 1988). It also falsifies the argu-
ments of Kowalski (1982) about the psychological advantages of logic programming
languages. Biases in reasoning cannot be accounted for by a theory based on for-
mal logic, but instead require a theorical explanation based on observed performance
rather than logical competence. For example, Cheng and Holyoak (1985) found
that a ‘permission’ rule such as ‘if you are to drink alcohol, then you must be over
eighteen’ facilitated logical performance on Wason’s ( 1966) selection task, where sub-
jects must test the truth of the rule by selecting falsifying instances. They suggest
that reasoning is carried out, not by logical inferences, but by ‘pragmatic reasoning
schemas’ elicited by statements involving permission, obligation, causation and so on.
These are generalizable knowledge structures containing rules for generating useful
inferences.

3.2.1 ‘Mental models’ theory

An influential theory which accounts for reasoning and language. understanding with-
out recourse to logic is Johnson-Laird’s (1983) ‘mental models’. In its most general
form, a mental model is a mental representation of a problem space. It differs from
state space and schematic representations in that, although individual units of in-
formation may be represented as propositions, a mental model is constructed out of _
propositions to form an analogue of the real world representation of a problem. In
other words, a mental model has the same functional nature and structure as the
system it models. For example, Mani and Johnson-Laird (1982) found that subjects
recall the semantic content of spatial descriptions consistent with only one layout
(e.g. ‘the spoon is to the left of the knife; the plate is to the right of the knife’,
etc.), but recall verbatim details of spatial descriptions where a number of layouts
are possible. This suggests that subjects construct a mental model of determinate
descriptions, but resort to rote learning of unconnected propositions in indeterminate
descriptions.

Johnson-Laird (1983) offers a ‘procedural semantics’ for the construction and
searching of mental models in working memory, which allows errors in performance
to be predicted on the basis of the order in which propositions are added to a mental
model, and the number of alternative models which must be constructed. A general
use of the term ‘mental model’, where it has the same relation structure as the real-
world domain but a procedural semantics is not specified, is adopted by many theo-
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rists in problem solving (e.g. Gentner and Stevens, 1983), and in human-computer
interaction (e.g. Manktelow and Jones, 1987). The creation and testing of mental
models may explain aspects of expert programming skills, such as the interweaving
of a number of programming plans into a single program (e.g. Rist, 1986).

3.3 Psycholinguistics and programming research

The review has for reasons of space been highly selective. The most obvious omission
is a discussion of psycholinguistics (for a recent review, see Garnham, 1985). In part
this is because many important concepts are covered in other topics, which illustrates
how cognitive processes cannot be neatly partitioned as they were in early cognitive
models. For example, schematic representations of knowledge have been used to ac-
count for text comprehension (Kintsch and van Dijk, 1978). Similarly, mental models
theory has been used to account for the comprehension of sentences which require
implicit inferences (Garnham, 1987). A competence versus performance debate has
also occurred with language as well as reasoning (e.g. Chomsky, 1965). Theories of
language understanding tend to emphasize either syntactic analyses (e.g. Fodor et
al., 1974) or semantic analyses (e.g. Schank, 1972). Programming research would
seemn amenable to a similar division of research areas. However, programming tends
to be studied as a problem-solving rather than a linguistic activity, with notable ex-
ceptions (e.g. Sime et al., 1977). Thus the focus of research into programming is not
on syntactic features of different languages, but on semantic programming knowledge.
However, as in recent theories of language understanding (e.g. Johnson-Laird, 1983),
the interaction between semantic and syntactic components of the programming task
has recently been highlighted (e.g. Arblaster, 1982).

4 Conclusions

The review of cognitive psychology presented in this chapter highlights the ap-
proaches to understanding human cognition which are of special relevance to pro-
gramming research. Concepts that recur in many cognitive theories include schemas,
production systems, limited resources, automation of skills with practice, working
memory, semantic networks and mental models. Most employ propositional repre-
sentations of one form or another, in which information is represented at a symbolic
level.

A number of cognitive theorists (e.g. Fodor, 1983; Marr, 1982) argue that psy-
chologists should concentrate their efforts on understanding processes such as per-
ception, which appear to be carried out effortlessly and without error. They suggest
that one should study the processes people are good at before tackling areas such
as problem solving where people are slow and error prone. From an applied psycho-

-logical perspective, it is just these areas where psychological research is at its most
useful. Therefore, the motivations for psychological research into programming are
strong, both for making programming an easier task, and for adding to a relatively
unstable area of psychological theory.
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