
Psychology of Programming Interest

Group Annual Conference 2012

London Metropolitan University, UK

21 - 23 November 2012

Proceedings

Edited by

Yanguo Jing

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 1 of 192

Message from the Chair

Welcome to the Psychology of Programming Interest Group (PPIG) Annual Conference 2012, taking

place at London Metropolitan University, London, UK on 21
st
 – 23

rd
, November 2012.

The Psychology of Programming Interest Group (PPIG) was established in 1987 in order to bring

together people from diverse communities to explore common interests in the psychological aspects

of programming and/or in computational aspects of psychology. The group attracts cognitive

scientists, psychologists, computer scientists, software engineers, software developers, HCI people et

al., in both universities and industry.

This year, the annual conference involves a wide range of topics. The paper presentations were

divided into seven groups spanning across the three days: the learner’s mind, personality, AI and

knowledge representation, professional expertise, learning to program, tools and their evaluation part

1 and part 2. Authors come from eight countries including Brazil, Finland, Germany, Ireland, Sweden,

Switzerland, Uruguay, and the UK.

The conference continues a tradition of hosting a doctoral consortium specifically to allow research

students in the relevant disciplines to come together, give presentations and exchange ideas. This year,

we are able to accept 11 submissions for this programme.

On the final day, we welcome the keynote from Alan Blackwell from Cambridge University with the

title: Extreme notation design – creating a hybrid of Photoshop and Excel. This is followed by a live

demo and a panel discussion from Alex McLean, Thor Magnusson, Sam Aaron and Alan Blackwell.

We are grateful to the members of the technical committee, organizing committee, doctoral

consortium chair and the reviewers for their hard work preparing this high quality technical program.

Finally, we would like to thank the authors and speakers, without whom such a high quality technical

program would not be possible at all.

Yanguo Jing

Page 2 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Contents

Message from the Chair ………………………………………………………………………. 2

Organization.……………………………………………….…………………………………...5

Keynote …………………………………………………………..…………………………….6

Session 1: The Learner’s Mind …………………….……………...…………………..7

A Study about Students' Knowledge of Inductive Structures ………………….………8

Sylvia da Rosa and Alejandro Chmiel

Gaze Evidence for Different Activities in Program Understanding …………….……..20

Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, Pierre Dillenbourg

Session 2: Personality …………………………………………………………….………..…32

Computer Anxiety and the Big Five …………………………………….…………..…33

Sarah J Crabbe and Peter Andras

 In search of practitioner perspectives on ‘good code’ …………………….………...…45

Gail Ollis

Session 3: AI and Knowledge Representation ……………………………........................…48

Schema Detection and Beacon-Based Classification for Algorithm Recognition…49

Ahmad Taherkhani

 Some Reflections on Knowledge Representation in the Semantic Web …………...…61

John Kirby

Session 4: Expertise ………………………………………………………………………..…69

Thrashing, Tolerating and Compromising in Software Development ………….......…70

Tamara Lopez, Marian Petre, and Bashar Bashar Nuseibeh

 Conducting Field Studies in Software Engineering: An Experience Report ….........…82

Rebecca Yates

Session 5: Learning to Program …………………………………………………………..…90

 Comments on the papers from the session on Learning Programming ……………….91

Ben du Boulay

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 3 of 192

Teaching Novices Programming Using a Robot Simulator: Case Study Protoco l...…93

Louis Major Theocharis Kyriacou Pearl Brereton

 Observing Mental Models in Novice Programmers …………………………………105

Richard Bornat, Saeed Dehnadi and David Barton

Investigating the role of programmers’ peripheral vision: a gaze-contingent ……....112

tool and an experiment proposal

Roman Bednarik and Paul A. Orlov

Learning Programming by using Memory Transfer Language (MTL) without …….118

the Intervention of an Instructor

Leonard J. Mselle

Session 6: Tools and Their Evaluation ………………………………………………….…127

Evaluation of Subject-Specific Heuristics for Initial Learning …………………...…128

Environments: A Pilot Study

Fraser McKay and Michael Kölling

Exploring the design of compiler feedback ………………………………….......…139

Thibault Raffaillac

 Evaluating application programming interfaces as communication artefacts…..…..151

Luiz Marques Afonso, Renato F. de G. Cerqueira, and Clarisse Sieckenius de Souza

 Sketching by Programming in the Choreographic Language Agent ……………….163

Luke Church, Nick Rothwell and Marc Downie

 A Field Experiment on Gami cation of Code Quality in Agile Development …..…175

Christian R. Prause, Jan Nonnen, and Mark Vinkovits

Doctoral Consortium ……………………………………....……………………………...187

Page 4 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Organization

Programme Chair and Local Organiser

Yanguo Jing, London Metropolitan University

Organising Committee:

Maria Kutar University of Salford

Thomas Green, University of York

Yanguo Jing, London Metropolitan University

Chair of the Doctoral Consortium

Ben du Boulay, University of Sussex

Technical Committee

Alan Blackwell, University of Cambridge

Alistair Edwards, University of York

Babak Khazei, Sheffield Hallam University

Ben du Boulay, University of Sussex

Chris Douc, Open University

Chris Exton, University of Limerick

Christ Roast, Sheffield Hallam University

Elizabeth Uruchurtu, Sheffield Hallam University

Enda Dunican, Institute of Technology, Carlow

Helen Sharp, Open University

Jasna Kuljis, Brunel University

John Rooksby, St Andrews University

Jorma Sajaniemi, University of Joensuu

Judith Good, University of Sussex

Judith Segal, Open University

Lindsay Marshall, University of Newcastle upon Tyne

Marian Petre, The Open University

Maria Kutar, University of Salford

Markku Tukiainen, University of Joensuu

Sally Fincher, University of Kent

Susan Wiedenbeck, Drexel University

Thomas Green, University of York

Yanguo Jing (London Metropolitan University

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 5 of 192

Keynote

Alan Blackwell developed his first commercial visual and end-user program-

ming tools in the early 1980s, and has worked with these technologies ever

since. This included a mid-career PhD investigating the psychology of visual

programming with Thomas Green at the MRC Applied Psychology Unit.

Since 1998, Blackwell has been at the Cambridge University Computer Labor-

atory, where he teaches design-related topics, and directs the Crucible network

for research in interdisciplinary design. He and members of his research group

have consulted on end-user programming and interdisciplinary design topics

for international research consortia and corporations including Microsoft,

Google, Hitachi, Intel and Autodesk. Blackwell collaborates widely with so-

cial scientists and creative artists, and has published over 100 articles and books on design, visual lan-

guages and end-user programming. The Palimpsest system was created during sabbatical leave at the

University of Auckland in 2012.

A decade of collaborating closely with artists inspired two unusual starting points for a programming

language research project. The first of these was: what would a programming language look like if it

was designed specifically for visual artists? The second was: if a programming language designer were

to work in the same manner as an artist, would the resulting product actually work? Fortunately, the

answer to these questions turned out to be: 1) rather interesting; and 2) yes. However, although inspired

by the arts in both goals and methods, the Palimpsest system is perhaps even more interesting as a case

study in language design that has been informed throughout by Psychology of Programming research.

In particular, it illustrates the use of attention investment strategies to support first steps in program-

ming, and the distinctive notational choices that result from constraints such as users who prefer not to

use a keyboard. This talk will centre around a demonstration of the Palimpsest system, with a discus-

sion of its theoretical motivations and trade-offs from a Psychology of Programming perspective. In

response to audience demand, the final part of the talk will either discuss the research methods applied

during the implementation of the system, or outline the technical factors involved in implementing sys-

tems of this kind.

Extreme notation design – creating a hybrid of Photoshop and Excel

Page 6 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Paper Session 1

The Learner’s Mind

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 7 of 192

A Study about Students’ Knowledge of Inductive Structures

Sylvia da Rosa1 and Alejandro Chmiel2

1 Instituto de Computación - Facultad de Ingenieŕıa
Universidad de la República

Montevideo, Uruguay
darosa@fing.edu.uy

2 Instituto de Filosof́ıa - Facultad de Humanidades y Ciencias de la Educación
Universidad de la República

Montevideo, Uruguay
alejandro.chmiel@gmail.com

Abstract. This article describes two stages of a study carried out with pre-university students,
to gather information about the learning of the concept of inductive structures. The study comple-
ments two previous investigations focusing on the design of recursive algorithms, from which the
study of students’ understanding about the input structures of the algorithms arises as a necessity.
The theoretical framework used in the three studies is the epistemology of Jean Piaget, specially
works about recursive reasoning on the series of natural numbers. Our methodology of research fol-
lows principles of Piaget’s experiments in which the clinical method from psychiatry was adopted. In
this sense, the instructional instance is a tool for obtaining information about cognitive processes.
In the first stage, two instructional instances with eight voluntary participants were conducted,
in which a problem about an inductively defined set is presented and some questions are posed.
The analysis of the responses of the students reveals some difficulties casting doubts on students’
conceptual knowledge on the series of natural numbers. Investigating this point is the goal of the
second stage where one instructional instance is conducted with seven students, and new informa-
tion is gathered and analyzed. The results of current and previous studies will be used to elaborate
didactic material to introduce inductive definitions, recursive algorithms and proof by induction at
pre-university level. This article describes the main theoretical guidelines, the development of both
stages of the study and the analysis of the difficulties and progress observed. Some conclusions and
future work are included.

Keywords: Data structures, induction-recursion, constructivism.

1 Introduction

In [11] Piaget and colleagues give empirical evidence about the psychogenetic evolution of
mental structures1 corresponding to reasoning by recurrence on the series of natural numbers.
They show that the source of both calculating on the series of natural numbers (knowledge
of algorithms) and inferring properties about its elements (knowledge of proof by induction) is
inherent to the construction of the series of natural numbers (knowledge of inductive definitions).
Regarding the meaning of induction and recursion in computer science and in mathematics,
it can be said that this is a single concept nourished by knowledge on three areas: inductive
definitions of structures, recursive algorithms defined on said structures and proofs by induction
on the elements of those structures. We use the expression induction-recursion to mean that
concept and our motivation follows from tenets of above cited work. In previous works [4, 3]
we apply those principles to learn about the relationship between the learning of recursive
algorithms on inductive structures different from natural numbers, and students’ understanding
of said structures. We have found important obstacles on the latter which play a central role in
the learning of induction-recursion.

Accordingly to those results the goal of this work is to learn about the construction by the
students of the concept of structure isomorphic to natural numbers, that is to say, generated
1 The term structure has two different meanings in this paper: on the one hand it refers to the mental structures

as defined by Piaget (schemes) and on the other hand it refers to inductive structures common in mathematics.

Page 8 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

by inductive rules: there are initial elements (base case rule), other elements are generated by
the application of constructive functions on previous elements (inductive rule) and these are
the unique elements of the structure (clousure rule).

This kind of study is relevant for computer science education research because there is a
broad consensus about the relevance of induction-recursion in computer science studies and,
at the same time, it is considered both by students and by teachers, hard to learn and teach.
Investigations about the learning and teaching of the concept of induction-recursion can be found
at least since the 1970s, both in mathematics education and in computer science education based
on theories as mental models, phenomenography and constructivism.

The term mental model is used by cognitive psychologists such as Johnson-Laird to define
cognitive representations of knowledge. Karl Schwamb in ”Mental Models: A Survey”(1990),
indicates that mental models are subjects’ representations of knowledge about particular situ-
ations or phenomena. In the case of learning recursion, several authors refer to mental models
to describe the knowledge that the students acquire when introduced to the concept, in most
of the cases using some programming language or environment. A mental model is said to be
viable if it allows the students to accurately and consistently represent the mechanism of re-
cursion and is said to be non viable if their representations show misconceptions. On the other
hand, a conceptual model is designed by the teacher to teach the concept of recursion, while
a mental model represents the understanding that the learner constructs. Within this theory,
several misconceptions about the flow of control or the behavior of recursive procedures and its
relationship to iteration are detected and classified in active, step, syntactic or magic, copies
and loop mental models, both for the case of novice and expert students [12, 8, 7, 13].

In [2] the author follows a phenomenographic tradition of research developed in Sweden,
based on exploring and describing the cognitive relations between individuals and the world.
In the chapter about recursion, she describes that this topic is taught to students using the
programming language SML. Then, the students are asked to solve some problems and answer
some questions about their solutions and their works are analyzed and classified into three
conceptions of recursion: as a construct in SML, as repetition and as self reference.

Constructivist researchers both in mathematics education and in computer science education
often refer to the theory of Jean Piaget. For instance in [1] the author says ”these concepts come
from the seminal work of Jean Piaget” referring to knowledge construction (page 4). In [5] the
learning of induction is described by mathematics education researches using Piaget’s theory,
genetic epistemology. Works like this have influenced our adoption of some general principles of
that theory, regarding the construction of concepts and specific explanations about the process
of generalizing assimilation [9, 10]. The main ideas are briefly described below.

– The processes involved in the construction of knowledge are associated with mental struc-
tures (schemes) which are generated as a result of, and operate with mental structures
already formed, for example, in relation to a new problem.

– Instrumental knowledge: It is the knowledge constructed by subjects in the process which
is activated when they attempt to solve a problem given by a specification.

– Conceptual knowledge or conceptualization: the construction of conceptual knowledge in-
cludes essentially two components: on the one hand, subjects become aware of their coordi-
nation of actions as well as the modifications of the objects. On the other hand, facing new
problems requires transforming the cognitive resources to take into account variations and
similarities. This transformation produces new mental structures (the assimilated concept).

– Comprehension: It is the result of applying conceptual knowledge to solve any problem of
appropriate complexity.

The specific explanations taken into account to design this study are due to Cellérier’s
description in ”Piaget Today” [6]. Cellérier explains the reciprocal assimilation of schemes which
occurs with a new problem which is assimilated, first of all, to a familiar scheme. The novelty of

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 9 of 192

the problem may or may not be an obstacle in the application (constructive generalization) of the
scheme [10]. The obstacle may be represented as a new subproblem, which in turn is assimilated
to the subscheme which may solve it, and thus the original scheme may be reapplied (until a new
obstacle appears). There are no guarantees as to the solution of all obstacles (subproblems) by
a subscheme. The effect of this cognitive strategy (unconscious to the individual) is to combine
previous solutions in a new solution with its own function (process), resulting in the synthesis
which is the actual core of constructivism. From the perspective of constructivism, structures are
coordinated schemes, applicable to a wide range of problems, adapted to cooperate with other
schemes within the internal epistemological universe. The concept of number is an example of
a structure in this sense.

This article is divided into the following sections: section 2 includes the methodology of
research; section 3 includes the development of the stages of the study; section 4 presents
conclusions and further work and the list of references follows.

2 Methodology of research

The methodology of research is based on Cellérier’s considerations and consists on investigating
the pertinence of the following proposition: the knowledge that the students have constructed
on the concept of the series of natural numbers can be generalized (in the sense of Cellérier) to
a new inductive structure. Therefore, the students should be able to find out the defining rules
the latter. To determine to what extent this proposition is correct, two instructional instances
were conducted posing a problem about a structure isomorphous to natural numbers, in the
sense that there are an initial element and a constructive function of an element to another one
(successor).

The subproblems with combined solutions that can provide useful information have been
identified as:

1. Identifying the first element.
2. Passing from one specific element to its successor.
3. Passing from a generic element to its successor.
4. Identifying the elements generated in this passage as the only elements of the structure.
5. Identifying the predecessor of a specific element (inverse to what is described in 2).
6. Identifying the predecessor of a generic element (inverse to what is described in 3).

Each subproblem is presented to the students as questions they must respond in writing. The
purpose of these questions is to activate, in the students’ thought, a generalization and special-
ization process of previous schemes, corresponding to the solutions of subproblems for the series
of natural numbers. If one of the subproblems becomes an obstacle which cannot be assimi-
lated to a subscheme, the students are presented with new questions or reformulated questions
in order to direct their cognitive strategy towards overcoming the obstacle. The written an-
swers are compared with the correct ones (provided by the investigators) to assess the difficulty
level and to reformulate the question or to formulate a new one. We measure the progress in
conceptualization as the distance of the students’ answers with the correct answer.

The first and second stages were conducted with 8 and 7 voluntary students of Technical
High School in Montevideo, aged 15 to 17. They had no previous formal instruction on induction
or recursion which is an advantage to avoid preconceived ideas (often erroneous).

3 Development of the study

The study was conducted in two stages, where the second one arises from the analysis of the
information gathered in the first one. In the first stage the students participated of three-hour
meetings on two occasions during a period of forty five days. In the first meeting, the inductive

Page 10 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

definition of an infinite set is given by enumerating some elements and several questions are
posed. In the second meeting, questions are reformulated or new questions are posed based
on the analysis of the first answers. The goal was to encourage the students to find out the
rules of the definition (base, inductive, clousure). The analysis of the information questioned
the validity of supposing that the students comprehend the series of natural numbers as an
inductive structure. Hence, a second stage of the study was designed and conducted to clarify
the point. In the second stage seven students participated in one meeting of one hour and a
half.

3.1 First stage

In the first stage, the definition of a set is presented in the problem below.

Problem: In a faraway planet, there are some living creatures whose DNA is similar to ours,
formed by chains of adenine A, thymine T, cytosine C and guanine G. We have little information
on these creatures; we only know that they are very primitive, and that they divide in different
and separate groups. After many explorations, robots collected DNA information of different
groups of extra-terrestrial creatures, and sent it to earth hoping computer science experts would
be able to establish the particularities in the DNA of the different groups of creatures from this
faraway planet. The data sent by robots are DNA chains of different individuals of the group,
a DNA chain being a succession of letters A, T, G, C, such as AGGCGGTAAT. We have
received the DNA data of a subset of living creatures defined as: Group = {AAAGCTAAA,
AGCTA, AAGCTAA, GCT, AAAAGCTAAAA, . . . }. This Group could have infinite
creatures and thus we cannot indicate them all, but if we observe the known elements (such as
the referred elements), we may see that these elements have been constructed or formed in a
particular way, starting from an initial element.

After the problem statement is given, questions from the three main following categories are
asked:

– Questions 1 to 4, are related to the rules which define the set. The purpose of these questions
is to have the student know that there is an initial element, GCT and that each element is
generated from a predecessor by applying an inductive rule (to add an A on each side of the
predecessor)

– Questions 5 to 7, are related to application of the rules. The purpose of these questions
is, on the one hand, to help students understand the concept of closure, and on the other,
to identify the relation between a generic element (different to the first element) and its
predecessor (inverse to the inductive rule)

– Questions 8 to 10, related to the properties of the elements of the set. The purpose of
these questions is to establish how much students rely on the series’ regularity, for their
understanding of proofs by induction. This category is included because the concept of
induction has two aspects: on the one hand, the inductive definitions of sets and on the
other hand the proofs by induction of properties of the elements of the set. As pointed out
in [11] the source of reasoning by induction lies in the processes of constructing the inductive
structures.

The following is the description of the questions of each category (designed considering the
subproblems identified, described in the previous section) and the analysis of the students’
answers for which the regulatory criteria, originated in the theoretical framework concepts,
were used. Qi stands for question nr i. Recall that the questions of the second meeting were
formulated after analyzing the responses of the first meeting.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 11 of 192

3.2 Rules that define the set (questions 1 to 4)

This category of questions studies the conceptualization of the students of the initial element
and of the relation of one element with the successor.

First meeting
Q1: Which one is the initial element for the Group?
Answer: . . . is the initial element for the Group.
Q2: If you could add only two letters and we provide you with the AGCTA element,
how do you reach a new element in the Group set?
Q3: Given a generic element of the Group, is it possible to construct another element from it?
In which way?

The purpose of the first question is to ask the students to identify the base case of the inductive
structure. Although there is more than one correct answer, we expect that the students write
GCT in the dotted points of question 1, because we believe that it is possible to generalize the
knowledge of the series of natural numbers to this structure, with the mechanisms described by
Cellérier [6], briefly mentioned in section 2. For the same reason, many questions are deliberately
imprecise.

However, three students answered that the initial element is A, and the others answered
that it is GCT. Regarding question 2, five students generated an element that DOES NOT
belong to the Group. Incorrect answers included alteration of the order of letters, for example,
stating that ACTAG is a new element constructed from another element. In Q3 it is expected
that students who have found the answer of question 2 for a particular case, discover the rule
for a generic case and succeed in its formulation. The study shows that this construction is not
simple: only two students describe how to generate a new element correctly (adding an equal
number of A’s on both sides)i and all students used particular cases in their answer to Q3.
These answers make us to believe that there is a visual factor involved. On the one hand, in
Q1, since the elements of a set are read from left to right and A is the first letter that students
read, and on the other hand, in Q2 and Q3, since the ellipsis in the definition of Group leads
students to believe that they may generate new elements in any way.

In the second meeting Q1 and Q2 are reformulated for each student based on their previous
answers and Q3 is repeated.

Second meeting
Q1: Note that ALL must be constructed from that initial element, then, given A as initial
element, how do you construct GCT from A? Also note that A is not an element of the set.
Answer: Rule: . . . is the initial element for the Group.
Q2: Does the element you indicated in the answer to question 2 in the first meeting,
belong to the Group? Answer again, noting that the new element constructed by adding
letters must belong to the Group.
Q3: Given a generic element of the Group, is it possible to construct another
element from it? In which way?

Note that those questions force students to pay attention to the form of the visible elements
and induces the idea of elements following the same pattern, even if not present.

There is evidence of some progress between the first and second meeting, since, on the one
hand the students answered correctly both questions 1 and 2, which shows that the idea of the
rules has been introduced, not without difficulties, as revealed by the fact that only one student
improved his answer to question 3 although still using a concrete case. Since this question
refers to the concept of ”generic element” we recall the study of Matalon, summarized in next
subsection.

Page 12 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

3.3 The generic element

In [11] Benjamin Matalon publishes a chapter entitled Recherches sur le nombre quelconque,
in which he analyzes the relation between the generic element concept and the reasoning by
induction, since such requires to prove that P(n)→ P (n+1) for a generic number n and a given
property P. Matalon works with the structure of natural numbers, stating that it is necessary
to abstract all the particular properties in n, except the property of being a number, that is,
an element belonging to the series of natural numbers. Matalon explains that Fermat made
his arithmetic demonstrations using a particular number, but taken as a generic number, for
example, the number 17. If none of the specific properties of the number 17 are involved in the
demonstration, then the demonstration could be considered valid for all numbers. He adds that
in geometry, when a property is to be proven and the statement is ”given a generic triangle” a
particular triangle is drawn, avoiding right triangles, equilateral triangles or isosceles triangles,
and not involving particular properties of the triangle in the demonstration of the property.
Among other things, Matalon concludes that to construct the concept of the ”generic” element,
it would be necessary to perform a generic action, that is, the repeated action to generate a
generic element2. To extend this result, in the second meeting with students, they are asked to
fill in a table which introduces repetition of the action that generates new elements from given
ones, or which writes elements which are predecessors to given elements, as shown below:

Second meeting
Q4: Complete the table below and rewrite the set Group, ordering elements based on their
length (number of letters). Then, fill in the dots:
Rule: Given a generic element . . . of the Group, then . . . is a new element of the Group.

Predecessor New element
AGCTA

AAAAGCTAAAA
GCT

AAAGCTAAA

AαA
α

The rows left blank are aimed to induce the students in writing their own elements. All stu-
dents were able to state correctly the rule in Q4 using α as the generic element. The study of
the construction of a relation between one element and its successor, specially the evolution of
the transmission between the repetition of actions and their iterative results, that is, between
the action of the individual and the result which transforms the object, has been studied in
[11]. Each action repeated after its predecessor differs from this in its range within the order
of succession of actions and at the same time adds one element to the collection formed until
the previous iteration. Once the subjects establish coordination between the succession of their
actions and their results, a local synthesis specific for these actions is created, between the order
of the succession of actions and the growing number of the collection of objects. This extends the
construction of the structure with an aspect of recurrence reasoning, in which the most signifi-
cant generalization is passing from one element to its successor. In this way, Piaget explains the
construction of the series of natural numbers, by a synthesis between serialization and inclusion
of classes [11]. For this case of construction of the inductive set, question 4 (where in each row
of the table an action is performed and elements are ordered from shorter to longer), induces
students to establish a similar synthesis, with which they may construct relations between one
2 We recall that in genetic epistemology, the actions of the subject play a central role in generating knowledge.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 13 of 192

element and its successor or between one element and its predecessor. The construction of said
relations is the basis of inductive reasoning, both for the definition of inductive structures and
recursive algorithms [3] as for proofs by induction.

We end this subsection with the answers used to compare students’ responses to questions
1 to 4:
Q1: The initial element of the Group is GCT.
Q2: From AGCTA, AAGCTAA can be generated.
Q3: From a generic element α of the Group, AαA can be generated.
Q4: Group = {GCT, AGCTA, AAGCTAA, AAAGCTAAA, AAAAGCTAAAA, . . . }
Given a generic element α of the Group, then AαA is a new element of the Group.

3.4 Applying rules (questions 5 to 7)

Once students have worked in the construction of answers of questions 1 to 4 giving rise to base
and inductive rules, questions 5 to 7 are asked. The purpose is to draw the students’ attention
to the application of the rules already defined by themselves. Q5 is aimed to induce the
students to realize the difference between those elements which may be constructed with the
rules and those which may not. Q6 is aimed for the student to become aware that every chain
different from GCT, has been generated from an element which is its predecessor.

First meeting
Q5: Given the element AGCT, may you construct a new one in the Group by applying your
previous statements? Why or why not? Write down some chains which cannot be formed by
applying the rules you stated.
Q6: Verify that all the chains from the Group have been constructed by applying the
rules you wrote and underline the predecessor element in each case, when applicable.

All students pointed out that GCT (initial element) is a predecessor to all the other ele-
ments. This fact, confusing the initial element with the immediate predecessor is revealed as
one of the most significant obstacles in the conceptualization of the structure. To help students
overcome this obstacle, in the second meeting, after filling in the table (Q4), a new question
about the structure of chains is asked (Q7 below) before going further into the predecessor issue
by repeating question 6.

Second meeting
Q7: Given that all the chains of the Group have the structure you mentioned in Q1 and Q4,
could there be a chain different to the initial one, which does not end with an A?
Could there be a chain with more than one C?
(New Q6): Verify that all the chains in the Group have been constructed by applying
the rules you wrote in Q1 and Q4. Indicate, in each case, which is the predecessor
element, when applicable. You may use the table.

We see progress of the students as to the first meeting, which would be explained by the use
of the table. All students answered Q7 correctly, revealing some progress in conceptualization.
However, answers to new Q6 show how hard is the construction of the relationship between an
element and its predecessor. One of the students asked: Is GCT α? This means: Is GCT the
predecessor of a generic element? This uncertainty of the student indicates an analysis of the
relation of the predecessor with the current element. However, this student, and all students,
answered that the initial element GCT is the predecessor to each element. This obstacle appears
as one of the most important obstacles in the construction of the concept of induction, and thus
further research is necessary to learn about its source. For example, which subscheme should
this subproblem be assimilated to, and why it is not, and which other subproblems should be
previously posed.

Page 14 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

We end this subsection with the answers used to compare students’ responses to questions
5 to 7:
Q5: No, I cannot because AGCT does not belong to Group.
Examples of chains that cannot be formed with the rules: AGCT, AAGCT, GCTA, AGCTAA.
Q6: Group = {GCT, AGCTA, AAGCTAA, AAAGCTAAA, AAAAGCTAAAA, . . . }
Q7: No, all the chains different from GCT end with A. No, there cannot be more than one C
in every chain.

3.5 Questions regarding properties (8 to 10)

The last group of questions (8 to 10) posed in the second meeting is related to the following
property of the elements of the set: all elements have an equal number of A’s on the left and on
the right. One of the objectives is that students express correctly the statement of the property
and the other one is that they express confidence about that all elements meet this property.
Both constitute the basis to learn the method of proofs by induction of any property. The
questions are the following:

Q8: Fill in the dots:
If a chain of the Group includes n A letters on the left of GCT, then the chain has a total
of . . . A letters.
If a chain in the Group includes a total of n A letters then it has . . . A letters on the left of
GCT.
Q9: Fill in: Let . . . be a chain of the Group, then said chain has the property . . .
(Write all the properties you believe apply).
Q10: Based on the previous information, could you say that all chains of the Group have the
property . . . ?

All students use the variable n to answer correctly question 8. There were some events which
prove some progress regarding understanding of the structure:

– All students but one mentioned that the property is to have an equal number of A’s on the
right and on the left and that the initial element is GCT

– Some students used the symbol α in the second subquestion of question 9. We transcribe
one of the answers to highlight the progress made: ”Given an α chain, it has the properties
of being constructed from GCT and of having an equal number of A letters on both sides”

– All the students believe that every element of the set has the property (affirmative answers
to question 10). This proves they rely on the regularity of the series of inductive chains,
which for Piaget is a positive event in the study of the series of natural numbers [11].

We end this subsection with the answers used to compare students’ responses to questions
8 to 10:
Q8: The total number of A in a chain with n A letters is 2*n. If the total number of A letters
is n, there are n/2 A letters on the left of GCT.
Q9: Let α be a chain then either α is GCT or α has equal number of A letters to the left and
to the right of GCT.
Q10: All the chains satisfy the property of Q9.

3.6 Summary of results of the first stage

In this section we summarize the answers of students to the questions and the main problems
that need further investigation. The answers of the students to the questions reveal fundamen-
tally three main facts:

– In the answers to question 2 of the first meeting most of students included in Group, elements
that do not follow the pattern of the visible elements.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 15 of 192

– The reformulation of questions of the first meeting posed in the second meeting seems to
help the students to correctly answer Q1 and Q4. That means that they succeed in stating
the base and inductive rules of the definition of the structure. The correct answers to Q2
and Q7 (second meeting) reveal advances in the conceptualization of the closure rule, as
well.

– However, the students did not succeed to overcome the confusion between the initial element
of the Group (GCT) and the predecessor of each element: in the answers to Q6 (both meet-
ings) all students pointed out GCT as the predecessor of each element. Our interpretation
is that, despite the correct definition of the rules, the concept of inductive structure is not
attained, that is to say the corresponding mental scheme has not been constructed.

These considerations have provided insight on some of the problems which need further
investigation. To begin with, we recall our proposition which is that knowledge about the series
of natural numbers may help in constructing knowledge about other inductive structures, based
on Cellérier’s work. Our start point is then that the students already have conceptualized
the series of natural numbers because they work and succeed on solving problems from early
education. Why do they fail in generalization and specialization the schemes of the series of
natural numbers to construct knowledge about the structure of the problem posed in this study?
One of the possible answers is that our premise is wrong: the students have not constructed
conceptual knowledge about the series of natural numbers, despite the instrumental knowledge
that they reveal in solving problems.

This new perspective leads us to pose the following question: do students have similar
difficulties if problems are about natural numbers? Depending on the answer, we can obtain
information about whether the obstacle is the original scheme or the process of its generalization.

In order to find an answer, we carried out a second stage of this study in which the students
were asked to solve two problems with six questions each, during a meeting of an hour and a
half. A brief description of the problems is included in next section.

3.7 Second stage of the study

The main goal of the second stage of the study is to learn about whether difficulties similar
to those already detected appear when the students work with inductive structures of natural
numbers. The base, inductive and closure rules of the definition of two subsets of natural numbers
are given. Several questions are posed to encourage students to recognizing the initial elements
as the only ones that have no predecessor, to generating new elements from previous ones and
to pointing out the predecessor of any element.

The questions are similar in both problems, as shown below, and the students must respond
in writing.

Problem 1: Generating consecutive even natural numbers.

A set A of natural numbers is generated by the following rules:

– Rule 1: 4 ∈ A
– Rule 2: if α ∈ A then α + 2 ∈ A
– Rule 3: No other numbers are included in A.

Answer the following questions:

– Q1: Write down some elements of A.
– Q2: Is 67 an element of A? Why or why not?
– Q3: If 36 ∈ A, which is the predecessor of 36?
– Q4: How do you find it?
– Q5: If x is an element of A different from 4, which is the predecessor of x?
– Q6: Complete the table below (all the elements belong to A).

Page 16 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Predecessor New element
6

24
58

316

x
x

– Q7: Is there any element in the set A with no predecessor? Which one?

Problem 2: Generating non-consecutive odd natural numbers.

A set B of natural numbers is generated by the following rules:

– Rule 1: 7 ∈ B
– Rule 2: if α ∈ B then 2 ∗ α + 1 ∈ B
– Rule 3: No other numbers are included in B.

Answer the following questions:

– Q1: Write down some elements of B.
– Q2: Is 11 an element of B? Why or why not?
– Q3: If 63 ∈ B, which is the predecessor of 63?
– Q4: How do you find it?
– Q5: If x is an element of B different from 7, which is the predecessor of x?
– Q6: Complete the table below (all the elements belong to B).

Predecessor New element
15

63
7

255

x
x

– Q7: Is there any element in B with no predecessor? Which one?

In the responses the following facts are detected:

– Regarding the initial element (questions Q1, Q6 and Q7).
• In the answers to the first question of both problems, elements not belonging to the sets

were included, for instance, 2 for the case of A and 1, 3 for the case of B (recall that
initial elements are 4 and 7 respectively).
• The empty rows of the table were filled out with wrong elements.
• One student answered question 7 of problem 1 correctly, while the other responses to that

question were wrong. For instance, many answered that the element with no predecessor
is 0 or 2 for the case of set A.

– Regarding predecessor of concrete elements (Q2, Q3, Q4, Q6).
• Question 2 was correctly answered in problem 1, but incorrectly in problem 2. For in-

stance, some students said that 11 belongs to B because 11 = 5 * 2 + 1, without noting
that 5 does not belong to B.
• In question 3 one student answered that the predecessor of 63 is 61 and three students

gave not answer at all. Three students gave the correct answer for questions 3 and 4.
– Regarding predecessor of generic elements (Q5, Q6).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 17 of 192

• One student answered that 4 is the predecessor of x in problem 1 and gave no answer
for this question in problem 2. Two students gave correct answers in both problems, but
one of them filled the table (Q6) incorrectly. The remainder of students answered the
question just for the first problem.

It was observed that in the second problem several questions have been left unanswered and
there were found more errors than in the first. The first problem is simpler than the second one
in the sense that the inductive rule involves just the addition while in the second two operations
are involved: multiplication and substraction.

We end this subsection with the answers used to compare students’ responses to the questions
of the problem 1 and of the problem 2:

Table 1. Answers used to compare students’ responses

Q Subset A Subset B

1 4 6 8 10 7, 15, 31

2 No, all are formed adding 2 to an element, starting in 4 No, because 5 does not belong to B.

3,4 34 = 36 − 2 31 = 63−1
2

5 x + 2 x−1
2

6 table of elements of A (see below) table of elements of B (see below)

7 4 7

Table 2. Tables of Q6 for subsets A and B

Predecessor New element Predecessor New element

6 8 15 31

22 24 31 63

58 60 7 15

314 316 127 255

10 12 255 511

x− 2 x x−1
2

x

x x + 2 x 2 ∗ x + 1

4 Conclusions and Further Work

There follows a classification of some of the types of errors appearing during the first stage of
the study and a summary of them related the regulatory criteria from the theory (table below).

– Type 1: There is an error influenced by a visual factor (defining A as the initial element)
– Type 2: There are two types of type 2 errors: a) given an element of the Group, construct

another one which IS NOT part of the Group (for example from AGCTA to AAGCT) and
b) pass from an element which is NOT from the Group to a new element (for example from
AGCT to AGCTA). (In the table below, x and x + 1 are used to denote an element and its
successor respectively.)

– Type 3: Using particular cases for the generic element
– Type 4: Confusing the predecessor with the initial element
– Type 5: An influence of preconceived ideas (confusing property with element, confusing

language with metalanguage)

Page 18 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Table 3. Summary of types of errors of the first stage

Question Objective Regulatory criteria Errors

1 to 4 Identifying the first element Local synthesis/serialization Type 1

1 to 4 Passing from x to x+1 Local synthesis/serialization Type 2

1 to 4 Clousure Regularity of the series Type 2

1 to 4 The generic element Repetition of the action Type 3

5 to 7 Application of the rules Constructive generalization Type 2

5 to 7 Passing from x+1 to x Local synthesis/serialization Type 4

8 to 10 Thinking properties Regularity of the series Type 5

The different types of errors are related. In general terms, it could be said that one type
of error leads to other types. To set an example, students who cannot understand the relation
between one element and its successor (or predecessor), add to the set, elements which do not
belong there. Confusing the initial element of the structure and the predecessor to a generic
element is an obstacle both for the proof by induction – since one element (different to the initial
element) satisfies a specific property because the predecessor does – and for the definition of
recursive algorithms – where the result for each element is constructed using the result for the
previous element–.

Although the information gathered in the second stage has to be more deeply analyzed, it
can be said that the same types of errors have been detected in both stages of the study. We
believe that the facts pointed out in previous section, show evidence that the obstacles partially
lie in students’ lack of conceptual knowledge of the series of natural numbers as an inductive
structure, despite they are at pre-university level. We believe that this affects the learning on
induction-recursion and that it is necessary to help students to construct conceptual knowledge
on the series of natural numbers from their instrumental knowledge. The objectives of our next
study shall focus on that issue.

References

1. Mordechai Ben-Ari. Constructivism in Computer Science Education. Journal of Computers in Mathematics
and Science Teaching, Vol. 20, Issue. 1, 2001, pp. 45-73, 2001.

2. Shirley Booth. Learning to program - a phenomenographic perspective. Gteborg Studies in Educational
Sciences, 1992.

3. Sylvia da Rosa. The learning of recursive algorithms from a psychogenetic perspective. Proceedings of the
19th Annual Psychology of Programming Interest Group Workshop, Joensuu, Finland, pages 201–215, 2007.

4. Sylvia da Rosa. The construction of the concept of binary search algorithm. Proceedings of the 22th Annual
Psychology of Programming Interest Group Workshop, Madrid, Spain, pages 100–111, 2010.

5. Ed Dubinsky and G. Lewin. Reflective Abstraction and Mathematics Education: The Genetic Decomposition
of Induction. Advanced Mathematical Thinking, 1986.

6. Guy Cellérier et al. Structures and Functions in Piaget today. Lawrence Erlbaum Associates Publishers,
1987.

7. Hank Kahney. What do Novice Programmers Know about Recursion. ACM 0-89791-121-0/23/012/0235,
1983.

8. Claudius M.Kessler and John R.Anderson. Learning Flow of Control: Recursive and Iterative Procedures.
Human-Computer Interaction, 1986, Volume 2, pp 135-166, Lawrence Erlbaum Associates, Inc., 1986.

9. Jean Piaget. La Prise de Conscience. Presses Universitaires de France, 1964.
10. Jean Piaget. Recherches sur la Généralisation. Presses Universitaires de France, 1978.
11. Jean Piaget and coll. La Formation des Raisonnements Recurrentiels. Presses Universitaires de France, 1963.
12. Vashti Galpin Tina Götschi, Ian Sanders. Mental models of recursion. ACM 1-58113-648-X/03/0002, 2003.
13. Susan Wiedenbeck. Learning Recursion As a concept and As a programming Technique. ACM 0-89791-256-

X/88/0002/0275, 1988.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 19 of 192

Gaze Evidence for Different Activities in Program Understanding

Kshitij Sharma, Patrick Jermann, Marc-Antoine Nüssli, Pierre Dillenbourg

CRAFT, École Polytechnique Fédérale de Lausanne
<firstname>.<lastname>@epfl.ch

Abstract We present an empirical study that illustrates the potential of dual eye-tracking to detect successful
understanding and social processes during pair-programming. The gaze of forty pairs of programmers was
recorded during a program understanding task. An analysis of the gaze transitions between structural elements
of the code, declarations of identifiers and expressions shows that pairs with better understanding do less
systematic execution of the code and more “tracing” of the data flow by alternating between identifiers and
expressions. Interaction consists of moments where partners’ attention converges on the same same part of the
code and moments where it diverges. Moments of convergence are accompanied by more systematic execution
of the code and less transitions among identifiers and expressions.

1 Introduction

In the last decade, off the shelf screen based remote eye-trackers have become readily available. These
devices offer system designers and social scientists unprecedented access to the users’ attention. Our
long term goal is to use automatically collected gaze traces to provide feedback to the users and adapt
the system to their level of expertise. A prerequisite for such undertakings is that we better understand
the relationships between gaze-based behavioural indicators and task-based performance.

In this contribution we propose an analysis of pair-programming that illustrates the sensitivity of gaze
traces to different levels of understanding as well as to different modes of interaction. This problematic
is a two sided coin: it involves cognitive aspects related to program understanding and social aspects
related to the interaction of two programmers.

Program understanding is central in many programming tasks, for example during software main-
tenance or software evolution where programmers have to read and extend code that they did not nec-
essarily produce themselves. Program comprehension is a goal-oriented, problem-solving task that is
driven by preexisting notions about the functionality of the given code [10]. It can be thought of a pat-
tern matching at different levels of abstraction [20]. The different abstraction levels help understanding
a program at different levels, for example, at syntactical level programmers can understand the relation
between different programming constructs and at semantic level they can relate different programming
structures to their real world counterparts. The potential of eye-tracking in diagnosing the quality or the
strategies of understanding relies on the assuption that understanding strategies are reflected by different
ways to “read” the code.

From the point of view of the interaction between pair programmers, we are interested in finding the
effect whether different types of collaboration strategies are reflected by gaze indicators and whether they
are linked to a program comprehension strategy. Previous experiments carried out using cross-recurrence
[17] as a measure of gaze coupling showed that the higher the coupling, the better the outcomes of col-
laboration. This might not be true for more specific problem solving tasks. For example, in collaborative
program understanding the task requires the participants in collaborative environment to develop their
own understanding as well as to agree upon a solution. During an extended pair programming session,
programmers do not necessarily attend to the same information at all times. In terms of interaction, this
translates to the requirement for different phases in the interaction. During convergent phases, they look
at the same part of program. During divergent phases, participants look at different parts of the pro-
gram. Both of them can contribute to understanding a program in different ways. These phases might
reflect different understanding strategies in program comprehension, for example individual hypothesis
building and collaborative verification.

In next section we present related work about program understanding and dual eye-tracking for pair
programming. We then describe the problem statement and research questions. The Methods section

Page 20 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

gives the details of the experiment and the algorithm that was used to find different phases of interaction.
We then present and discuss the results from the experiment.

2 Related Work

2.1 Program Understanding

Program understanding is a special kind of problem solving. Like any problem solving task, program
comprehension has a problem statement (to understand the given program) and a solution (description of
functionality of the program) and different approaches to get the solution. The main approaches include
top-down and bottom-up. Top-down approach involves decomposition of the problem in sub-problems
and solving the sub-problems, while bottom-up approach involves integration of low-level details to
come up with a solution.

J.Larkin [11] found in her studies about solving physics problems two approaches of problem solv-
ing; first, to approach the solutions from the problem givens(top-down) and second, to backtrack from
the solution to the problem givens(bottom-up). Similarly, J.R. Anderson [1] found in his studies two
ways to write programs; first, writing code line by line(bottom-up) and second decomposing the goal of
the program into subgoals and implementing the subgoals(top-down).

In the case of program understanding, there are many strategies to understand a program, a top down
approach [19] consists of starting with a hypothesis about the program and then validating or “end mark-
ing” the hypothesis with the individual components of the program. A Bottom-up approach [18] starts
from a series of code fragmentation and then assigns a domain concept to each fragment. An Iterative
approach [4] includes a ”while” loop of top-down process, i.e., having a set of preexisting notions or hy-
pothesis, their verification and modification, until everything in the program can be explained within the
set of notions with which the iteration started. There are some more strategies that are a hybridisation
of top-down and bottom-up [13] [14]. These two strategies are used interchangeably during program
comprehension as and when needed [13].

S. Letovsky [13] proposed a typical set of mental models needed to understand a program which
includes specification, implementation and annotation of different parts of the program. [13] also em-
phasised that mental model for implementation consists of actions and data structures of a program.
Understanding the entities/data/variables and relationship amongst them inside a program is very im-
portant in order to assign them a concept from the domain knowledge [21]. [8] advocates for having
a programming plan to understand the program text (what is written?) and the program intent (why is
something written?), and then divides the programming plan into two major parts “Variable plan” and
“Control plan”. [8] then proposes the use of variable plan to understand the relation between program
text and program intent.

In two different studies [3] and [10] describe the particular strategies for novice and expert program-
mers respectively. On one hand, [3] finds that for the understanding of novices while loops sometimes
become ”while demons”. Novices have ”conflicts” in the strategies to be applied for giving the ”Natural
Language Description” of a program. Novices tend to follow the ”systematic execution” of the program
and increase their chances to get stuck. On the other hand, [10] finds that experts go for ”as-needed”
strategy, where they limit their understanding to only those parts of the program that they find relevant
to a given task. Experts do not follow a predefined strategy to understand a program. For example, ex-
perts do not decide beforehand to understand a program in ”top-down” or ”bottom-up” manner. Experts
tend to use both of them as and when needed.

2.2 Dual Eye Tracking for Pair Programming

Two synchronous eye-trackers can be used for studying the gaze of two persons interacting to solve a
problem. It gives a chance to understand the underlying cognition and social dynamics when people
collaborate. Nüssli [15] gives a two way motivation for dual eye-tracking. Using statistics to find the
relation between the gaze features and collaboration events and using machine learning for prediction of
some collaboration attributes from gaze patterns. In their study of collaboration amongst a pair Richard-
son and Dale [5] found that when two persons talk about something they see, they tend to look at the

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 21 of 192

same thing in the stimulus. [17] measured the ”togetherness” of the participants in a ”speaker-listener”
pair using cross-recurrence plots and found that when the listener follows the gaze of the speaker (s)he
had a better comprehension. This idea of ”looking together” may not be true to a pair of programmers
looking at a program and trying to understand it because the task of program understanding is more
specific than the task of listening to a speaker. ”Togetherness” of their eye-movements can help to de-
fine different phases of interaction the pair undergoes during the task of program comprehension. These
different phases occur when the participants are looking at the same part of the program as opposed to
the case when they are not. Both types of the phases play there role in the understanding of a program
as we mentioned in the introduction.

Pair programming is usually done with co-located programmers. They play the roles of driver (actual
typing) and navigator (more like a organisational activities). Spatially distributed pair programming
have been studied with satisfactory results showing that the distance factor can be neglected [2]. Pair
programming leads to high quality programs [15], hence a pair of expert programmers can obtain a
better understanding of a program as well.

3 Problem Statement

3.1 Program Understanding and Gaze Transitions

Is it possible to detect different strategies for program understanding between the pairs with perfect ver-
sus low levels of understanding ? Do they build their understanding based on different semantic elements
in the program than the pairs with the low level of understanding? There are many ways to go about solv-
ing the problem of program understanding as we mentioned in the related work. We also mentioned that
program understanding strategies are different for the people who have better understanding than others
who don’t. We are interested in finding this difference in terms of their eye-movements.

To measure exploration strategies, we adopt an approach based on gaze transitions between different
types of program elements. More precisely, as a stimulus for eye-tracking, a program can be divided in
three main semantic classes (or Areas of Interest). These semantic classes are identifiers (I), structural
(S) elements and expressions (E) in the program. Typically, identifiers are the variable declarations,
structural elements are the control conditions of the program and expressions represent the data flow
and relationship amongst the variables. Thus we propose to say that a ”to and fro” shift in gaze between
identifiers and expressions will depict the attempt to understand the data flow and/or the relation among
the variables. Similarly, a gaze shift among all the three semantic classes will translate in an effort to
understand the data flow according to the conditions in the program. In terms of program understanding
strategies this behaviour is attributed to ”Systematic program execution”.

Our analysis aims at finding which type of transitions characterise pairs with different levels of un-
derstanding. Table 1 shows the categorisation of different transitions among different semantic classes
in the program into data flow, control flow and data flow according to control flow. We consider ”3-way”
transitions among the semantic classes as one 3-way transition reflects one unit of program understand-
ing behaviour. For example, a 3-way transition ”E− >I− >E” reflects the ”reference lookup” for a
variable in an expression.

Question 1 Is there a relation between the transitions among different semantic classes in the pro-
gram and the levels of program understanding ?

3.2 Convergent and Divergent Episodes of Interaction

Collaboration consists of a series of convergent and divergent phases. When partners work as a team
and put their joint efforts to understand the code we say that they are convergent in their interaction and
we have a convergent episode of interaction. In a convergent episode participants in a pair look at the
same part of the program in a ”stable” manner. ”Stable” manner of looking at a program is reflected by
fixations in a small range (less than a threshold) of tokens (see section ”segmentation of eye-tracking
data” for more details). On the other hand when the participants try to build their own understanding
and they are looking at the different parts of the program, we say that they are diverging and we have a
divergent episode of interaction.

Page 22 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Table 1: Categorization of different transitions among different semantic classes in the program into dif-
ferent types of flows in the program. (I=Identifier, S=Structural, E=Expression).− > denotes transition.

Type of flow in the program Types of transitions

Data flow
I− >E− >I
E− >I− >E

Control flow
I− >S− >I
S− >I− >S

Data flow according to Control flow
S− >E− >S, E− >S− >E
S− >I− >E, E− >I− >S

(Systematic execution of program) S− >E− >I, I− >S− >E
I− >E− >S, E− >S− >I

The basic question related to episodes is whether individuals use different reading strategies during
convergent and divergent episodes. A complementary question is whether pairs with different levels
of understanding behave differently in convergent and divergent episodes. To define convergent and
divergent episodes of interaction, we need to segment the eye-tracking data for individual participants
and then align them in time; so that we can compare the segments of the two participants on the scale of
vicinity in terms of fixations.

Question 2 How do convergent and divergent phases of interaction affect the program comprehen-
sion strategies of pairs with different levels of understanding?

3.3 Segmentation of interaction

The segmentation of interaction into segments or ”meta-fixations” during which attention is focused
on a stable set of objects is a novel approach in gaze analysis. Usually, fixation time is aggregated in
predefined areas of interest and researchers report global proportions of attention time dedicated to the
different types areas. To measure coupling, cross-recurrence analysis quantifies as a global measure how
much the gaze of the collaborators follow each other with a given lag. These fixation based measures
aggregate indicators measured in the 100ms range to the whole duration of the interaction. The segments
that we propose to detect on the other hand are situated in between the short time range of a fixation
and the long time span of the whole interaction. Figure 1 shows the conceptual difference between the
fixations and segments. The main difference is in their respective durations in time and their use to
analyse different types of behaviours.

We considered different time series segmentation algorithms [16] [9] [22] to implement a method
that would segment the date into meta-fixation but none of these methods carried the notion of meta-
fixations or a hierarchy of segments in terms of their duration. Hence, we computed the segments from
the fixations using a very simple procedure. This procedure computes segments from the fixations in a
similar way as fixations are computed from the raw gaze data. Moreover, none of the methods for seg-
mentation or change point detection describe method for finding the segmentation on two simultaneous
time series and to align the segments in terms of time. We give details of this procedure in next section.

4 Methods and Materials

4.1 Experiment

In the experiment, pairs of subjects had to solve two types of pair programming tasks. The first task was
to describe the rules of a game (e.g., initial situation, valid moves, winning conditions, and other rules)
implemented as a Java program. The only hint to the pairs was that it is a turn based arithmetic game.
The second task was to find errors in the game implementation and to suggest a possible fix using a few
lines of output to analyse the error and to find the location of it in the code.

Subjects Eighty-two students from the departments of computer science and communication science
of the École Polytechnique Fédérale de Lausanne, Switzerland were recruited to participate in the study.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 23 of 192

Figure 1: A typical Diagram to show the conceptual analogy between the fixations and the segments,
and to show the analogy between different levels of raw gaze aggregation and the behaviour dimensions

They were each paid an equivalent of 20 USD for their participation in the study. The participants were
typical bachelor and master students. The participants were paired into forty pairs irrespective of their
level of expertise, gender, age or familiarity.

Procedure Subjects had to read and sign a participation agreement form, when they came to laboratory.
Then, for the next 3 minutes, the experimenters calibrated the eye-trackers for each of the subjects.
This simple procedure consists of fixating the centre of nine circles appearing on the screen. Once both
subjects were ready, they individually filled a short electronic questionnaire about their programming
skills and previous experience. The pretest which followed, consisted of individually answering thirteen
short programming multiple choice questions.

Apparatus and Material Gaze was recorded with two synchronised Tobii 1750 eye-trackers that record
the position of gaze at 50Hz in screen coordinates. The eye-trackers were placed back to back and sep-
arated from each other by a wooden screen. The synchronisation of the eye-trackers was done by using
a dedicated server to log gaze via callback functions from the low-level API of the eye-trackers. The
subjects heads were held still with an opthalmologic chin-rest placed at 65 centimetres of the screen. An
adaptive algorithm was used to identify fixations and a post-calibration was done to correct for system-
atic offsets of the fixations with regards to the stimulus (see [10] for details about these procedures).

The JAVA programs were presented in a custom programming editor based on the Eclipse develop-
ment environment. Text was slightly larger (18pt) than it is usually on computer screens and was spaced
at 1.5 lines to facilitate the fixation hit detection at a word level precision. Scrolling was synchronised
between the participants, such that when programmers scrolled, their partners’ viewport was also up-
dated at the same time. All other highlighting, search and navigation functionalities were disabled in the
editor.

Level of Understanding We distinguish between three levels of understanding based on how well they
performed the description task.

Good Pairs with a good understanding are able to describe the the rules of the game (initial situation,
valid moves, winning conditions).

Medium Pairs with a medium level of understanding only describe partial aspects of the game
structure, and often give algorithmic descriptions of the program and try to guess the detailed rules from
the method names; but they failed to get the winning condition.

Poor Pairs with a poor understanding are not able to describe the functionality of the code. During
analysis we saw that the pairs with poor level of understanding were only those pairs which had novices
as both the participant and their gaze pattern was as good as a reading plain text and not a program.

Page 24 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Moreover, they could explain only some of the the syntactical things properly (e.g., they say that there
is a while loop that runs until some condition but could not explain what it is doing), so we decided to
analyse with only two levels of understanding.

Tokens, Semantic Classes and Transitions The program is comprised of tokens. For example, a line
of code ”int i = 5;” contains 8 tokens (int, i, =, 5, ;, and 3 spaces). We recorded the time spent on the
various tokens in the program and categorised them into three semantic classes:

Identifier this class includes the variable declarations.
Structural this class includes the control statements.
Expression this class includes the main part of the program, like the assignments, equations, etc.
We took the change of gaze from one semantic class to a different class as the transition between the

semantic classes. Here, we do not consider the change of gaze position from one token of a particular
semantic class to another token of the same class.

4.2 Segmentation of Eye-Tracking Data

In this section we present the approach to aggregate the fixations into the segments. The existence of
segments first came to our attention when looking at the evolution in time of the JAVA tokens looked at by
the programmers during a program understanding task. The curve in the figure 2 represents the evolution
of the average token identifier in time (tokens were numbered in order of appearance in the code), for a
particular pair. Stable exploration episodes clearly appear as ”plateaux” separated by ”valleys” and are
reminiscent of the data patterns that characterise the organisation of raw gaze data into fixations and
saccades. Deep valleys are due to programmers scrolling through the code while looking for particular
methods whereas smaller valleys correspond to focus shifts between areas of code visible on one screen.
Segmenting the fixation data into interaction episodes is a two step process; first we find the segments
for individual participant in the pair and then we align them in time to find the episodes of interaction
for the pair.

Finding Segments in the Gaze of Individual Participants For finding the segments from the individ-
ual fixation data, first of all we smooth the fixations using moving averages; and then used the following
steps to find the segments from the individual fixation data:

1. Divide the smoothened fixation data into non-overlapping windows.
2. For fixations in each window find a best fitting line.
3. For each fitted line find the angle it makes with the time axis and for each window find the range of

tokens looked at by the participant.
4. For each window find whether the angle between the line and the time axis and the range of tokens

looked at are both less than the respective thresholds; if yes, then the window is deemed to be a part
of a segment.

5. once we have the potential portions of a segment; we merge such windows that are consecutive in
time, only if they are overlapping in terms of the range of tokens looked at.

6. The output of this step is the segments or the merged windows for both of the participants in a pair.

Figure 2 shows the segments computed from the fixation data (sampling rate 5Hz) for two partic-
ipants in the same pair. The black lines depict the segments. These individual segments are used to
define a set of different episodes of interaction during the whole interaction, we describe this step in
next section.

Temporally Aligning the Segments for the Pair Using the segments for both the participants we align
them in time and then again merge the segments so that we have longer (in terms of time) episodes of
interaction to analyse.

For finding the episodes of interaction we use the following steps:

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 25 of 192

Figure 2: Segments computed for individual participants of a pair in the program understanding task.
The x axis represents time (sampling rate 5Hz). The y axis represents the average token ID that was
gazed at. A horizontal ”plateau” (black horizontal lines) means that the subject has been looking at a
stable range of tokens.

1. Input to this step is the segments for both the individuals in a pair that we get as the output of the
previous step.

2. For each segment of one participant find the temporal overlap of this segment with each of the
segments of the second participant and make a binary overlap matrix where each element indicating
whether the ith segment of first participant overlaps (more than a threshold) with the jth segment of
the second participant,in terms of time and the range of tokens looked at (intuitively we can say that
there is no temporal overlap between the non-consecutive segments).

3. Once we have the overlap matrix, we take the intersection of the segments for the two participants
(in terms of their duration) and define the intersection to be the convergent episodes of interaction.

4. The output of this step is the set of convergent episodes of interaction for a pair.

Figure 3 shows an example of temporal alignment of the segments for the two participants in a pair
and the episodes of interaction in terms of time. The episodes of interaction are then used to form a
Contingency Table (see section 5.1) which is used to analyse the gaze inside an episode and overall
interaction. We give details about the contingency tables and the analysis in next section.

Figure 3: Segments of both the participants aligned in time and the episodes of interaction; time on
X-axis; Y-axis: 1 for first participant, 2 for the second participant, 3 for the episodes of interaction

Page 26 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

4.3 Data Preparation for Analysis

In this section we describe the pathway from raw gaze data to the contingency tables of transition be-
tween the semantic classes.

Raw Gaze and Fixations Raw data from eye-trackers come at a high sampling rate that is well
above (typically at 50Hz and higher rates) the rate of gaze fixations. Hence, the first step in the analysis
of gaze aggregates the gaze points given by the eye tracker into fixations (moments of relatively stable
gaze positions).

Determining Areas of Interest : Tokens Once we have the fixations from the raw gaze data we
define the areas of interest in our stimulus i.e., in the program.

Episodes of Interaction From the fixations we get the episodes of interaction using method de-
scribed in section ”segmentation of eye-tracking data”.

Tokens to Semantic Classes After defining the tokens as our areas of interest we categorised them
in 3 categories Identifiers, Structural and Expressions (see section ”program understanding and gaze
transitions” for details).

Sequence of Semantic Classes looked at We took the sequence (time series) of the Semantic classes
fixated during the interaction for our analysis (we took the data inside and outside of the ”segments”
while analysing convergent and divergent episodes respectively), for example sequence ”IIIESSEESS-
SIIIE” (I = Identifiers, S = Structural and E = Expressions) tells us that first 3 fixations were on iden-
tifiers, 4th fixation was on an expression then next 2 fixations were on the structural elements and so
on.

Lumping of Sequence As we are interested in the transitions between the semantic classes and not
in the duration of time spent on the different semantic classes. We took the continuous fixations on the
same semantic class to be one fixation and thus the above example sequence turned into a ”lumped”
sequence as ”IESESIE”.

Lumped Sequence to ”3 way” Transitions Once we had the lumped sequence we simply counted
the number of transitions from one semantic class to other and then to another one. For example the
lumped sequence ”IESESIE” has 5 transitions ”IES”, ”ESE”, ”SES”, ”ESI” and ”SIE”.

Transitions to Control Flow Transitions ”ISI” and ”SIS” depict the activity of tracing the control
of the program with the different states of the variables.

Transitions to Data Flow Transitions ”IEI” and ”EIE” depict the activity of tracing the data flow of
the program. This reflect the task of looking for different variables and their interdependencies.

Transitions to Systematic Program Execution All the transitions involving the three semantic
classes and the transitions ”ESE” and ”SES” reflect gaze transition amongst all the semantic elements in
a program. This translates to the task of considering the modification of an entity as per the control flow
of a program.

5 Results

5.1 Question 1

We return to our main interest of finding the difference between gaze transitions for the pairs with
different levels of understanding. We first report a relation between the level of understanding of the
pair, the pair composition and the gaze transitions using log linear models [6]. Log linear models use
contingency tables [12] to find the relation between different variables and for comparing the two models
for same contingency table [6] used a new statistics, called G2 the ”likelihood statistics” (or LRX2),
which is asymptotic to ”chi square”. G2 can be calculated as following:
G2 = 2

∑
i(observed)ilog

(observed)i
(expected)i

There are two main methods for fitting the log linear model to a given contingency table. ”Forward
Selection”, where we fit all hierarchical models that include the current model and differ it by one
effect; and ”Backward Elimination” leaves the term that incurs the least change in the LRX2 value (for
details see [6]). We combined both of the methods to achieve a fast consensus. According to the forward
selection we fit all the hierarchical models that differ the current model by one term; and for the next

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 27 of 192

iteration we keep the model with least change in the LRX2 value (opposite to the backward elimination,
but the idea is to delete the least change incurring term). The finally selected must have the maximum
degrees of freedom with the least change in the ”likelihood statistics” (or LRX2).

Table 2: Hierarchical linear model fitting for Contingency Table with dimensions Transition (T), Pair
Type (P) and Level of Understanding (UND), for the combined gaze of all the pairs

Model G2 DoF Terms Deleted 4G2 4DoF
[T][P][U] 7503 57
[TPU] 0 0

[TP][TU][PU] 32 22 [TPU] 32 22
[TP][TU] 7267 24 [PU] 7235 2
[TP][PU] 103 33 [TU] 71 11
[TU][PU] 54 44 [TP] 22 22

[TU] 8026 48 [PU] 7972 4
[PU] 8487 66 [TP] 8433 22

Table 2 shows the log linear model fitting using the method proposed above. The first 2 models
[T][P][U] and [TPU] are the ”independence model” and the ”saturated model” respectively. We can see
that the saturated model fits the data perfectly (DoF = 0, G2 = 0). On the other hand, independence
model shows a big variation (DoF = 7503, G2 = 57) from saturated model. Removing the 3-way
interaction term results in the model [TP][TU][PU] (DoF = 32, G2 = 22). Now, we see the effect of
removing one 2-way interaction term at a time. Removing term [PU] causes a big deflection from the
all 2-way terms model with a small increase in the degrees of freedom (4G2 = 7235, 4DoF = 2).
Removing [TU] also causes some deflection from the all 2-way terms model (4G2 = 71,4DoF = 11);
but removing [TP] term causes the smallest deflection and increases the degrees of freedom as well
(4G2 = 22, 4DoF = 22). Further removing terms from [TU][PU] causes greater deflections. The
best fit model for a given contingency table is the one with the least 4G2 and largest 4DoF with
respect to the saturated model ([TU][PU] in this case with4G2 = 22 and4DoF = 22).

It is clear from finally selected log linear model that there is a dependence between ”Transitions” and
the ”Level of Understanding” as well as between the ”Pair Type” and ”Level of Understanding”.The first
dependency is reflected by the term [TU] and the later one is depicted by the term [PU]. Where [PU]
reflects the fact that a pair of two experts can understand a program better than a pair of two novices.
To better understand the dependency between transitions and levels of understanding we use ANOVA.
Here, instead of using the transitions, we grouped them in categories as depicted in table 1. Figure 4
shows the differences between the two levels of understanding (medium and high) for the different types
of flows in a program.

Table 3: Summary of results of ANOVA for the transitions from the whole interaction
Transition Type µUND=1(σUND=1) µUND=2(σUND=2) F[1,28] p

Data Flow 0.4 (0.018) 0.45 (0.016) 65.5 < .01

Systemaatic Execution 0.55 (0.020) 0.51 (0.017) 32.1 < .01

Pairs with medium level of understanding have relatively more transitions amongst all three semantic
classes.In terms of gaze transitions this behaviour translates to reading each line of the program and
trying to understand it. This shows that these pairs look simultaneously at the conditions in the program
as well as the modification of the data elements according to them. They try to understand the data flow
in accordance to the control flow of the program. This attempt of program understanding is similar to
the ”Systematic execution of program”. This method is not very characteristic of the pairs with high
level of understanding, as shown in an experiment by [10]. The pairs with high level of understanding
have relatively more transitions among the identifiers and the expressions. They concentrate more on

Page 28 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Figure 4: Mean plots for different transitions for the whole interaction (Level of Understanding 1 =
Medium and 2 = High)

the variable/entities and the relationship among them. Building up their understanding in this manner
the pairs with the higher level of understanding are able to do a proper concept assignment from the
program domain to the world domain [21].

5.2 Question 2

Taking our analysis one step ahead, to find the effect of the convergent and divergent episodes of in-
teraction, we carried out 2 × 2 ANOVA for data flow and data flow according to control flow with two
factors level of understanding and convergent/divergent interaction episodes.

Table 4 shows the descriptive statistics for the proportion of data flow transitions in different types
of interaction episodes and for different levels of understanding. There were two single effects for the
type of interaction episode (F [2, 28] = 121, p < 0.01) and for the levels of understanding (F [2, 28] =
10.86, p < 0.01), and there was no interaction effect. From figure 5 we see that all the pairs in divergent
phases of interaction spend more time on understanding the data flow than that in convergent phases.
The effect of the level of understanding on data flow is visible by the fact that the pairs with high level
of understanding follow the data flow more than the pairs with medium level of understanding.

Table 4 shows the descriptive statistics for the proportion of systematic execution episodes in dif-
ferent types of interaction episodes and for different levels of understanding. There were two single
effects of the type of interaction episode (F [2, 28] = 106, p < 0.01) and of the levels of understanding
(F [2, 28] = 8.36, p < 0.01), and there was no interaction effect. From figure 5 we see that the pairs
in convergent phases have a high ratio of transitions that correspond to systematic program execution.
There is also an effect of levels of understanding on systematic program execution depicting more effort
put by the pairs with medium level of understanding on systematic program execution.

Table 4: Proportions of data flow and systematic execution transitions (mean and standard deviation) by
type of episode and level of understanding.

Transition Type Episode Type Understanding
Low High

Data Flow Convergent 0.59 (0.04) 0.56 (0.03)
Divergent 0.51 (0.02) 0.49 (0.02)

Systematic Execution Convergent 0.35 (0.04) 0.38 (0.03)
Divergent 0.44 (0.02) 0.47 (0.02)

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 29 of 192

Figure 5: Mean plots for data flow and systematic execution of program for the episodes of interaction
and levels of understanding (Level of Understanding 1 = Medium and 2 = High)

6 Discussion and Conclusion

Concerning our first question, we have found evidence for the sensitivity of gaze patterns to the level
of understanding. It appears that the gaze of individuals who understood the program better transition
more frequently between identifiers and expressions, a transition type that reflects a data flow centred
reading of the code. Conversely, individuals with a who got a sense of what the program is doing but
were not able to provide the exact explanation, spent relatively more time parsing the program by sys-
tematically looking at all types of semantic elements. These findings are compatible with the findings
from Jermann and Nüssli (2012) [7] who found that for individual programmers, experts look less than
novices at structural elements (type names and keywords) which are not essential when understanding
the functionality of the code. Experts look more than novices at the predicates of conditional statements
and the expressions (e.g. v /= 10;), which contain the gist of the programs. Our current findings confirm
these findings in the context of pairs by using an analysis of gaze transitions between semantic elements .
Pairs with high level of understanding put relatively more individual efforts on understanding the entities
and their relationships (data flow).

A possible explanation for this difference would be that for the pairs with medium level of under-
standing some structural elements can act as ”while demons” [3]. On other hand, pairs with high level
of understanding show ”as-needed” strategy for building their understanding of the program based on
their understanding of the relation between variables in the program [10].

We presented our study for getting the underlying process of the collaborative program comprehen-
sion using the eye-tracking data. We put our efforts to distinguish the strategy used for understanding the
program by pairs having medium level of understanding from that of pairs having high level of under-
standing. Pairs with high level of understanding put relatively more individual efforts on understanding
the entities and their relationships (data flow). In a convergent episode of interaction, pairs with high
level of understanding try to understand the data flow of the program according to the control flow of
the program (Systematic program execution). This is attributed to their gaze transitions among all the
semantic elements of the program in a convergent phase of interaction and ”to and fro” gaze transitions
between expressions and identifiers in the program for the whole interaction (when taken as a whole and
in the divergent episodes of interaction).

On other hand, pairs with medium level of understanding put efforts in simultaneous understanding
of data and control flow in the program without understanding the meaning of the data variables. This
is depicted by their ”back and forth” transitions between expressions and structural elements of the

Page 30 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

program while they are in a convergent episode of interaction. This behaviour shows that for the pairs
with medium level of understanding some structural elements can act as ”while demons” [3]. On other
hand, pairs with high level of understanding show ”as-needed” strategy for building their understanding
of the program based on their understanding of the relation between variables in the program [10].

Concerning our second question, we have shown that in convergent episodes of interaction, pairs
with high level of understanding as well as pairs with medium level of understanding try to understand
the program via a strategy of systematic program execution. This is depicted by their ”back and forth”
transitions between expressions and structural elements of the program. In comparison, the data flow
transitions are less frequent in divergent episodes.

A possible explanation for the differences between convergent and divergent episodes is that pro-
grammers are visually searching the code for variable and method names during the divergent phases
and that in this case the augmentation of data flow transitions stems from a selective exploration of
the code. Another explanation is that during divergent episodes, programmers focus on building basic
knowledge about variables and expression which is then discussed during convergent episodes where
structural elements of the code are used to define the joint focus of attention. An analysis of the dialogue
between partners will help to understand these subtle differences.

Since there were no interaction effects between these factors, we can conclude that both the level of
understanding and the type of episode affect the types of gaze transitions that are observed. It is striking
that the differences between convergent and divergent episodes are twice as large as the differences
between levels of understanding. This seems to indicate that gaze indicators are more sensitive to task-
related aspects than to levels of expertise.
References

1. J.R. Anderson. Cognitive Psychology and its Implications. Worth Publishers, 1985.
2. P. Baheti and L. Williams. Exploring pair programming in distributed object-oriented team projects. In In Proceedings of

XP/Agile Universe 2002. Springer Verlag, 2002.
3. J. Bonar and E. Soloway. Uncovering principles of novice programming. In Proceedings of the 10th ACM SIGACT-

SIGPLAN symposium on Principles of programming languages, POPL ’83, 1983.
4. R. Brooks. Towards a theory of the comprehension of computer programs. International Journal of Man-Machine Studies,

18(6), 1983.
5. R. Dale D. C. Richardson and N. Z. Kirkham. The art of conversation is coordination. Psychological Science, 18(5):407–

413, 2007.
6. J. M. Gottman and A. K. Roy. Sequential Analysis - A Guide for Behavioral Researchers. Cambridge University Press.
7. P. Jermann and M.-A. Nussli. Effects of sharing text selections on gaze cross-recurrence and interaction quality in a pair

programming task. In In Proceedings of Computer Supported Collaborative Work 2012, 2012.
8. W.L. Johnson and E. Soloway. Proust: Knowledge-based program understanding. Software Engineering, IEEE Transac-

tions on, SE-11(3), 1985.
9. Y. Kawahara. Change-point detection in time-series data by direct density-ratio estimation. Direct, 4(2), 2009.

10. J. Koenemann and S.P. Robertson. Expert problem solving strategies for program comprehension. In CHI ’91 Proceedings
of the SIGCHI conference on Human factors in computing systems: Reaching through technology, 1991.

11. J. Larkin. Cognitive Skills and Their Acquisition, chapter Enriching Formal Knowledge: A model for learning to solve
textbook physics problems. Lawrence Erlbaum Associates, 1981.

12. S. L. Lauritzen. Lectures on Contingency Tables. University of Aalborg, 1989.
13. S. Letovsky. Cognitive processes in program comprehension. Journal of Systems and Software, 7(4), 1987.
14. A. Von Mayrhauser and A.M.Vans. Program comprehension during software maintenance and evolution. Computer,

28(8), 1995.
15. M.-A. Nussli. Dual-Eye Tracking Methods for the Study of Remote Collaborative Problem Solving. PhD thesis, Ecole

Polytechnique Federale de Lausanne, 2011.
16. R. P. Adams and D. J. C. MacKay. Bayesian Online Changepoint Detection. ArXiv e-prints, October 2007.
17. D. C. Richardson and R. Dale. Looking to understand: The coupling between speakers’ and listeners’ eye movements and

its relationship to discourse comprehension. Cognitive Science, 29(6):1045–1060, 2005.
18. B. Shneiderman and R. Mayer. Syntactic/semantic interactions in programmer behavior: A model and experimental

results. International Journal of Parallel Programming, 8, 1979. 10.1007/BF00977789.
19. E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. Software Engineering, IEEE Transactions on,

SE-10(5), 1984.
20. S. Paul S.R. Tilley and D.B. Smith. Towards a framework for program understanding. In Program Comprehension, 1996,

Proceedings., Fourth Workshop on.
21. B. G. Mitbander T. J. Biggerstaff and D. E. Webster. Program understanding and the concept assignment problem.

Commun. ACM, 37(5).
22. E. Terzi and et al. Efficient algorithms for sequence segmentation.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 31 of 192

Paper Session 2

Personality

Page 32 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Computer Anxiety and the Big Five

Sarah J Crabbe

York St John Business School

York St John University

s.crabbe@yorksj.ac.uk

Peter Andras

School of Computer Science

Newcastle University

peter.andras@ncl.ac.uk

Keywords: Computer anxiety, Five Factors, Personality

Abstract

This paper explores the relationship between personality traits, as described by the Big Five Factors

model, and the likelihood of someone suffering from computer anxiety. The research sample was a

cohort of Business School Undergraduates. It was found that for this sample there was a small but

significant correlation between two of the traits, agreeableness and emotional stability, and computer

anxiety.

1. Introduction

In this era, of pervasive technology, people are increasingly being asked to interact regularly with

computers. For some people this interaction causes anxiety and decreases their ability to work to their

highest standards (M. J. Brosnan, 1998). It would be useful to be able to identify those people likely

to suffer from computer anxiety so that they could be supported effectively in order to become more

efficient workers. The personality of the individual might be a contributing factor to this. (Anthony,

Clarke, & Anderson, 2000; Ceyhan, 2006; Korukonda, 2005, 2007; Wilt, Oehlberg, & Revelle, 2011)

Within a cohort of first year business undergraduates, the combination of emotional stability (inverse)

and agreeableness accounted for 37.9% of the variance of computer anxiety. This suggests that some

factors of personality do have an impact on the likelihood of computer anxiety for this particular

cohort.

This paper explores the current research in this field and reviews the questionnaires available and

explains why CARS and the 5 Factor model were chosen. It goes on to discuss the findings in more

detail, and the limitations and implications that these have concluding with suggestions for further

work.

2. Background

Personality has been described as “the combination of characteristics or qualities that form an

individual‟s distinctive character:” (Oxford, 2012) although it cannot be measured, only the

behaviours that are influenced by it can be measured. So personality, as far as Psychologists are

concerned is not a tangible, measurable thing at all, but a construct.

While there are several different models to describe personality, most researchers are agreed that

personality does not change very much over time (Maltby, Day, & Macaskill, 2007; Nettle, 2007).

The different aspects of a personality are often referred to as factors and there are a range of self-

reporting questionnaires which measure these factors each questionnaire relating to a particular model

of personality.

MBTI (Briggs Myers, 2000) based on the Myers Briggs model of personality has to be administered

by trained psychologists and is expensive to buy and time-consuming to deliver. The results also need

to be delivered personally by a professional, specifically trained, psychologist creating a large time

investment for the candidate and researcher. The 16PF developed by Cattell (Cattell & Schuerger,

2003) suggests that there are sixteen factors that combine to make one‟s personality. These were

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 33 of 192

 2

 www.ppig.org

synthesised into themes by (McCrae & Costa, 1999)to find five themes which are referred to as the

Big Five Factors (Nettle, 2007). They are more accessible and there are many open-source, well

researched questionnaires based on this model that are available for general use.

The Big Five or the Five-Factor model of personality (Maltby, Day, & Macaskill, 2007:177; Nettle,

2007:9) examines behaviours which are indicative of particular types of personality and groups them

together into five trait clusters. These trait clusters or factors contain six traits (McCrae & Costa,

1999) and it is the extent to which each trait, within a cluster, is manifested that defines a person‟s

whole personality. The five factors are:

Extroversion: Someone who scores highly for extroversion is more likely to take risks and be

extrinsically motivated than someone who has a low score. The traits that make up this cluster are

warmth, gregariousness, assertiveness, activity, excitement-seeking and positive emotions The low

end is referred to as introversion

Agreeableness: The very agreeable person will demonstrate a high level of trust, compliance,

modesty, straightforwardness, tendermindedness and altruism. They may be too quick to concur with

others. A low score is tending towards antagonism. Sometimes the scale is referred to as „Adapter‟

(High in agreeableness) to „Challenger‟ (low in agreeableness).

Conscientiousness: A high score here indicates a person who is competent and well-organised and

although they take time to make decisions they are self-disciplined and motivated by achievement,

often referred to as „Focussed‟. A low score may indicate a lack of direction or, in a more positive

view, an ability to be „Flexibile‟.

Neuroticism: Someone who is a highly neurotic person is likely to react more strongly to negative

stimuli than a less neurotic person and is often referred to as „Reactive‟. They will tend to worry more

and be more adversely affected by bad news stories. A person with low levels of Neuroticism may not

be careful about avoiding danger but will tend to be „emotionally stable‟ or „Resiliant‟.

Openness: An open person has lots of ideas often straying into fantasy but always with an awareness

of aesthetics and their own values. They are often excitable and active and can be referred to as

„Explorer‟. A low score here suggests a person who is closed to experience, sometimes referred to as

resistant to change or as a „Preserver‟.

(Adapted from Huczynski & Buchanan, 2007; Srivastava, 2011).

For this research the factors of agreeableness/challenger and neuroticism/emotional stability seemed

to be the most important.

But what exactly is computer anxiety? For the purposes of this research it is not the extreme phobic

reaction that some people have to technology (M J Brosnan, 1998; M J Brosnan & Thorpe, 2006)

which is a reaction similar to that displayed by people suffering from arachnophobia when faced with

a spider. Instead the focus will be on those cases where people feel uncomfortable and anxious when

dealing with a computer (Howard, 1986).

A person who has computing anxiety will evidence “one or more of the following:

(a) anxiety about present or future interactions with computers or computer-related technology;

(b) negative global attitudes about computers, their operation, or their societal impact;

(c) specific negative cognitions or self-critical internal dialogues during present computer interaction

or when contemplating future computer interaction.” (Weil, Rosen, & Wugalter, 1990)

In spite of the views of some that the current generation should be quite comfortable around

computers and technology (Friedl & Verčič, 2011; Judd & Kennedy, 2011; M. Prensky, 2001)

computer anxiety is still prevalent across cultures, age groups and countries (Korukonda, 2007; Shah,

Hassan, Embi, & Anxiety, 2011; Tekinarslan, 2008; Weil & Rosen, 1995). It seems to be something

that can be passed on from teacher to pupil (Ceyhan, 2006; Elkins, 1985; Epstein & Klinkenberg,

2001) suggesting that at least some element of computer anxiety is a state of anxiety in a particular

moment. There is some evidence to suggest that state anxiety manifests only if trait anxiety already

Page 34 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 3

 www.ppig.org

exists (Beckers, Wicherts, & Schmidt, 2007) but as some mitigation strategies are successful for some

people, (Bostrom & Huber, 2010; Rosen, Sears, & Weil, 1993; Torkzadeh & Van Dyke, 2002;

Woszczynski, Lazar, & Walker, n.d.) this may not be the case for all computer anxiety sufferers

Rosen and Weil have developed a questionnaire for use in identifying people with computer anxiety

known as the Computer Anxiety Rating Scale (CARS) (Rosen & Weil, 1992) which has been used in

many studies around the globe (incl Anthony et al., 2000; Chu & Spires, 1991; Durndell & Haag,

2002; Karal, 2009; Korobili, Togia, & Malliari, 2010; Korukonda, 2005; Korukonda & Finn, 2003; D

Mcilroy, Bunting, Tierney, & Gordon, 2001; David Mcilroy, Sadler, & Boojawon, 2007; Rosen et al.,

1993; Rosen & Weil, 1995a, 1995b; Shermis & Lombard, 1998; Tekinarslan, 2008)

The results of this are numeric and therefore open to statistical analysis

3. Data analysis and results

We hypothesise that there is a link between the level of computer anxiety and an individual‟s

personality profile. To test this deduction we found out what people‟s personalities are and whether

they have computer anxiety or not. Then the results were analysed with non-parametric statistical

tests.

In order to do the research we used the CARS questionnaire (Rosen & Weil, 1992) and a

questionnaire based around the five-factor model from IPIP (Goldberg, 1992). These both have 5

point Likert scale responses and the numeric data can be statistically analysed.

The group to be studied was taken from first year undergraduates in a Business School. In the past

lectures have found that typically students in this group are not always comfortable with technology

and some find it challenging to use the Virtual Learning environment and other applications Because

the sample is of undergraduates it is quite easy to gain access to them in whole cohort taught modules.

The personality questionnaire was handed out in paper copy and collected in the same session so the

rate of return was quite high- although participation was voluntary. The computer anxiety

questionnaires were also in hard copy, but the administration of these was done by colleagues to

smaller groups and the return rate was not as good.

The sample group consists of over one hundred level one students on an undergraduate Business

Management course. They were approached at the end of semester 1 and the beginning of semester 2.

The students are a mixture of international students and home students with a minority of mature

students, the majority of the group being under 20 years old. All students were invited to take part in

the research but participation was voluntary in line with ethical procedures within the university. For

the computer anxiety questionnaire there were 55 useable returns. For the personality questionnaire

there were 103 useable responses.

Computer anxiety

There are three ranges of computer anxiety, high, medium and low. They are bounded by the values

high being greater than 60, medium between 40 and 60 and low is less than 40. In this cohort the

distribution is shown in Figure 1.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 35 of 192

 4

 www.ppig.org

Fig 1: Computer anxiety distribution

A sizeable part of the group had low anxiety but there is still a significant number who are exhibiting

high anxiety. The group has a normal distribution (Table A1)

Just under a third of the group who responded are likely to suffer from a high level of anxiety when

working with computers. As a lot of the student work must be completed on line or with the use of

technology such as word processors this is of concern. However as this was a voluntary exercise and

the point of the research was explained it may be that a higher proportion of people who already felt

anxious chose to respond.

Personality factors
We used the 5 Factors model of personality and the IPIP questionnaire (Goldberg, 1992). Each factor

was scored separately and the results are shown in Table 1.

Table 1: Results of the personality questionnaire

Emotional stability has the largest range with a minimum of 10 and a high score of 92.5. Both

intellectual and agreeableness had high scores of 100 while agreeableness had the highest mean score

and emotional stability had the lowest.

 Extraversion Agreeableness conscientiousness
Emotional
Stability Intellect/Imagination

Mean 55.7 67.2 56.3 50.5 61.9

Standard
Deviation 16.0 16.0 15.7 15.7 12.6

Minimum 20.0 22.5 10.0 12.5 35.0

Maximum 97.5 100.0 92.5 90.0 100.0

Page 36 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 5

 www.ppig.org

Figure 2: Bar chart of personality profiles

The general overview in Figure 2 shows that the majority of respondents were in the middle range for

each trait, other than that for agreeableness which shows a higher level of high scores. It should be

noted that there are no low scores for intellect and this may be because the subjects were university

students. The overall profiles were normally distributed (Table A2)

Comparing our sample with the reference sample (Goldberg, 1992) using the z-test gives a z value of 14.566,

which indicates statistically significant difference between the samples. This suggests that the sample was in

some way different from the sample used by the other researchers. Although ethnic data was not

collected for the sample other records for the sample suggest that a sizeable minority of the students

are from Asia – China in particular. Different cultures can present with profiles that are not the same

as Western European/ USA profiles and this can skew the data.

As the data is normally distributed it suggests that we have a representative sample of personality

profiles in the group.

Combined findings

There were 28 people who completed both the computer anxiety questionnaire and the personality

inventory. The different traits are compared with the computer anxiety scores but only Emotional

stability (A) and Agreeableness (B) demonstrated any correlation i.e. had a value of R
2
 >0.1 (Figure

3).

Figure 3: Graphs showing correlation between the traits of Emotional Stability (A) and

Agreeableness (B) with computer anxiety

The relationship between „technophobia‟ (Another name for computer anxiety) and the traits of

Neuroticism (the opposite of Emotional Stability) and Openness (which maps to agreeableness) were

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 37 of 192

 6

 www.ppig.org

established (Anthony et al., 2000) among a South African sample over ten years ago and these

relationships have been found to be still true. Work done in New York in 2005 also found high

correlation between technophobia and neuroticism (Korukonda, 2005) and a lower negative

correlation with openness. However neither of these studies combined the traits to analyse the impact

of the combination.

As the data set has less than 50 data points the Shapiro-Wilk test for normality was applied (Table

A3) and the data was found to be normally distributed.

Using Spearman‟s test for correlation we show that Agreeableness and Emotional stability have the highest and

significant correlation coefficients. (Table A4)

The testing for linear regression using these two traits shows that the combined model explains the

level of computer anxiety better than the traits separately. The analysis also shows that both traits are

significant components of the combined linear model (Table 4)

Coefficients
a

Model

Unstandardized Coefficients

Standardized

Coefficients

t Sig. B Std. Error Beta

1 (Constant) 78.406 10.213 7.677 .000

EmotionalStability -.583 .193 -.518 -3.027 .006

2 (Constant) 106.843 14.380 7.430 .000

EmotionalStability -.592 .174 -.526 -3.401 .002

Agreeableness -.408 .158 -.398 -2.578 .017

a. Dependent Variable: Anxiety

Table 4 Multiple Regression

The combined linear model, according to Table 4, is:

Computer anxiety score = 106.843 – (0.592 * Emotional Stability score) – (0.408 *

Agreebleness score)

Thus the model implies that, the higher the scores of emotional stability and agreeableness

for a person, the lower the computer anxiety score of this person.

The summary analysis of the model (Table 5) shows the adjusted R square value is 0.379 i.e.

almost 38% of the variance of the anxiety scores is explained by the emotional stability and

agreeableness scores of the subjects.

Page 38 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 7

 www.ppig.org

Model Summary

Model R R Square

Adjusted R

Square

Std. Error of the

Estimate

1 .518a .268 .239 13.08639

2 .653b .427 .379 11.81979

a. Predictors: (Constant), EmotionalStability

b. Predictors: (Constant), EmotionalStability, Agreeableness

Table 5 Summary analysis of the linear regression model

Our work shows that some personality traits contribute towards making a person more likely to suffer

from some aspect of computer anxiety but that there may be other factors that have a considerable

influence on the presence of computer anxiety in an individual. Our results show that this result holds

for populations with different normal personality trait distributions, indicating that probably the link

between personality traits and computer anxiety is not culture dependent.

4. Discussion

It may seem surprising that there is such a high level of computer anxiety still present in a population

that has grown up surrounded by technology. The suggestion is often made that this generation are

digital natives (B. M. Prensky, 2001) and should not therefore experience computer anxiety. In

practice it can be seen that a sizeable minority of students are anxious about interacting with certain

aspects of technology

The findings show that there is a personality profile that is more likely to result in the individual being

susceptible to suffering from computer anxiety, but it does not suggest that other profiles are immune

from this. Computer anxiety can present both as a transient state and a consistent trait so it is possible

that the identified profiles have a trait of anxiety that manifests as computer anxiety and other profiles

have moments when they are in a state of computer anxiety.

Even though the sample size was small the presence of a significant result suggests a larger size data

sample is likely to confirm more clearly the correlations and the combined linear relationship that we

found. The concurrence with the work of others (Anthony et al., 2000; Korukonda, 2007) from earlier

years suggests that the level of computer anxiety and the factors that contribute to it are not changing

over time. The personality trait distribution difference between our data and the reference data also

indicates that cultural factors do not matter very much for the relationship between personality traits

and computer anxiety.

This being the case perhaps suggests that the environment does not have such a large impact as

suggested by Prensky (2001) and others who embrace the concept of digital native or the „net

generation‟ (Jones, Ramanau, Cross, & Healing, 2010; Kennedy, Judd, Dalgarno, & Waycott, 2010).

For the front line lecturer, knowing that people presenting with this profile may be more likely to

suffer from computer anxiety might help to identify them at the beginning of the teaching year in

order to pre-empt anxiety by drawing their attention specifically to a range of intervention strategies.

This might support those individuals initially so that they engage with technology and then help to

diminish their own anxiety by becoming more competent.

5. Conclusion and further work

Computer anxiety is a complex issue that affects a wide range of people. For the group in this study

the personality traits of emotional stability and agreeableness were important in predicting the

likelihood of computer anxiety being present in an individual, although it is apparent that there are

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 39 of 192

 8

 www.ppig.org

other factors as well which are as yet unknown. These other factors will probably not be related to

culture as our findings concur with those in other countries.

Personality profile has a role to play but this may be more important in the resolution of the anxiety

than in the cause of it. More work could be done in this area.

The CARS questionnaire is a valuable instrument for identifying general computer anxiety, but more

specific questions need to be asked if we are going to be able to target the interventions in an

appropriate way. The next step is to develop and test an instrument that will do that.

6. References

Anthony, L. M., Clarke, M. C., & Anderson, S. J. (2000). Technophobia and personality subtypes in a

sample of South African university students. Computers in Human Behavior, 16.

Beckers, J. J., Wicherts, J. M., & Schmidt, H. G. (2007). Computer Anxiety: “Trait” or “State”?

Computers in Human Behavior, 23(6), 2851–2862. doi:10.1016/j.chb.2006.06.001

Bostrom, R. P., & Huber, M. (2010). End-User Training Methods : What We Know , Need to Know.

Data Base For Advances In Information Systems, 41(4), 9–39.

Briggs Myers, I. (2000). Introduction to Type. Oxford: OUP.

Brosnan, M J. (1998). Technophobia : the psychological impact of information technology. New

York: Routledge.

Brosnan, M J, & Thorpe, S. J. (2006). An evaluation of two clinically-derived treatments for

technophobia. Computers in Human Behavior, 22, 1080–1095. doi:10.1016/j.chb.2006.02.001

Brosnan, M. J. (1998). The impact of computer anxiety and self-efficacy upon performance. Journal

of Computer Assisted Learning, 14(3), 223–234. doi:10.1046/j.1365-2729.1998.143059.x

Cattell, H. E. P., & Schuerger, J. M. (2003). The Essentials of 16PF Assessment. London: John Willey

and Sons.

Ceyhan, E. (2006). Computer anxiety of teacher trainees in the framework of personality variables.

Computers in Human Behavior, 22, 207–220. doi:10.1016/j.chb.2004.07.002

Chu, P. C., & Spires, E. E. (1991). Validating the Computer Anxiety Rating Scale : Effects of

Cognitive Style and Computer Courses on Computer Anxiety, (1987), 7–21.

Durndell, A., & Haag, Z. (2002). Computer self efficacy , computer anxiety , attitudes towards the

Internet and reported experience with the Internet , by gender , in an East European sample.

Computers in Human Behavior, 18, 521–535.

Elkins. (1985). Attitudes of special education personnel toward computers. Educational Technology,

15, 31–34.

Epstein, J., & Klinkenberg, W. D. (2001). From Eliza to Internet : a brief history of computerized

assessment. Computers in Human Behavior, 17, 295–314.

Friedl, J., & Verčič, A. T. (2011). Media preferences of digital natives‟ internal communication: A

pilot study. Public Relations Review, 37(1), 84–86. doi:10.1016/j.pubrev.2010.12.004

Page 40 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 9

 www.ppig.org

Goldberg, L. R. (1992). International Personality Item Pool. Psychological Assessment.

Howard, G. S. (1986). Computer Anxiety and the Use of Microcomputers in Management. Michigan:

UMI Research Press.

Huczynski, A., & Buchanan, D. (2007). Organizational Behaviour (6th ed., pp. 149–150). FT Prentice

Hall.

Jones, C., Ramanau, R., Cross, S., & Healing, G. (2010). Net generation or Digital Natives: Is there a

distinct new generation entering university? Computers & Education, 54(3), 722–732.

doi:10.1016/j.compedu.2009.09.022

Judd, T., & Kennedy, G. (2011). Measurement and evidence of computer-based task switching and

multitasking by “Net Generation” students. Computers & Education, 56(3), 625–631.

doi:10.1016/j.compedu.2010.10.004

Karal, H. (2009). Assessing Pre-Service Teachers ‟ Computer Phobia Levels in terms of Gender and

Experience , Turkish. Sciences-New York, 90(462), 71–75.

Kennedy, G., Judd, T., Dalgarno, B., & Waycott, J. (2010). Beyond natives and immigrants: exploring

types of net generation students. Journal of Computer Assisted Learning, 26(5), 332–343.

doi:10.1111/j.1365-2729.2010.00371.x

Korobili, S., Togia, A., & Malliari, A. (2010). Computers in Human Behavior Computer anxiety and

attitudes among undergraduate students in Greece. Computers in Human Behavior, 26(3), 399–

405. doi:10.1016/j.chb.2009.11.011

Korukonda, A. R. (2005). Personality , individual characteristics , and predisposition to

technophobia : some answers , questions , and points to ponder about. Information Sciences,

170, 309–328. doi:10.1016/j.ins.2004.03.007

Korukonda, A. R. (2007). Differences that do matter : A dialectic analysis of individual characteristics

and personality dimensions contributing to computer anxiety. Computer, 23, 1921–1942.

doi:10.1016/j.chb.2006.02.003

Korukonda, A. R., & Finn, S. (2003). An investigation of framing and scaling as confounding

variables in information outcomes : The case of technophobia q. Information Sciences, 155, 79–

88. doi:10.1016/S0020-0255(03)00153-1

Maltby, J., Day, L., & Macaskill, A. (2007). Introduction to Personality, Individual Difference and

Intelligence. Harlow: Pearson Education Ltd.

McCrae, R. R., & Costa, P. T. (1999). A Five-Factor Theory of Personality. In L. A. Pervin & O. P.

John (Eds.), Handbook of Personality Theory and Research 2nd Edition (2nd ed., pp. 139–153).

NY: Teh Guildford Press. Retrieved from

http://books.google.co.uk/books?hl=en&lr=&id=b0yalwi1HDMC&oi=fnd&pg=PA139&dq=cos

ta+and+mccrae+big+5&ots=753DM5SsRi&sig=jQRVrTOKR0vJxo21TdLB-

2OoEOk#v=onepage&q=costa and mccrae big 5&f=false

Mcilroy, D, Bunting, B., Tierney, K., & Gordon, M. (2001). The relation of gender and background

experience to self-reported computing anxieties and cognitions. Computers in Human Behavior,

17, 21–33.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 41 of 192

 10

 www.ppig.org

Mcilroy, David, Sadler, C., & Boojawon, N. (2007). Computer phobia and computer self-efficacy :

their association with undergraduates use of university computer facilities. Computers in Human

Behavior, 23, 1285–1299. doi:10.1016/j.chb.2004.12.004

Nettle, D. (2007). Personality. Oxford: Oxford University Press.

Oxford. (2012). Personality Definition. Oxford Dictionaries. Retrieved June 5, 2012, from

http://oxforddictionaries.com/definition/personality

Prensky, B. M. (2001). Do They Really Think Differently ? On the Horizon, 1–9.

Prensky, M. (2001). Digital natives, digital immigrants Part 1. On the horizon, 1–6. Retrieved from

http://www.emeraldinsight.com/journals.htm?articleid=1532742&show=abstract

Rosen, L. D., Sears, D. C., & Weil, M. M. (1993). Treating Technophobia : A Longitudinal

Evaluation of the Computerphobia Reduction Program. Computer, 9.

Rosen, L. D., & Weil, M. M. (1992). Measuring technophobia, (June 1992), 1–51.

Rosen, L. D., & Weil, M. M. (1995a). Computer Availability , Computer Experience and

Technophobia Among Public School Teachers. Education, 11(1), 9–31.

Rosen, L. D., & Weil, M. M. (1995b). Computer Anxiety : A Cross-Cultural Comparison of

University Students in Ten Countries. Science, 11(1), 45–64.

Shah, M. M., Hassan, R., Embi, R., & Anxiety, C. (2011). Experiencing computer anxiety. Business,

1631–1645.

Shermis, M. D., & Lombard, D. (1998). Effects of Computer-Based Test Administrations on Test

Anxiety and Performance. Science, 14(1), 111 – 123.

Srivastava, S. (2011). Measuring the Big Five personality factors. Retrieved April 28, 2011, from

http://www.uoregon.edu/~sanjay/bigfive.html

Tekinarslan, E. (2008). Computer anxiety : A cross-cultural comparative study of Dutch and Turkish

university students. Computer, 24, 1572–1584. doi:10.1016/j.chb.2007.05.011

Torkzadeh, G., & Van Dyke, T. P. (2002). Effects of training on Internet self-efficacy and computer

user attitudes. Computers in Human Behavior, 18(5), 479–494. doi:10.1016/S0747-

5632(02)00010-9

Weil, M. M., & Rosen, L. D. (1995). The Psychological Impact of Technology From a Global

Perspective : A Study of Technological Sophistication and Technophobia in University Students

From Twenty-Three Countries. Science, 11(1), 95–133.

Weil, M. M., Rosen, L. D., & Wugalter, S. E. (1990). The Etiology of Computerphobia. Computer,

(1985), 361–379.

Wilt, J., Oehlberg, K., & Revelle, W. (2011). Anxiety in personality☆. Personality and Individual

Differences, 50(7), 987–993. doi:10.1016/j.paid.2010.11.014

Woszczynski, A. B., Lazar, L. D., & Walker, J. M. (n.d.). DOES TRAINING REDUCE COMPUTER

ANXIETY ? Information Systems, (1999), 1999–2002.

Page 42 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, Universidad Carlos III de Madrid, 2010 www.ppig.org

Appendices

Appendix 1 Computer anxiety distribution
The distribution was normal and the mean fell within the confidence range for the reference study

sample (Rosen & Weil, 1992) , shown in Table 1.

  N  Mean  Range Standard

Deviation



 Skewness

 Our Study  55  48.23  20-100  17.27  0.3



 Reference

study

 2,940  41.46  20-100  14.25  1.15

Table A1: Comparison of study samples

Appendix 2 The normal distribution of the personality data
When the scores for all the traits are taken together this gives a total personality profile value. The

distribution of the total personality profile values was normal according to the Kolmogorov-Smirnov

test.

Tests of Normality

 Kolmogorov-Smirnova Shapiro-Wilk

 Statistic df Sig. Statistic df Sig.

Total

personality

score

.101 103 .012 .969 103 .017

a. Lilliefors Significance Correction

Table A2 Demonstrating the normal distribution of the personality trait data

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 43 of 192

 12

 www.ppig.org

Appendix 3 The normality of computer anxiety and personality distributions

Tests of Normality

 Kolmogorov-Smirnova Shapiro-Wilk

 Statistic df Sig. Statistic df Sig.

Anxiety .158 27 .083 .955 27 .276

Extraversion .151 27 .117 .963 27 .436

Agreeableness .109 27 .200* .972 27 .667

Conscienctiousness .176 27 .032 .949 27 .201

EmotionalStability .111 27 .200* .964 27 .450

IntellectImagination .115 27 .200* .967 27 .527

a. Lilliefors Significance Correction

*. This is a lower bound of the true significance.

Table A3: Testing the normality of the computer anxiety and personality trait data distributions

As all the significance values are >0.05 it is confirmed that the data is normally distributed in all

cases.

Appendix 4 Correlation

Correlations

Anxiety Extraversion Agreeableness Conscienctiousness EmotionalStability IntellectImagination

Spearman's rho Anxiety Correlation Coefficient 1.000 -.117 -.372 .108 -.454* -.308

Sig. (2-tailed) . .560 .056 .593 .017 .118

N 27 27 27 27 27 27

Extraversion Correlation Coefficient -.117 1.000 .151 -.453* .050 .496**

Sig. (2-tailed) .560 . .451 .018 .804 .008

N 27 27 27 27 27 27

Agreeableness Correlation Coefficient -.372 .151 1.000 .091 -.028 .201

Sig. (2-tailed) .056 .451 . .653 .890 .315

N 27 27 27 27 27 27

Conscienctiousness Correlation Coefficient .108 -.453* .091 1.000 -.120 -.105

Sig. (2-tailed) .593 .018 .653 . .552 .601

N 27 27 27 27 27 27

EmotionalStability Correlation Coefficient -.454* .050 -.028 -.120 1.000 .334

Sig. (2-tailed) .017 .804 .890 .552 . .088

N 27 27 27 27 27 27

IntellectImagination Correlation Coefficient -.308 .496** .201 -.105 .334 1.000

Sig. (2-tailed) .118 .008 .315 .601 .088 .

N 27 27 27 27 27 27

*. Correlation is significant at the 0.05 level (2-tailed).

**. Correlation is significant at the 0.01 level (2-tailed).

Table A4: The results of Spearman’s test for correlation between computer anxiety and personality

traits

Page 44 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

In search of practitioner perspectives on ‘good code’

Gail Ollis

Postgraduate researcher

School of Design, Engineering and Computing

Bournemouth University

gollis@bournemouth.ac.uk

Keywords: POP-I.B. Barriers to programming; POP-II.A. Individual differences; POP-II.C. Working practices;

POP-IV-A. Approaches to software design.

Abstract

Much of a software developer's job involves working with existing code. The comprehensibility of

code therefore has a significant and ongoing effect which can continue long after it was written.

Personal experience has shown that some programmers' code is frustrating and time consuming to

work with, while others write code that is crystal clear. This paper sets out the basis for a definition of

'good programmer' which emphasises the powerful but invisible productivity consequences for others,

rather than the more readily measurable performance of the individual. The conjectured role of

personality in shaping such characteristics is also discussed.

Craftsmanship matters

The differences in performance between software developers have long been considered in terms of

personal productivity. There is, for example, a pervasive idea in the software industry that individual

differences of an order of magnitude exist between high and low performers. This dates back to an

incidental finding by Grant and Sackman (1967), who set out to investigate the effects of direct and

indirect computer access on programmer performance. In those early days of computing, the norm

was for programmers to submit programs to a separate computer room to be run in their absence.

Direct access to the computer was a new trend. The access method, though, proved to play only a

small part, strikingly overshadowed by large individual differences.

As in many other studies, the task was one of production: the writing and debugging of a piece of

code. Speed of production is important to a commercial project's success and profitability. It is also

easily measured. The code produced also needs to be sufficiently correct - a characteristic which is

measurable less directly, through testing and bug reports. However, these measures reflect only a

fraction of the lifecycle of software systems.

A considerable part of software development calls for comprehension of someone else's code. Some

of this is contemporaneous. A developer on the same project, engaged for example in integration

activities or a change to common code, has the benefit of both a shared knowledge of the project's

goals and the opportunity to ask questions of the original writer. The task is different for future

readers who later have to understand code in order to fix, extend or reuse it. The only completely

reliable information on how the program works comes from the source code; there is no guarantee

that other documents, if they exist, have kept pace with the realities of the implementation.

If the code is well crafted, this task can go very smoothly. One experienced developer summed up

such craftsmanship thus: "If they're brilliant, they can walk away". There is no need to be able to find

the author to ask how the code works; it is clear to see. When this is not the case, the task for reader is

altogether more difficult, frustrating and error-prone. It is also more time consuming. Badly written

code has commercial consequences, not just aesthetic ones. Unfortunately, unlike pure production

from scratch, the time that poor craftsmanship adds to the task of working with existing code cannot

be isolated and measured. Its effect is apparent to developers struggling to make enough sense of

things to move forward, and all but invisible to others.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 45 of 192

 2

PPIG, London Metropolitan University, 2012 www.ppig.org

It is unfortunate that the word "craftsmanship", which denotes mastery of a skill, it is also closely

associated with costly physical artefacts. It does not follow that the same should apply to intellectual

work, but the association is nonetheless made and even taken as read. Take Spolsky (2003), for

example: "Craftsmanship is, of course, incredibly expensive." (my emphasis). To extend a carpentry

analogy used by Spolsky, this viewpoint frames the kind of workmanship where "all the screws line

up" (ibid.) as something of a luxury. It neglects the significant but intangible expense of puzzling over

software that is as confusing as a floor scattered with flat-pack furniture components, a sheet of

cryptic diagrams and an allen key.

What is software craftsmanship?

Since the concern here is software development work which involves working with existing code, a

peer definition of craftsmanship is the most relevant. Eliciting these opinions is the current focus of

the author’s research. Many aspects of other team members’ behaviour can affect a software

developer's job, including such things as the approach taken to testing, build management, version

control and bug reporting. These aspects will be recorded along with views about features of good and

bad software craftsmanship that affect the usability of the source code. Just as there are individual

differences among writers of code, so it is among readers. The criteria are unlikely to be the same for

each and every one, but any areas of consensus are of particular interest.

There is already plenty of published guidance on how to produce good code (e.g. Goodliffe, 2006). It

will be interesting to explore the extent to which the advice from such material coincides with the

aspects that practising developers report as a help or a frustration in working with existing code. Some

problems may, for example, be difficult to express in the form of a rule or instruction. Returning to

the analogy of physical artefacts, an apprentice learns craft skills not from a book but through practice

over a long period in order to achieve mastery.

The efficacy of rules and instructions also depends on a sufficiently deep understanding of the concept

they are trying to convey. The decisions of interest here are those at the micro level: not architectural

concerns, but the everyday tiny design decisions made when implementing a broader design plan. An

example would be the advice to use comments which describe not "how" but "why" the code does

something. Its efficacy depends on an appreciation of how to communicate a useful "why" message to

an experienced reader.

Why does personality matter?

It may be helpful, first, to be clear that many factors are involved in these micro decisions. Expertise,

for example, will play a part. Nonetheless, there are also differences between equally experienced

programmers; years of practice can account for some of differences between groups, but not for the

variation within them.

Social context is also a powerful influence: programming takes place within a multi-layered social

environment including the team, office, organisation and culture. Saha (2011) gives a comprehensive

overview of environmental factors which can contribute to the presence of unreadable code. As an

extreme example of social reasons for incomprehensible code, Goodliffe (2006) cites the case of a

Greek programmer refusing to write comments in English, the company's lingua franca.

There is, however, also a significant cognitive dimension to programming. The ability to

operationalise a problem into computable steps is prerequisite. It is clear from experience of teaching

first year undergraduates tackling their first ever programming that this mapping of a real-world

problem into programming language syntax comes much more easily to some than to others. The need

for this systemising ability (Wray, 2007) is reflected in the preponderance among software engineers

of ‘Thinking’ personality types (who tend to make objective, analytical judgements) over ‘Feeling’

types (who give weight to human and personal concerns) (Capretz, 2003).

Page 46 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 3

PPIG, London Metropolitan University, 2012 www.ppig.org

Such a skill is sufficient to produce a working program. Many different solutions can achieve the

same outcome; apart from being able to run some more quickly than others, the computer is utterly

indifferent to the design of the program. This is not the case for human readers. Individual differences

in the problem solving and decision making approaches of the programmer have profound effects on

how readily the program can be understood by others. Although Bernstein (cited in Tien, 2000)

suggests that programming is "best regarded as the process of creating works of literature, which are

meant to be read", these works are not always accessible to the reader.

Conclusion

A future stage of research will explore individual differences between programmers to see whether

there is a correlation between specific psychological personality dimensions and the programming

behaviours, good or bad, about which some consensus has been found among peers. Systemising has

already been mentioned as a prerequisite for communicating the programmer’s intentions to the

machine; perhaps a certain degree of empathising is helpful alongside this, in order to see things from

a reader's point of view and so communicate more clearly to them. Since it is possible to create a

perfectly functioning program that is not comprehensible (as illustrated by extreme examples such as

obfuscated C programs; Broukhis, Cooper, & Noll, 2012), perhaps an element of conscientiousness

(Costa & McCrae, 1992; cited in Halkjelsvik & Jørgensen, 2012) may also prompt programmers to

cater for humans as well as machines.

Understanding approaches which tend to produce usable, ‘team friendly’ source code, or otherwise, is

a necessary step in order to intervene effectively to improve standards. Just as programmers need to

cater for the fellow programmers who are 'users' of their source code, designers of tools, processes

and advice need to understand the perspective of their users if these interventions are to work.

Acknowledgements

Thank you to Keith Phalp and Kevin Thomas for their comments.

References

Broukhis, L., Cooper, S., & Noll, L. C. (2012). The International Obfuscated C Code Contest.

Retrieved September 13, 2012, from http://www.ioccc.org/

Capretz, L. F. (2003). Personality types in software engineering. International Journal of Human-

Computer Studies, 58(2), 207.

Goodliffe, P. (2006). Code craft : the practice of writing excellent code: San Francisco, Calif. : No

Starch Press.

Grant, E. E., & Sackman, H. (1967). An Exploratory Investigation of Programmer Performance Under

On-Line and Off-Line Conditions. Human Factors in Electronics, IEEE Transactions on,

HFE-8(1), 33-48.

Halkjelsvik, T., & Jørgensen, M. (2012). From origami to software development: A review of studies

on judgment-based predictions of performance time. Psychological Bulletin, 138(2), 238-271.

doi: 10.1037/a0025996

Saha, A. (2011). Origins of poor code readability. Paper presented at the PPIG 2011, 23rd annual

workshop of the Psychology of Programming Interest Group, University of York.

Spolsky, J. (2003). Craftsmanship. Retrieved September 12, 2012, from

http://www.joelonsoftware.com/articles/Craftsmanship.html

Tien, L. (2000). Publishing software as a speech act. Berk. Tech. LJ, 15, 629.

Wray, S. (2007). SQ Minus EQ can Predict Programming Aptitude. Paper presented at the PPIG

2007, 19th annual workshop of the Psychology of Programming Interest Group, University of

Joensuu, Finland.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 47 of 192

http://www.ioccc.org/
http://www.joelonsoftware.com/articles/Craftsmanship.html

Paper Session 3

AI and Knowledge Representation

Page 48 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Schema Detection and Beacon-Based Classification for
Algorithm Recognition

Ahmad Taherkhani

Department of Computer Science and Engineering
Aalto University

P.O.Box 15400, FI-00076 AALTO, Finland
ahmad.taherkhani@aalto.fi

Abstract. We introduce a method for recognizing algorithms based on programming schemas,
which are generic conceptual knowledge with details abstracted out, and beacons, which are key
statements that suggest existence of specific structures in code. First, the method detects the
schemas related to the implementation of the target algorithm and next it computes the charac-
teristics and algorithm-specific beacons from the detected code and uses them as the learning data
to construct a classification tree for recognizing new unseen instances.
We demonstrate the method and its performance for searching, heap, basic tree traversal and
graph algorithms implemented in Java (N = 222). The results show that 94.1% of the schemas
are detected correctly and the estimated accuracy of the classification measured by leave-one-out
cross-validation technique is 97.3%.

Keywords: POP-II.B. algorithm recognition, detecting programming schemas, program
comprehension; POP-I.C. automated assessment

1 Introduction

Programming courses require students to implement a large number of practical exercises. Sev-
eral automatic assessment tools have been developed to assist teachers in assessing students’
work. These tools are capable of analyzing the structure of the program and coding style, verify-
ing that the program works correctly, assessing its run time efficiency, etc. (see, e.g., WebCat [7],
CourseMarker [10], Boss [13] and Scheme-robo [20]). Two recent surveys ([1] and [11]) on the
functionalities of these tools show that none of them can reliably analyze what kind of algo-
rithms students use to achieve the required functionality and give feedback on how the algorithm
is implemented. For example, if students are required to implement a specific sorting algorithm,
such as Quicksort, the existing tools can verify by black-box testing that the solution sorts a
sequence of integers correctly. However, using these tools, it is very clumsy and unreliable to say
whether the implementation conforms to the specification (i.e., whether the algorithm is indeed
the required Quicksort, or say Mergesort). This is what we are addressing in our research.

We discuss a combined method for algorithm recognition implemented in a prototype in-
strument called Aari system (an Automatic Algorithm Recognition Instrument). The method
combines two different approaches: 1) the schema detection approach, where the implementa-
tion of the target algorithm in the given program is detected, and 2) the classification approach,
which includes computing characteristics and algorithm-specific beacons that are used as the
learning data to train a classifier that is able to classify new previously unseen implementations
of algorithms. The main contribution of this paper is to show that the method we have previously
presented, as discussed in the following, can be extended to further types of algorithms.

1.1 Background

In our previous work, we have introduced different methods for algorithm recognition and con-
ducted several experiments to show the performance of the methods. We analyzed a set of

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 49 of 192

different sorting algorithm implementations (Bubble sort, Insertion sort, Selection sort, Merge-
sort, and Quicksort) and discerned various characteristics, such as Halstead metrics, McCabe
complexity and roles of variables in the algorithmic code, which can be used to recognize these
algorithms. We built a manually tailored classification tree and conducted an experiment show-
ing that the accuracy of the classification tree was 86% [28]. The next step was to apply the
C4.5 algorithm [17] to select the best split from the characteristics and build an automatic
classification tree that performs better. Evaluated by leave-one-out cross-validation technique,
we showed that the estimated accuracy of the classification was 98.1% [26]. The data sets for
these two studies (N = 287 and N = 209, respectively) were collected mainly from textbooks
and the Web. We validated our method by authentic students’ sorting algorithm implemen-
tations (N = 192) and concluded that for the aforementioned sorting algorithms, the average
accuracy of the method was about 90% [27]. In addition, using the same data set, we introduced
a categorization principle for student-implemented sorting algorithms and their variations [29].

We developed a new method based on programming schemas and evaluated its performance
with a data set consisting of the five sorting algorithm implementations from the data sets
discussed above (N = 368). The method detected 88.3% of the implementations correctly [25].

In this paper, we discuss a combined method where first algorithmic schemas are detected
from the target program, and then the characteristics and beacons of the selected algorithmic
schemas are further analyzed to build a classification tree. Our previous method for building
a classification tree computed the characteristics and beacons from the whole given program.
The problem with that method was that the given program might (and often do) include pieces
of code irrelevant to the implementation of the target algorithm. By first detecting the piece of
code in the given program that implements the target algorithm, and further process only this
detected code, the combined method allows us to overcome this limitation and thus achieve a
better reliability and performance. While the performance of our methods were tested by sorting
algorithms in our previous experiments, the main contribution of this paper is to define schemas
and beacons for a new data set consisting of the implementations of searching, heap, basic tree
traversal and graph algorithms and apply the combined method to this data to evaluate its
performance. The promising results show the generalizability of the proposed method.

We start by presenting related work in Section 2. Section 3 gives an overview of the method.
Section 4 presents the data set and discusses the method more specifically for the algorithms of
the data set. In Section 5, we introduce the classification tree generated for recognizing these
algorithms. Section 6 presents the results followed by a discussion in Section 7. The paper ends
in some conclusions and future work.

2 Related work

Program comprehension (PC) has been studied from both theoretical and practical points of
view. Theoretical studies focus on understanding how programmers comprehend programs, what
elements affect the comprehension process, what stages there are in the progress from novice to
expert, etc. Different models for PC have been introduced. We will get back to some of these
studies in Section 3 when discussing the theoretical background of our method.

Practical studies on PC have focused on developing techniques to facilitate the comprehen-
sion process. These techniques have been influenced by the models resulted from the theoretical
studies. The characteristics that influence cognitive strategies used by programmers also influ-
ence the requirements for supporting tools [24]. By extracting the knowledge from the given
program, PC tools can be applied to different problems such as teaching novices, generating
documentation from code, restructuring programs and code reuse [16].

PC techniques are mainly based on stereotypical programming plans (also called schemas,
idioms, etc.), which are stored in a knowledge base. Understanding the given program is carried
out by analyzing the code to find pieces that match the set of plans from the knowledge base.
Extracting and matching plans can be performed in top-down, bottom-up or hybrid manner.

Page 50 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Top-down approaches start by the goal of the target program and use it to find the correct
plans from the knowledge base. This results in a higher probability to find the right plans from
the knowledge base and thus make the searching and matching more effective. However, these
approaches need the specification of the target program which are not necessarily available (see,
as an example, [12]). In bottom-up approaches, the process of searching and matching is started
from small plans and continued to bigger ones. Because small plans can be part of different
bigger plans, this technique may become ineffective as the size of knowledge base grows (see,
for example, [9]). In hybrid approaches both techniques are used (see, e.g., [16]).

The purpose of algorithm recognition is to determine what algorithm a piece of code imple-
ments. Therefore, algorithm recognition facilitates PC. Algorithm recognition can be applied in
various tasks including assessing students’ work (as discussed in this paper), detecting plagia-
rism (see, e.g., [8,18]), detecting clones in code (see, for example [2,19]) and source to source
program translation via abstraction and reimplementation [30]. In [15], Metzger and Wen discuss
a method for replacing algorithms with parallel algorithms that perform the same task. This
type of code optimization can be applied to develop compilers for parallel processing machines.

3 Method

In this section, we discuss the combined method very briefly. For a more detailed discussion on
the schema detection and classification approaches see [25] and [26], respectively.

The combined method has two main phases illustrated in Figure 1. In the first phase the
schemas for the target algorithms are detected (along with the beacons necessary for detecting
the schemas). As the result, the code related to the implementation of the algorithm in question
is selected for analysis and other non-relevant code is not processed further. The second phase
includes extracting and storing the characteristics and beacons1, building a classification tree
and evaluating the estimated accuracy of the classification. In this phase, a classifier is trained to
learn how each algorithm class can be associated with specific characteristics and beacons. Thus,
the implementations of the learning data are labeled by the correct type of the corresponding
algorithm (this is denoted by the dashed arrow in Figure 1). It should be noted that Steps 3 and
4 in the figure are independent from each other. This means that before we build a classification
tree, we can evaluate the performance of the classification. Note also that Steps 1 and 2 of the
figure are executed as many times as there are instances in the data set, whereas Steps 3 and 4
only once.

Figure 2 illustrates the process of classifying a new unseen data set after the training process
of Figure 1. There are two main differences between this process and the training process. First,
it starts with testing that the given program works correctly (only error-free inputs will be
processed). This step is not needed in the training process of Figure 1, because the data is
known. Second, it gets the classification tree already constructed in the training process and
ends with recognizing the previously unseen instances of the given data set. These differences are
highlighted by gray rectangles in Figure 2. In this paper, we present an experiment that covers
the steps illustrated by Figure 1, that is, we discuss the process of building a classification tree
and evaluating the estimated accuracy of the classification using leave-one-out cross-validation.
We have previously conducted an experiment that covers the steps presented in Figure 2 for
sorting algorithms (see [27]). Conducting a similar experiment is out of the scope of this paper
and will be reported elsewhere.

3.1 Schemas and beacons

Schemas and beacons are at the core of many program comprehension models. Soloway and
Ehrlich define plans (which correspond to schemas in their terminology) as stereotypical action

1 Basically, characteristics, such as software metrics, are the common features that are computed and used for
all fields of algorithms, whereas beacons are the features specific to a particular field of algorithm.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 51 of 192

 Yes

 No

3. Build a

decision tree

2. Extract and

store

characteristics
and beacons

1. Detect

schemas and

related beacons

Input
program

Decision
tree

Schema
detected?

Type-

annotated

vector

representation

4. Evaluate

accuracy of

classification

Detected

algorithm

Original
program

Evaluation

results

Type

information

Fig. 1. The process of building a decision tree and evaluating the estimated accuracy of the
classification

 Yes Yes

 No No

2. Extract and
store

characteristics
and beacons

1. Detect

schemas and

related beacons

Input

program
Decision

tree

Schema

detected?

Unlabeled

vector

representation

3. Recognize

unseen

instances

Detected

algorithm

Original
program

Labeled

algorithm

implementation

s

0. Black-box

testing of

correctness
Correct?

Terminate

Fig. 2. An overview of the process of recognizing previously unseen algorithm implementations

structures [23]. Détienne defines schemas as formalized knowledge structures in programs [6].
Programmers create and store schemas at different levels of abstraction, and developing schemas
is what turns novices into experts. Beacons provide a link between source code and the process
of verifying the hypotheses driven from the source code, helping programmers to accept or reject
their hypotheses about the code. Beacons suggest the existence of a particular structure in code
and experts use them to comprehend programs [4]. In [23], Soloway and Ehrlich define critical
lines (which can be thought of as beacons) as highly informative and representative lines that
are strong indications of a specific plan.

We utilize schemas and beacons to recognize algorithms automatically. The idea is to store
abstracted stereotypical implementations of algorithms into a knowledge base of an automatic
tool so that the tool can use them to recognize different implementations of those algorithms
despite differences in implementation details. This is a similar process as what the experts do
while trying to comprehend new programs. We will explain this for our data set in Section 4.

3.2 Creating characteristic and beacon vectors

We compute three types of characteristics: numerical characteristics, truth value characteris-
tics and structural characteristics. The numerical characteristics include number of operators,
number of operands, number of unique operators, number of unique operands, program length
(total number of operators + total number of operands), program vocabulary (number of unique
operators + number of unique operands), lines of code, number of assignment statements, cyclo-
matic complexity (i.e., McCabe complexity [14]), number of variables, number of loops, number
of nested loops and number of blocks. Truth value characteristics consist of recursive (whether
the target algorithm uses recursion), tail recursive, using an auxiliary array (for algorithms that
use arrays) and roles of variables (automatically recognized roles of the variables, see [22]).

The structural characteristics help us identify language constructs and different patterns
and compute algorithm-specific beacons. These include block/loop information, loop counter
information, and dependency information.

Page 52 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

We have implemented the method in Aari system. Aari detects schemas and computes the
characteristics and beacons for programs written in Java. The input algorithm implementations
are converted into characteristic and beacon vectors, which we call technical definitions of
the implementations. These vectors are given to the C4.5 algorithm [17], which selects the
characteristics that best separate the instances of the data set and builds a classification tree.

4 Experiment

We applied the method to searching, heap, basic tree traversal and graph algorithms.

4.1 The analyzed algorithms and data set

We analyzed 10 algorithms from different fields. Since analyzing a bigger set of algorithms is
beyond the scope of this paper, our goal was to examine a set of well-known basic algorithms
that are commonly discussed in data structures and algorithms courses and textbooks.

We collected a total of 222 algorithm implementations from various textbooks and edu-
cational web pages. Table 1 shows the number and the percentage of the implementations of
the analyzed algorithms, as well as the abbreviation used for each algorithm in this paper. As
indicated in the table, we analyzed the recursive version of depth first search algorithm (DFS)
and the non-recursive versions of heap insertion and remove algorithms2. Many of the collected
programs, especially those collected from the Web, in addition to the code related to the imple-
mentation of the algorithm, included non-relevant code as well, such as code related to reading
in user provided data, printing the processed data and testing the implementation.

Table 1. The number and percentage of the implementations of the analyzed algorithms. The
last column shows the abbreviation used for the algorithms

Algorithm Number (%) Abbreviation

Non-recursive BinSearch 36 (16%) NBS

Recursive BinSearch 13 (6%) RBS

Depth First Search (recursive) 15 (7%) DFS

Inorder traversal 23 (10%) InT

Preorder traversal 24 (11%) PreT

Postorder traversal 22 (10%) PostT

Heap insertion (non-recursive) 22 (10%) HeapI

Heap remove (non-recursive) 21 (9%) HeapR

Dijkstra’s algorithm 23 (10%) Dijkstra

Floyd’s algorithm 23 (10%) Floyd

Total 222 -

4.2 Schemas for the algorithms

Figure 3 illustrates the schemas for the analyzed algorithms. We examined all the implemen-
tations of the data set and determined an implementational definition for each algorithm. We
define an implementational definition of an algorithm as the abstraction of its implementation,
which reflects the functionality and structure of the algorithm. Implementational definitions
do not include implementation details, such as the type of loops or variables, but only high
level structural and functional features of algorithms. The schemas depicted in Figure 3 further
abstract the implementational definitions of the analyzed algorithms.

2 DFS has also a well-established non-recursive version, and heap insertion and remove algorithms have also
well-established recursive versions. However, we could not gather enough samples of these versions for analysis.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 53 of 192

 Binary search (non-recursive) Binary search (recursive) Depth first search (recursive)

 Preorder traversal Inorder traversal Postorder traversal

 Heap insert (non-recursive) Heap remove (non-recursive) Dijkstra's algorithm

 Floyd's algorithm

LOOP

 MIDPOINT_SEARCH

MIDPOINT_SEARCH
RECURSIVE_CALL
RECURSIVE_CALL

LOOP

 RECURSIVE_CALL

LOOP

 LOOP

 LOOP

 DISTANCE_UPDATING

STATEMENT

RECURSIVE_CALL

RECURSIVE_CALL

RECURSIVE_CALL

STATEMENT

RECURSIVE_CALL

RECURSIVE_CALL

RECURSIVE_CALL
STATEMENT

PARENT_INDEX_SEARCH

LOOP

 PARENT_INDEX_SEARCH

LOOP

 LEFT_CHILD_INDEX_SEARCH

 RIGHT_CHILD_INDEX_SEARCH

LOOP

 LOOP

 DISTANCE_UPDATING

Fig. 3. The schemas for the analyzed algorithms

For the algorithms of the data set that have well-established recursive and non-recursive
versions, the version we analyzed is indicated in the parentheses after their name. Furthermore,
indentations indicate the nesting relationship between the loops and blocks.

In the following, we elaborate on some parts of the schemas with semantic meaning and
explain how they are computed.

– In the schema of binary search algorithm: MIDPOINT SEARCH involves computing the
midpoint of a sorted sequence, for example, mid = (low + high)/2.

– In the schemas of preorder, inorder and postorder traversal algorithms: STATEMENT
denotes whatever function (examining, printing, updating) that may be performed when a
node of a binary tree is visited.

– In the schema of heap insertion algorithm: PARENT INDEX SEARCH denotes com-
puting the index of the parent of a given node with index i, which is i/2.

– In the schema of heap remove algorithm: LEFT CHILD INDEX SEARCH for a node
with index i is 2i and RIGHT CHILD INDEX SEARCH correspondingly 2i+1. Some
implementations compute the index of the right child of a node by simply incrementing the
index of its left child by one, instead of computing it using the index of the node3.

– In the schemas of Dijkstra’s and Floyd’s algorithms: existence of the operation denoted by
DISTANCE UPDATING (also called relaxation for Dijkstra’s algorithm, e.g., in [5]) in
code is investigated by examining whether the given implementation includes the following
statements in the nested loops: if v.d > u.d+w(u, v) then v.d = u.d+w(u, v). That is, the
process of DISTANCE UPDATING for an edge (u, v) involves examining whether the so
far found shortest path to the vertex v can be improved by going through the vertex u, and
updating the shortest path to v if this is the case.

3 If the tree root is at index 0, the parent, left child and right child of each node is located in (i− 1)/2, 2i+ 1
and 2i+ 2. We have considered these cases in the implementation of our schema detection method as well.

Page 54 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Note that the schemas of Figure 3 show abstract typical implementations of the algorithms
and that slightly different implementations are also possible. For example, some implementations
of non-recursive heap remove algorithm might perform LEFT CHILD INDEX SEARCH
once before the loop and at the end of the loop. As another example, some implementations of
Dijkstra’s algorithm might have more than one loop within the outer loop. We have not shown
these details in the schemas but considered them in the implementation of Aari system.

4.3 Beacons

We analyzed the implementations of the data set to find the following set of beacons specific
to the analyzed algorithms that can be used for identifying them. We automatically compute
these beacons and give them, along with the computed characteristics discussed in Section 3,
to the C4.5 algorithm which selects the best separating beacons and characteristics to generate
a decision tree for the classification task. We will present the decision tree in Section 5.

– MPSL: MidPoint Search in a Loop; whether the implementation of the algorithm includes
searching midpoint of an array within a loop. This mainly indicates implementations of
non-recursive binary search algorithm.

– MPBR: MidPoint Before Recursion; whether the implementation includes searching mid-
point before two recursive calls. This mainly indicates implementations of recursive binary
search algorithm.

– REIL: REcursion In Loop; whether the implementation includes a recursive call within a
loop. This mainly indicates implementations of depth first search algorithm.

– TSRC : Two Sequential Recursive Calls; whether the implementation includes two sequen-
tial recursive calls. This mainly indicates implementations of preorder and postorder tree
traversal algorithms and separates these implementations from implementations of inorder
traversal algorithm.

– TPNI : Two Parent Nodes Index search; whether the implementation includes searching the
indexes of two parent nodes before and after a loop. This mainly indicates implementations
of heap insertion algorithm.

– LRCI : Left and Right Child node Index search; whether the implementation includes search-
ing the indexes of the left and right child nodes within a loop. This mainly indicates imple-
mentations of heap remove algorithm.

– DUTWL: Distance Update within TWo nested Loops; whether the implementation includes
distance updating (i.e., relaxation) performed within two nested loops. This mainly indicates
implementations of Dijkstra’s algorithm.

– DUTHL: Distance Update within THree nested Loops; whether the implementation includes
distance updating performed within three nested loops. This mainly indicates implementa-
tions of Floyd’s algorithm.

5 Classification tree

Figure 4 illustrates the decision tree classifier generated by the C4.5 algorithm4. Using Aari,
we automatically analyzed all the implementations of the data set (Table 1) and stored the
computed characteristics and beacons in a database. As depicted in Figure 1, because the
implementations of the data set are used as the training data and the decision tree is generated
based on supervised learning, each implementation is labeled by its correct type in the database.

In the decision tree, the internal nodes, which are depicted by the white ellipses, include the
tests that determine the splits. The leaves are illustrated by the gray rectangles and indicate the

4 J48 (from Weka data mining software), which is an open source Java implementation of the C4.5 algorithm is
used to construct the classification tree. URL: http://www.cs.waikato.ac.nz/∼ml/weka/

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 55 of 192

http://www.cs.waikato.ac.nz/~ml/weka/

 1 0

 <=17 >17

 1 0 1 0

 1 0 1 0

 1 0

 1 0

 1 0

TSRC

MPSL

LRCI

PreT

InT

NBS

TailR

PostT

Operands

MPBR

RBS

DUTHL

TPNI

HeapR

Floyd

HeapI Recur

DFS Dijkstra

Fig. 4. The classification tree constructed by the C4.5 algorithm on the algorithm implemen-
tations presented in Table 1 (see the table for the abbreviations)

analyzed algorithms. The information of the arcs shows the outcome of the test performed in
each internal node and determines which child is visited next. The decision tree has 10 leaves and
9 internal nodes (with the root included). From the beacons discussed in Section 4, the following
six beacons are selected by the C4.5 algorithm to be used as the tests in the classification tree:
MPSL, TSRC, MPBR, LRCI, DUTHL and TPNI. In addition, the characteristics Recursive,
Tail recursive and number of operands are used as the tests in the decision tree as well.

Table 2. Definition of the analyzed algorithms as rules based on the classification tree

Algorithm class Rule

Non-recursive BinSearch MPSL
Recursive BinSearch ¬ MPSL ∧ Operands > 17 ∧ MPBR
Depth first search ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ ¬ TPNI ∧ Recur
Inorder traversal ¬ MPSL ∧ Operands <= 17 ∧ ¬ TSRC
Preorder traversal ¬ MPSL ∧ Operands <= 17 ∧ TSRC ∧ TailR
Postorder traversal ¬ MPSL ∧ Operands <= 17 ∧ TSRC ∧ ¬ TailR
Heap insertion ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ TPNI
Heap remove ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ LRCI
Dijkstra’s algorithm ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ ¬ DUTHL ∧ ¬ TPNI ∧ ¬ Recur
Floyd’s algorithm ¬ MPSL ∧ Operands > 17 ∧ ¬ MPBR ∧ ¬ LRCI ∧ DUTHL

Based on the decision tree of Figure 4, we can describe each analyzed algorithm (i.e., each
class represented as a leaf in the decision tree) as a set of rules [17]. Each set of rules presents the
beacon-based technical definition of the corresponding algorithm and covers the path from the
root to the leaf for that algorithm. These rules are shown in Table 2. We can, for example, express

Page 56 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

the implementations of Floyd’s algorithm as those that do not have MPSL, have number of
operand more than 17, do not have MPBR, do not have LRCI and include DUTHL.

6 Results

We evaluated both the performance of the schema detection method and the estimated accuracy
of the classification using the data set described in Table 1. We first present the results of the
schema detection followed by the results of the estimated accuracy of the classification.

6.1 Results of schema detection

All the algorithmic schemas of the implementations of recursive and non-recursive binary search,
as well as the implementations of inorder and postorder traversal algorithms are detected cor-
rectly. For DFS, preorder traversal and heap insertion implementations the accuracy of the
schema detection method is more than 90%. For the rest of the implementations, the accuracy
of the method is more than 80%. From all the 222 implementations, the schemas for 209 imple-
mentations are detected correctly, that is, the average accuracy of the method is 94,1%. Table 3
summarizes these results.

Table 3. The number and percent of the correctly detected algorithmic schemas

Algorithm Detected (%) Not detected (%) Total

Non-recursive BinSearch 36 (100) 0 (0) 36

Recursive BinSearch 13 (100) 0 (0) 13

Depth first search 14 (93,3) 1 (6,7) 15

Inorder traversal 23 (100) 0 (0) 23

Preorder traversal 23 (95,8) 1 (4,2) 24

Postorder traversal 22 (100) 0 (0) 22

Heap insertion 21 (95,5) 1 (4,5) 22

Heap remove 18 (85,7) 3 (14,3) 21

Dijkstra’s algorithm 19 (82,6) 4 (17,4) 23

Floyd’s algorithm 20 (87,0) 3 (13,0) 23

Total 209 (94,1) 13 (5,9) 222

6.2 Results of the evaluation of the estimated classification accuracy

Cross-validation is a well-known technique for estimating the performance of a classification
model. Cross-validation has different types. In k-fold cross-validation, the data set is partitioned
into k subsets that include both training and validation data. The accuracy of the classification is
evaluated by constructing k different classification trees using k−1 subsets as the training set to
construct a classification tree and one subset as the validation set to evaluate the performance of
the constructed tree. We evaluated the estimated accuracy of the classification using leave-one-
out cross-validation technique, where a single instance of the data set is used as the validation
data and the remaining instances are used as the training data. Therefore, the training set
includes N − 1 instances and the validation set a single instance. This process is repeated such
that each instance of the data set is used once as the validation data. Our data set includes 222
implementations, and therefore 222 classification trees are constructed using 221 instances as
the training data and one instance as the validation data for each tree.

The results of the evaluation of the estimated classification accuracy are summarized in
Table 4. The column Total shows the total number of the implementations of each algorithm. The
column Correct (%) shows the number and percentage of the correctly classified implementations

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 57 of 192

of each algorithm and the column False (%) indicates the number and percentage of the falsely
classified implementations of each algorithm. The last column shows what type the falsely
classified implementations are recognized as. From 222 instances of the data set, 216 instances
are classified correctly (97.3%) and 6 instances are classified falsely (2.7%).

Table 4. The estimated accuracy of the classification evaluated by leave-one-out cross-validation
technique

Algorithm Correct (%) False (%) Total Falsely recognized as

Non-recursive BinSearch 35 (97,2) 1 (2,8) 36 Inorder traversal

Recursive BinSearch 13 (100) 0 (0) 13 -

Depth first search 14 (93,3) 1 (6,7) 15 Dijkstra

Inorder traversal 23 (100) 0 (0) 23 -

Preorder traversal 23 (95,8) 1 (4,2) 24 Inorder traversal

Postorder traversal 22 (100) 0 (0) 22 -

Heap insertion 21 (95,5) 1 (4,5) 22 Depth first search

Heap remove 21 (100) 0 (0) 21 -

Dijkstra’s algorithm 22 (95,7) 1 (4,3) 23 Depth first search

Floyd’s algorithm 22 (95,7) 1 (4,3) 23 Dijkstra

Total 216 (97,3) 6 (2,7) 222 -

7 Discussion

Programming courses require students to solve several practical exercises. Assessing students’
solutions especially in large courses is a time-consuming task. A teacher can use the presented
method to asses these solutions in the cases where the assignments require students to implement
a specific algorithm. This allows the teacher to concentrate on the solutions that do not conform
to the specification, instead of assessing all the implementations manually. The method can also
be further developed to recognize variations of student-implemented algorithms and provide
informative feedback to students about their solutions. This can be done by examining students’
solutions and identifying the variations they implement. We have done it in the case of sorting
algorithms and reported the results in [29]. Aari system can be trained by the implementations
of these variations to identify previously unseen similar variations. Another application of the
method in computer science education is detecting plagiarism in students’ work, which can be
achieved with slight modifications.

The method has potential to be applied to software engineering related tasks as well. In clone
detection, as an example, the task is to locate similar pieces of code. Another example includes
program translation via abstraction and reimplementation [30], which is a well-known technique
for source to source translation. With appropriate further developments, our method is capable
of performing these tasks for the implementations that are stored in its knowledge base. However,
since these activities involve dealing with large-scale software (unlike the implementations in
computer science education), the performance of the method in this context should be evaluated
with empirical tests before drawing further conclusions.

As discussed in Section 2, we previously applied the schema detection and classification
methods to sorting algorithms (see [25] and [26], respectively). In this paper, we have demon-
strated that these methods are generalizable by applying them to the algorithms from various
fields with practically the same accuracy. This suggests that we can safely claim that the meth-
ods can be extended to cover more algorithms from different fields with fairly high accuracy. The
main steps of extending the method to cover other types of algorithms include analyzing those
algorithms to identify the schemas that can represent them and the beacons that can strongly

Page 58 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

indicate these algorithms. Once these are defined, the next step is to develop a tool that can
automatically recognize these schemas and extract the beacons (along with the characteristics
discussed in Section 3) to be used by the C4.5 algorithm for constructing a suitable classification
tree.

In Section 4, we introduced eight beacons for the algorithms discussed in this paper. Two of
these beacons, namely REIL and DUTWL are not used by the C4.5 algorithm in constructing
the decision tree of Figure 4. These beacons indicate implementations of depth first search and
Dijkstra’s algorithms respectively. These two algorithms are distinguished by the characteristic
Recursive and thus their indicative beacons are left out from the tree. The C4.5 algorithm
selects attributes that can discriminate between different classes of data in the best possible
way, trying to keep the size of the tree as small as possible.

As in our previous studies, we used the tool developed by C. Bishop and C. G. Johnson [3]
for automatically detecting roles of variables in this study. The tool, however, did not detect
the roles of the variables in the implementations of the data set accurately enough. With a
more accurate role recognizer, roles of variables could have played a distinguishing role in the
decision tree of Figure 4 (like they did in our previous studies). For example, the low index
in implementations of binary search (e.g., low = middle + 1) has a follower role ([21]) that
could be a good beacon for identifying these implementations. We are looking for a better role
detector for our future work.

8 Conclusion and future work

We have discussed a combination of two different methods for algorithm recognition and evalu-
ated their performance. As Tables 3 and 4 show, both methods perform very accurately (94,1%
and 97,3% of accuracy, respectively). In the combined method, the schema detection method
first identifies the code related to the implementation of the algorithm in question. This im-
proves the reliability of the recognition, since the characteristics and beacons are computed from
the detected schemas, and not from the whole program.

In real-life programming projects, programmers often use existing standard libraries. How-
ever, in a data structures and algorithms course, students need to implement many programming
assignments themselves. Aari system can help instructors to check that students have imple-
mented the required algorithm that conforms to the specification. Before this, the correctness
of the solutions can be tested by an automatic assessment tool that performs black-box testing.

We applied our methods to sorting algorithms in [25] and [26]. In this paper we have shown
that the methods can be extended to cover other fields of algorithms. As a direction of future
work, we will further develop the methods to deal with more algorithms and their variations.

9 Acknowledgment

The author would like to thank Lauri Malmi and Ari Korhonen for their valuable comments.

References

1. K. Ala-Mutka. A survey of automated assessment approaches for programming assignments. Computer
Science Education, 15(2):83–102, 2005.

2. S. Bellon, R. Koschke, G. Antoniol, J. Krinke, and E. Merlo. Comparison and evaluation of clone detection
tools. IEEE Transactions on Software Engineering, 33:577–591, 2007.

3. C. Bishop and C. G. Johnson. Assessing roles of variables by program analysis. In Proceedings of the 5th
Baltic Sea Conference on Computing Education Research, Koli, Finland, 17–20 November, pages 131–136.
University of Joensuu, Finland, 2005.

4. R. Brooks. Towards a theory of the comprehension of computer programs. International Journal of Man-
Machine Studies, 18(6):543–554, 1983.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 59 of 192

5. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. The MIT Press,
Cambridge, Massachusetts, USA, 2009.

6. F. Détienne. Expert programming knowledge: A schema-based approach. In J.-M. Hoc, T. R. G. Green,
R. Samurcay, and D. J. Gilmore, editors, Psychology of Programming, pages 205–222. Academic Press, Lon-
don, 1990.

7. S. H. Edwards. Rethinking computer science education from a test-first perspective. In Companion of the 18th
annual ACM SIGPLAN conference on Object-oriented programming, systems, languages, and applications,
Anaheim, California, USA, 26–30 October, pages 148–155. ACM, New York, NY, USA, 2003.

8. B. S. Elenbogen and N. Seliya. Detecting outsourced student programming assignments. In Journal of
Computing Sciences in Colleges, pages 50–57. ACM, 2007.

9. M. Harandi and J. Ning. Knowledge-based program analysis. Software IEEE, 7(4):74–81, 1990.
10. C. Higgins, P. Symeonidis, and A. Tsintsifas. The marking system for CourseMaster. In Proceedings of the

7th annual conference on Innovation and Technology in Computer Science Education, Aarhus, Denmark,
24–26 June, pages 46–50. ACM, New York, NY, USA, 2002.

11. P. Ihantola, V. Karavirta, O. Seppälä, and T. Ahoniemi. Review of recent systems for automatic assessment
of programming assignments. In Proceedings of the 10th Koli Calling International Conference on Computing
Education Research (Koli Calling 2010), 2010.

12. W. L. Johnson and E. Soloway. Proust: Knowledge-based program understanding. In Proceedings of the
7th international conference on Software engineering, Orlando, Florida, USA, 26–29 March, pages 369–380.
IEEE Press Piscataway, NJ, USA, 1984.

13. M. Joy, N. Griffiths, and R. Boyatt. The BOSS online submission and assessment system. ACM Journal on
Educational Resources in Computing, 5(3):1–28, 2005.

14. T. J. McCabe. A complexity measure. IEEE Transactions on Software Engineering, SE-2:308–320, 1976.
15. R. Metzger and Z. Wen. Automatic Algorithm Recognition and Replacement: A New Approach to Program

Optimization. The MIT Press, 2000.
16. A. Quilici. A memory-based approach to recognizing programming plans. Communications of the ACM,

37(5):84–93, 1994.
17. J. R. Quinlan. C4.5: Programs for Machine Learning. Morgan Kaufmann, USA, 1993.
18. S. S. Robinson and M. L. Soffa. An instructional aid for student programs. In Proceedings of the 11th SIGCSE

technical symposium on Computer science education, Kansas City, Missouri, USA, 14–15 February, pages
118–129. ACM, New York, NY, USA, 1980.

19. C. K. Roy, J. R. Cordy, and R. Koschke. Comparison and evaluation of code clone detection techniques and
tools: A qualitative approach. Science of Computer Programming, 74:470–495, 2009.

20. R. Saikkonen, L. Malmi, and A. Korhonen. Fully automatic assessment of programming exercises. In
Proceedings of the 6th Annual SIGCSE/SIGCUE Conference on Innovation and Technology in Computer
Science Education, ITiCSE’01, pages 133–136, Canterbury, UK, 2001. ACM Press, New York.

21. J. Sajaniemei. Visualizing roles of variables to novice programmers. In Proceedings of the 14th Annual
Workshop on the Psychology of Programming Interest Group (PPIG ’02), Brunel University, London, UK.,
2002.

22. J. Sajaniemi. An empirical analysis of roles of variables in novice-level procedural programs. In Proceedings of
the IEEE 2002 Symposia on Human Centric Computing Languages and Environments, Arlington, Virginia,
USA, 3–6 September, pages 37–39. IEEE Computer Society Washington, DC, USA, 2002.

23. E. Soloway and K. Ehrlich. Empirical studies of programming knowledge. IEEE Transactions on Software
Engineering, 10(5):595–609, 1984.

24. M.-A. Storey. Theories, tools and research methods in program comprehension: past, present and future.
Software Quality Journal, 14(3):187–208, 2006.

25. A. Taherkhani. Automatic algorithm recognition based on programming schemas. In Proceedings of the 23th
Annual Workshop on the Psychology of Programming Interest Group (PPIG’11), University of York, UK,
6-8 September, 2011, 2011.

26. A. Taherkhani. Using decision tree classifiers in source code analysis to recognize algorithms: An experiment
with sorting algorithms. The Computer Journal, 54(11):1845–1860, 2011.

27. A. Taherkhani, A. Korhonen, and L. Malmi. Automatic recognition of students’ sorting algorithm imple-
mentations in a data structures and algorithms course. In Proceedings of the 12th Koli Calling International
Conference on Computing Education Research (Koli Calling 2012), Tahko, Finland, 15–18 November, 2012,
10 pages, accepted.

28. A. Taherkhani, A. Korhonen, and L. Malmi. Recognizing algorithms using language constructs, software
metrics and roles of variables: An experiment with sorting algorithms. The Computer Journal, 54(7):1049–
1066, 2011.

29. A. Taherkhani, A. Korhonen, and L. Malmi. Categorizing variations of student-implemented sorting algo-
rithms. Computer Science Education, 22(2):109–138, 2012.

30. R. C. Waters. Program translation via abstraction and reimplementation. IEEE Transactions on Software
Engineering, 14(8):1207–1228, 1988.

Page 60 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Some Reflections on Knowledge Representation in the Semantic Web

John Kirby

Computing and Communications Research Centre

Sheffield Hallam University

John.Kirby@shu.ac.uk

Keywords: Semantic Web, Description Logics, WordNet, Knowledge Representation

Abstract

The knowledge representation technology Description Logics (DLs) has become an important

component of developments around the Semantic Web. It is suggested here that in order to be really

useful, the knowledge represented in DLs should in some fundamental way reflect the way the human

mind organises and structures the same knowledge. There is a short historical review of some relevant

background work in cognitive psychology, including WordNet. This is followed by a brief

introduction to the importance of automatic classification in DLs before considering some issues

around ontologies.

1. Introduction

Twenty years ago I became involved in the PEN&PAD project (Nowlan et al, 1991, Kirby and

Rector, 1996) on the user centred design of clinical data entry systems based on the formal

representation of medical terminology. I also participated in the GALEN project (Rector et al, 1999)

which further extended the formal representation of medical terminology using a version of the

knowledge representation technology Description Logics (DLs) to develop an extensive medical

ontology. At that time, I believed that the use of DLs in the development of the GALEN medical

ontology was an extension of the user centred approach because in some way the representation of

knowledge was related to the workings of human semantic memory.

For me a key insight of the PEN&PAD project was that a fundamental aspect of the design of a

system involves developing a representation of data or knowledge that intuitively corresponds to the

understanding of users. For PEN&PAD this meant the development of a system of knowledge

representation for symptoms, signs and diseases necessary for clinical data entry by general medical

practitioners. In my experience, user interface design, even if it is firmly focused on supporting user

tasks, depends to a large extent on how well the underlying representation of knowledge or data fits

with the understanding of users. So an approach to the representation of knowledge that in some way

corresponds to the way users think seemed to be a significant step in the direction of real user centred

system design. User centred design was not just a matter of paying attention to the surface appearance

in the form of good interface design but also extended to the deep structures where knowledge

representation and data in some way matched or was intuitive to the user.

The proposition of the Semantic Web is based on similar assumptions of the fit between a formal

knowledge representation meaning and human understanding. For example,

...if the interaction between person and hypertext could be so intuitive that the machine-

readable information space gave an accurate representation of the state of people's

thoughts, interactions, and work patterns...(Berners-Lee, 1996)

In the Semantic Web “information is given well-defined meaning, better enabling

computers and people to work in co-operation. (Berners-Lee et al, 2001)

With the same emphasis on capturing meaning and formal representation, it is not surprising that over

the past ten years, DLs have become increasingly prominent in the developments around the Semantic

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 61 of 192

 2

PPIG, London Metropolitan University, 2012 www.ppig.org

Web leading to the development of OWL or Web Ontology Language (Patel-Schneider et al, 2004;

W3C, 2009).

The literature on the Semantic Web and DLs emphasises the need for formal computer representation

of “meaning”, “understanding” and “knowledge” all of which is, of course, implied in the word

“semantic” itself. Using formal computer representation means that Semantic Web technologies

would be amenable to searching and manipulating data “in ways that are useful and meaningful to the

human user” (Berners-Lee et al, 2001). Ultimately, however, the final arbiter of the adequacy of the

meaning, understanding and knowledge represented has to be the human end-user. This would seem

to imply that the essentially human knowledge represented in DLs should in some fairly fundamental

way correspond to the way this knowledge is represented in the human mind.

The paper presents a brief historical review of background work in cognitive psychology that is

relevant to the development of the DLs approach to conceptual knowledge representation. The

importance of automatic classification is described before the discussion of some issues around the

development of DLs ontologies.

2. Cognitive Psychology Background

3.1. Hierarchy and Inheritance - Quillian’s Model

Quillian (1969) proposed that human semantic memory is organised as a hierarchy of categories or

nodes each of which has a set of properties that are also inherited by subordinate categories. In Figure

1, the properties of canary are “is yellow” and “can sing” with a pointer to the category of “bird” to

which canary belongs. Because canary is part of the category bird it inherits the properties “has

wings”, “can fly” and “has feathers” The idea that properties are inherited is also referred to as

“cognitive economy”.

Figure 1: Illustration of the hypothetical memory structure for a 3-level hierarchy (Collins &

Quillian, 1969)

Collins and Quillian (1969) tested this hypothesis in reaction time experiments in which subjects were

presented with short sentences of two types. In one case subjects were asked to confirm whether or

not a word was a member of another category, for example, “a canary is a bird” or “a canary is an

animal”. In the other case they were asked to confirm whether or not a word possessed a property

either directly or inherited from a higher level category, for example, “a canary is yellow”, “a canary

Page 62 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 3

PPIG, London Metropolitan University, 2012 www.ppig.org

has wings” or “a canary has skin”. It was found that the reaction times of subjects increased in direct

proportion to the number of levels in the hierarchy that would have to be traversed.

3.2. Experimental Counter Evidence
A number of subsequent experimental studies cast considerable doubt on both of Quillian’s main

propositions on semantic memory: its hierarchical organisation and the inheritance of properties.

Familiarity: Conrad (1972) argued that longer reaction times were due to the lack of

familiarity of subjects statements such as “a canary has skin”. No difference in reaction times

was found when the original experiments were repeated with controls for familiarity,

suggesting that there is no evidence for the inheritance of properties.

Typicality: Reaction times for verification of categories have shown a marked tendency for

typical members of categories to have faster response times than atypical ones, for example,

categorising a robin as a bird compared with an ostrich or a chicken. Rosch (1973) concluded

that categorisation might be by property matching rather than being derived from the

hierarchical organisation of memory.

Arbitrary Categories: Rips et al (1973) found that subjects verified instances of mammals,

such as Cat, Goat and Mouse, more rapidly as animals than they verified them as mammals

which would give rise to the conclusion that mammal was the super-ordinate of animal,

something that is dismissed as being nonsensical. The conclusion drawn is that the network

categories are essentially arbitrary and assigned on a logical rather than empirical basis.

Fuzzy Categories: McCloskey and Glucksbery (1978) found that some items were categorised

consistently while other items were categorised inconsistently both between different subjects

and by the same subject at different times. For example, tomato would be sometimes

categorised as a fruit and sometimes as a vegetable. The conclusion is that natural categories

have fuzzy boundaries.

These results have led many cognitive psychologies to conclude that Quillian’s basic propositions of

hierarchy and inheritance were essentially flawed, for example, Eysenck and Keane (2010) and

Baddeley et al (2009). Collin who collaborated with Quillian later produced the alternative

“Spreading Activation” model of semantic memory (Collins and Loftus, 1975). Despite being more

successful in explaining experimental findings, Eysenck and Keane (2009) conclude that it is difficult

to assess the adequacy of the spreading activation theory because it does not make precise predictions.

For this same reason, the spreading activation theory would not appear to be amenable to the

development of computerised models or knowledge representation.

3.3. The Psycho-linguistics - WordNet
However, not all workers in the field accepted the conclusions from this experimental work, in

particular those who developed the “psycho-linguistic” WordNet project:

An alternative conclusion - the conclusion on which WordNet is based - is that the inheritance

assumption is correct, but that reaction times do not measure what Collins and Quillian, and

other experimentalists, assumed they did. Perhaps reaction times indicate a pragmatic rather

than a semantic distance - a difference in word use, rather than a difference in word meaning.

(Miller, 1990)

Consequently, in WordNet around 100,000 English nouns
1
 are organised into sets of synonymous

words (synsets) that are hierarchically organised. Each synset is therefore defined in relation to its

parent synset plus distinguishing features which is basically in line with Quillian’s original theory of

semantic memory. In addition, a synset may also include links to other synsets that capture whole-part

relationships.

1
 Although WordNet now also contains verbs, adjectives and adverbs, they are beyond the scope of this paper .

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 63 of 192

 4

PPIG, London Metropolitan University, 2012 www.ppig.org

It is important to note that its authors have emphasised that WordNet is a “lexical database” organised

on “psycho-linguistic” principles but more recently they have also described it as an “ontology”

(Miller & Fellbaum, 2007). However, these psycholinguistic principles are not incorporated in any

form of automatic classification system which means that semantic inconsistencies are possible.

Nevertheless, WordNet has emerged as a significant element in the developments around the

Semantic Web and has been used by many workers to construct, compare and merge ontologies.

3. Description Logics

Description logics (DLs) are a family of computerised knowledge representation systems that have

their roots in earlier semantic networks (Woods, 1975) and frame based approaches (Minsky, 1975).

The proponents of DLs such as Nardi and Brachman (2007) emphasise the importance of the

development of logical systems based on sound computational algorithms and in the process move

away from any explicit reference to human semantic memory. They conceded that “owning to their

more human-centred origins, the network-based systems were often considered more appealing , and

more effective from a practical viewpoint than logical systems.” However, they conclude that such

systems are “not fully satisfactory because of their lack of precise semantic characterization.”

2.1. Automatic Classification

Like WordNet, the knowledge represented in DLs are ontologies consisting of concepts, also referred

to as classes, organised in a strict hierarchy where each concept “is-a-kind-of” its parent. Also like

WordNet, concepts may have properties, referred to as roles, that are themselves organised in a

subsumption hierarchy. As with object-oriented programming languages, properties of concepts are

inherited, so that, for example, all of the properties of animal are inherited by bird and fish - see

Figure 1.

Figure 2: Hierarchy of animals with properties

The key difference with WordNet is that DLs carry out automatic classification. In addition to

“atomic” concepts - such as bird and canary - DLs also allow for concept descriptions to be composed

from atomic concepts and properties. These “complex” concepts are formed by creating a description

that consists of a base concept and one or more property plus value pairs.

Page 64 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 5

PPIG, London Metropolitan University, 2012 www.ppig.org

Consider the example of a role or property of “hasLegs” with possible values of Two and Four and

these properties are applied to Animal concepts as shown in Figure 2. The complex concepts of “Two

legged animal” - Animal: hasLegs-Two - and “Four legged animal” - Animal: hasLegs-Four - may

then be constructed. When these complex concepts are created in DLs they are automatically inserted

into the correct position hierarchy, that is, they are automatically classified. Figure 2 shows that the

children of Two legged animal include Chimpanzee and Bird, and by inheritance Canary and Ostrich.

In DLs, automatic classification is used both in the construction of DLs ontologies to ensure that they

are logically and semantically consistent and for searching and reasoning using DLs.

3.2. Ontologies

The usefulness of DLs depends on the creation of comprehensive ontologies. In his review of progress

on the Semantic Web, Horrocks (2007) cites examples of the development of specialist ontologies for

biology, medicine, geography, geology, astronomy, agriculture and defence. However, Shadbolt et al

(2006) appear to accept that the development of comprehensive and usable ontologies has been

relatively slow and go on to suggest that too much effort may have been expended on specialist, or

“deep”, ontologies rather than on “shallow” ontologies representing more everyday concepts such as

customer, account number and overdraft.

3.2.1. Empirical Findings Revisited

Berners-Lee et al (2001) assert that the Semantic Web will “improve the accuracy of web searches [by

using] precise concepts instead of ... ambiguous keywords”. However, I am not convinced that

formally and logically correct ontologies will necessarily enable the development of systems

providing improved user experience. In spite of being rejected by the developers of WordNet, and

essentially ignored by advocates of DLs, there may still be issues arising from the early experimental

studies mentioned earlier.

It seems likely that most of us have a mental definition of a “typical bird” that has wings and feathers

and, in particular, can fly. Ostriches and penguins are not “typical birds” because they do not fall into

that definition of because neither flies which may mean that we put them into one or more different

categories of “atypical birds”. However, when asked most people know that “technically” ostriches

and penguins are types of birds albeit atypical ones. An alternative explanation of the typicality effect

reported by Rosch (1973) might be that the categories used by human beings are not necessarily

always the scientifically or logically correct ones assumed in the experiments.

In arguing that hierarchical categories seem to be arbitrary, Rips et al (1973) cite the seemingly

anomalous finding that instances of mammals such as horse or elephant were categorised as Animal

faster than as Mammal. They go on to reject as “most implausible” the idea that people would

categorise such instances of mammal being immediate subordinates of Animal. However, anecdotal

evidence suggests that many people do indeed consider such instances of mammals to be direct sub-

ordinates of the term Animal. This includes my crossword puzzle dictionary in which the

overwhelming majority of entries in the Animal section are mammals (Bailie, 1998). If asked directly,

it seems likely that most people would be able to confirm the scientific and logically correct position

that such mammal instances were technically mammals and that not all animals are mammals. This

may suggest that many of us can simultaneously use different classification hierarchies, in this case an

everyday one in which cats, goats and mice are animals and another more logical and scientific one in

which they are mammals.

The finding of McCloskey and Glucksbery (1978) that tomato would be sometimes categorised as a

fruit and sometimes as a vegetable may also be explained by proposing different hierarchies or at least

branches of hierarchy. In the strictly scientific sense tomato is a fruit whilst in relation to food it is a

vegetable because it is used in savoury sauces, salads etc rather than in desserts where we would

normally think of consuming more typical fruit such as apples, pears or mangos. This would not

suggest that natural categories have fuzzy boundaries but that human beings are capable of classifying

the same thing in a number of different, but equally valid, ways.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 65 of 192

 6

PPIG, London Metropolitan University, 2012 www.ppig.org

These tentative alternative explanations of experimental findings support the idea of a hierarchically

organised semantic memory with the inheritance of properties as proposed by Quillian (1969) and

supported by Miller (1990). However, it is suggested that human semantic memory might consist of

several possibly contradictory or inconsistent hierarchies involving the same concepts even within the

same individual. It is not clear what impact this would have for creating DLs ontologies that more

intuitively correspond to the way human beings represent conceptual knowledge.

3.2.2. Developing Ontologies

Shadbolt et al (2006) believe that the Semantic Web needs ontologies that are “developed, managed,

and endorsed by committed practice communities”. However, the development and management of

ontologies is a time consuming and labour intensive process. Because ontologies are hand-crafted, the

hierarchical structure and properties reflect the knowledge, understanding and even the values and

prejudices of their authors. In addition, ontologies may be created for specific purposes in the same

subject area which may result in mean important differences that may be difficult to reconcile. It may

therefore be difficult to develop an ontology in each subject area that is endorsed by specialists in that

area.

Furthermore, there is no guarantee that endorsement of an ontology by specialists in a subject area

will provide the basis for producing useful and usable systems easily. For example, in the early days

of the PEN&PAD project the clinical data entry user interface had been driven directly from the

underlying medical ontology. The later version of PEN&PAD that I was involved in with used the

more general and re-usable GALEN ontology that had been developed and endorsed by a number of

physicians and surgeon. However, this broader ontology contained much that was not relevant for

clinical data entry. For example, the fact that arteries and veins were modelled as hollow tubes was of

little use to general practitioners entering data about symptoms, signs and diseases of the circulatory

system. The solution was to develop an additional processing layer between the ontology and the user

interface using pragmatic knowledge of what aspects of the underlying ontology were clinically

relevant.

In general, the development of an ontology for a specific purpose in a particular subject area is likely

to meet the requirements of that purpose but is unlikely to meet other requirements as in the above

PEN&PAD example. Instead of creating a multitude of potentially contradictory single purpose

ontologies in the same subject area, it would seem desirable to build general and re-usable ontologies.

However, to gain acceptance of correctness across a potentially diverse community of practice such

ontologies are likely to become abstract and divorced from any particular purpose. In order to address

this issue within the GALEN project, Rector et al (2001) described the development of a layered

architecture.

5. Conclusions

DLs and WordNet are major components in developments around the Semantic Web. Despite their

differences, both approaches are firmly based on the idea that human knowledge is represented in a

hierarchical fashion with the inheritance of properties. This basic proposition seems to lead to the

development of simple hierarchies and more extensive ontologies that are “correct” in some strictly

logical or accepted scientific sense. It is speculated here that such representations of knowledge may

not correspond to the way human beings organise these concepts for everyday purposes.

7. References

Baddeley A, Eysenck MW & Anderson MC (2009) Memory. The Psychology Press, Hove & New

York.

Bailie J (1988) Pocket Crossword Dictionary. Hamlyn, London.

Berners-Lee T (1996) The World Wide Web: Past, Present and Future.

http://www.w3.org/People/Berners-Lee/1996/ppf.html

Page 66 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

http://www.w3.org/People/Berners-Lee/1996/ppf.html

 7

PPIG, London Metropolitan University, 2012 www.ppig.org

Berners-Lee T, Hendler J and Lassila O (2001) The Semantic Web. Scientific American, 284(5): 35–

43, May 2001.

Collins AM & Loftus FL (1975) A Spreading-Activation Theory of Semantic Processing.

Psychological Review Vol. 82, No. 6, 407-428

Collins AM & Quillian MR (1969) Retrieval time from semantic memory. Journal of Verbal Learning

and Verbal Behaviour, 8, 240-247.

Conrad C (1972) Cognitive economy in semantic memory. Journal of Experimental Psychology, 92,

149-154.

Eysenck MW & Keane MT (2010) Cognitive Psychology: a student handbook - 6
th

 edition. The

Psychology Press, Hove & New York.

Horrocks I (2007) Semantic Web: The Story So Far. Proceedings of the 2007 International Cross-

Disciplinary Conference on Web Accessibility (W4A2007), Banff, Canada, May 7–8, 225. 120–

125. ACM Press, NY, USA.

Kirby J and Rector AL (1996) The PEN&PAD data entry system: from prototype to practical system.

In: Cimino J, editor, AMIA Full Symposium. Washington DC: Hanley and Belfus, 709-13.

Kintsch W (1980) Semantic Memory: A tutorial. In: Nickerson RS (Ed), Attention and Performance

VIII. Hillsdale, NJ. Lawrence Erlbaum Associates Inc. 595-620.

McCloskey ME & Glucksberg S (1978) Natural categories: Well defined or fuzzy sets. Memory and

Cognition, 6, 462-472.

Miller GA (1990) Nouns in WordNet: A Lexical Inheritance System. International Journal of

Lexicography, Vol. 3 No. 4, 245-264.

Minsky M (1975) A framework for representing knowledge. In: Winston PH (Ed), The psychology of

computer vision. McGraw Hill, New York. 211-277.

Nardi D and Brachman RJ (2007) An Introduction to Description Logics. In Baader F, Calvanese D,

McGuinness D, Nardi D and Patel-Schneider PF (Eds) The Description Logic Handbook: Theory,

Implementation and Applications. Cambridge University Press.

Nowlan WA, Rector AL, Kay S, Horan B and Wilson A (1991) A patient care workstation based on a

user centred design and a formal theory of medical terminology: PEN&PAD and the SMK

formalism. In Clayton P, editor, Proceedings of the Fifteenth Annual Symposium on Computer

Applications in Medical Care. SCAMC-91. Washington, DC. McGraw-Hill, 855-7.

Patel-Schneider PF, Hayes P and Horrocks I (2004) OWL Web Ontology Language semantics and

abstract syntax. W3C Recommendation, 10 February 2004. Available at

http://www.w3.org/TR/owl-semantics/.

Quillian MR (1969) The teachable language comprehender: A simulation program and theory of

language. Communication of the ACM, 12, 459-476.

Rector AL, Zanstra PE, Solomon WD, Rogers JE, Baud R, Ceusters W, Claassen W, Kirby J,

Rodrigues J-M, Mori AR, van der Haring EJ, and Wagner J. (1999) Reconciling Users’ Needs

and Formal Requirements: Issues in Developing a Reusable Ontology for Medicine. IEEE

Transactions on Information Technology in Biomedicine, Vol 2, No 4, 229-242.

Rips LJ, Shoben EJ & Smith EE (1973) Semantic Distance and the Verification of Semantic

Relations. Journal of Verbal Learning and Verbal Behaviour, 12, 1-20.

Shadbolt N, Hall W & Berners-Lee T (2006) The Semantic Web Revisited. IEEE Intelligent Systems,

May/June 2006, 96-101.

W3C (2009) OWL 2 Web Ontology Language, Document Overview, W3C Recommendation, 27

October 2009. Available at http://www.w3.org/TR/owl2-overview/

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 67 of 192

http://www.w3.org/TR/owl-semantics/
http://www.w3.org/TR/owl2-overview/

 8

PPIG, London Metropolitan University, 2012 www.ppig.org

Woods WA (1975) What’s in a link: Foundations for semantic networks. Reprinted in: Brachman RJ

and Levesque H.J (Eds), Readings in Knowledge Representation. Morgan Kaufmann Publishers,

San Francisco, California, 1985. 217–241.

Page 68 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Paper Session 4

Expertise

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 69 of 192

Thrashing, Tolerating and Compromising in Software
Development

Tamara Lopez1, Marian Petre1, and Bashar Nuseibeh1,2

1 Centre for Research in Computing, The Open University
t.lopez, m.petre, b.nuseibeh@open.ac.uk

2 Lero - The Irish Software Engineering Research Centre, Ireland

Abstract. Software engineering research into error commonly examines how developers pass
judgement: to isolate faults, establish their causes and remove them. By contrast this research
examines how developers experience and learn from things that go wrong. This paper presents an
analysis of retrospective accounts of software development gathered from a single organisation. The
report includes findings of how work is conducted in this organisation, and three themes that have
emerged in analysis are discussed: thrashing, tolerating and compromising. Finally, limitations and
implications for future research are given.

1 Introduction

Software rarely works as intended when it is first written. Things go wrong, and developers
are commonly understood to form theories and strategies to deal with them [4]. This research
began with a desire to examine in more detail how developers reason while making software,
and in particular, how they reason when things go wrong.

Software engineering research, by contrast, is commonly concerned with passing judgement,
assessing why a piece of software has failed and who is to blame [11] , or why a piece of
software is flawed and how to prevent such flaws in the future[7]. This kind of research commonly
examines errors in the context of bugs, elements of software as written that produce undesirable,
unexpected and unintended deviation in behaviour[1]. It tends not to examine errors from the
perspective of individual developers, nor to consider how things that go wrong along the way
are fixed, thus contributing to better software and better developers.

In the rest of this paper, we report a study designed to address these gaps.

2 Related Work

Understanding the personal strategies and theories that developers have for why things go
wrong and how to deal with them is an old, but under-examined concern in software engineering
research[4]. It is particularly evident in root-cause analysis, a method used to improve software
engineering process.

Root-cause studies identify the kinds of faults that predominate in a system, and determine
how process can be altered so as to prevented their occurrence in the future. They draw upon
data from bug and modification reports [9, 10, 6], but also make use of in-process questionnaires
[2] and retrospectively administered surveys [8]. Data are analysed and classified into taxonomies
that identify the root-causes for errors. The classified set of data forms the basis for additional
examination of particular code features such as complexity [13], interface defects [9, 10] or more
generally, environmental factors that influence software dependability [2]. The findings similarly
address familiar software engineering themes. Complexity is found both to correlate to error
frequency [13], and not to [2]. Application programming interfaces are found to have particularly
high frequencies of errors associated with them [9, 10] while these and other causes are evaluated
in terms of the cost associated with finding and fixing faults [13, 2, 6].

Over the years, these studies have consistently made two suggestions for additional research.
The first is that data about errors should be collected from the entire development cycle, not

Page 70 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

just at points of testing and integration[4][7], and should not be collected too long an interval
of time after events have passed[8]. The second is that studies should be made that examine
the causes of “human erring”[4, p.331], including factors such as problems of understanding[4],
inexperience[10], lack of information[8], and skill mismatch[6].

Unfortunately, though these papers offer clear ideas about what to examine, they do not offer
many suggestions for how to go about doing it. They do, however, suggest likely challenges. To
get around the fact that time erodes knowledge about errors, Perry suggests that programmers
be asked to classify their errors as a part of closing modification and bug reports [7], a technique
found not to work particularly well by Leszak et al.[6]. Organisational access is noted to be
difficult to attain when it requires sharing information about mistakes[7], and management
can seriously constrain study design, in extreme cases resulting in retrospectively gathered,
anonymous self-reports[8].

3 Talking to Developers: Critical Decision Method

We wish to address a long-held concern in software engineering research about how developers
experience and learn from things that go wrong in their work. Methodologically, we seek to
address the gaps identified by the root-cause analyses: to gather evidence about error from the
full development cycle, with particular emphasis paid to those areas that have been associated
with “human erring”: problem understanding, experience, information and skill.

To explore both gaps, we adapted the critical decision method, as described in Working
Minds: A Practitioner’s Guide to Cognitive Task Analysis[3]. The critical decision method was
developed to study how decisions are made in real world settings. In addition to illuminating
how people think on the job, the larger framework of cognitive task analysis assists researchers
in understanding expertise in individual domains, by revealing the differences between how
experts and novices approach and manage their work.

This method has been used before to study expertise in software development. One notable
study was conducted at Bell Labs to produce a training course in expert debugging skill[14, 12,
5]. It began with the premise that software development is a domain in which there is a clear
difference between the way experts and novices perform their work and where experts become so
only after years of experience on the job. Data was drawn from sixteen critical decision method
interviews with experts, and two interviews with typical (i.e., not expert) developers. Findings
were corroborated and enlarged through a focus group and via surveys distributed to developers
throughout the company.

The study found that expert debuggers, like experts in other domains, think extensively
about problems before taking action. This manifested in waiting longer to employ debugging
tools, and in finding information about what to try next rather than jumping into “poorly
directed” but hopeful activities. Study participants suggested that less experienced developers,
by contrast, were reported to “thrash” around, trying to find solutions.

The authors also reported differences in how experts and novices handled “close reading”
of code to establish what it does, and the past history of the data it handles. Both novices
and experts were found to read comments, but novices were less critical of what comments say,
tending to take them at face value. By contrast, experts treated the comments as evidence of
the number of hands present in a piece of software, and the conditions under which authors were
working. Finally, the authors found that experts read code as a last resort, preferring instead
to seek help from other developers with detailed knowledge of the software.

Though this study collected detailed information about technical aspects of bug fixing, feed-
back given by participants led the analysts to focus their efforts on explicating the social aspects
of debugging. It did not examine expertise in the context of other kinds of development activ-
ity, and reported findings based on the views of acknowledged experts in a single organisation.
The findings are thus compelling but leave room for more detailed examination of development
activities other than debugging, and the inclusion of non-expert perspectives.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 71 of 192

3.1 Study Execution

For our study, seven individuals were interviewed over the course of four weeks. Participants
perform a range of software development tasks in an established UK digital humanities centre,
described in 2008 by the Council on Library and Information Resources as an environment
”where new media and technologies are used for humanities-based research, teaching, and in-
tellectual engagement and experimentation”[15, p. 4]. Each informant was asked to recount an
incident in which they played a discrete role, in audio-recorded sessions that lasted from between
forty-five and seventy-five minutes.

Interviews were conducted by a single person, but otherwise followed the basic procedures
for conducting a critical decision method interview. These entail examining a single incident in
four semi-structured “sweeps”. In the first sweep, the informant and the researcher identified an
incident, broadly defined as one having taken place in the previous two weeks and in which the
informant was a key decision maker. In the second, a timeline was established to note critical
decision points. In the third, deepening probes were used to develop comprehensive and detailed
understanding about the incident. Though researchers often selectively use probes at this stage
to examine one or two cognitive phenomena, this study made opportunistic use of a range of
probes, with an aim to identify in analysis those which are most effective for learning about
things that go wrong. Finally, the informant was asked to consider hypothetical alternatives to
decisions taken.

Each interview concluded with questions about the informant’s educational and professional
background. Informants were asked to give the researcher copies of artefacts mentioned in the
discussion.

A Note About the Workspace All of the interviews took place at developers’ desks; five
of the seven developers were located in the same open plan office. Desks were located in close
proximity to one another, and employees were aware that interviews were being conducted. The
sixth developer was located in a different open plan office, and the final interview was held in
the participant’s private office.

The choice to conduct these interviews in situ was deliberate. It was felt that conducting
them in the developer’s own environment would allow for better access to physical and digital
artefacts that came up in conversation. Given the focus on problems and challenges, it was also
hoped that holding these discussions in the open would signal to informants that the topic was
not being pursued in order to assign blame, but rather in a spirit of inquiry. Informants gave no
indication that the choice of venue made them uncomfortable, though it was noted in several
cases that informants displayed discretion in referring to colleagues located in the same office,
either by lowering their voices or by referring to them simply as “my colleague”.

Information on computer screens, paper diagrams and a poster on the wall were used to
initiate discussion in three cases. In addition, informants shared source code with the inter-
viewer, explained the output of stack traces and demonstrated debugging tools, prototypes and
the software being built. Several developers appeared to remember with their fingers, orally
recounting details while at the same time accessing files and websites and conducting internet
searches similar to those they had used in solving problems.

3.2 Data Analysis

Data analysis began at the point of collection. Terms were checked with informants and infor-
mation previously given was stated back for clarification and correction. In several instances,
restating information also resulted in the addition of omitted details. Immediately following
each interview, notes taken during the interview were annotated and expanded. In addition, re-
flection was made to describe impressions and details of the major topics raised in the interview,
and to evaluate application of the method.

Page 72 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

In addition to the in-interview corroboration, informants were sent follow-up email messages
seeking additional materials mentioned in-interview, and inviting them to provide additional
comment. Informants have also been sent draft copies of reports featuring information pertaining
to their case.

A near-verbatim transcription was created of each interview. Each transcript was read and
annotated in an inductive, iterative process to identify themes in the data. The analysis of
individual texts was supplemented by the development of matrices and diagrams to explore
points across cases.

3.3 Validity

Given its exploratory aims and its focus on a single organisation and method of data collection,
the results of this study alone cannot make strong claims of validity. In addition, it must be
stated that the primary researcher had prior understanding about the organisational culture
in which the informants work. However, this researcher had no direct knowledge of any of the
projects discussed.

4 Results

This section presents results of the cross-case analysis of six interviews. The seventh interview
did not result in the identification of a clear incident, and is not included in this report. This in-
terview did yield information about how work happens in this organisation, which has been used
in analysis for comparison with other cases. The views of individual developers are presented
using pseudonyms.

4.1 Participants

Given the focus on understanding more about things that go wrong, it was felt that having
access to participants with a range of experience would be useful. To that end, this study did
not strive to identify and interview acknowledged experts. Seven people were interviewed, six
men, and one woman. The youngest participant was in her late twenties, and the oldest was in
his sixties. The rest of the participants were in their thirties and forties.

Developers old and new to the organisation were interviewed, with one having less than a
year at the organisation, and one over ten years. Two participants had computing degrees, one
had a computing postgraduate degree, one had a computing applications postgraduate degree,
and one had a postgraduate computing diploma. Three had industry computing experience in
the web media, financial, education and GIS sectors. Two had post-graduate or research degrees
in the social sciences and humanities. There were also humanities computing specialists, with
one informant having at least two decades experience in digital humanities work, and a second
having a decade and a half. These informants had both worked in multiple organisations on
digital humanities projects, while for the remainder, this was their first position in a digital
humanities centre.

4.2 Projects

Informants described work performed for three projects. James described refactoring a piece of
software for a tool he is building that facilitates note-taking and annotation (Project A). Valentin
described a project for which he was the sole application developer, tasked with creating both
an editorial tool and a web edition for displaying a critical edition of texts (Project B). The
remaining four participants, Joaquim, Marisa, Evan and Richard described performing different
tasks for a single project to support detailed annotation and display of medieval handwriting
(Project C).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 73 of 192

The latter two projects (B and C) follow the same general model: tools are created for use
by domain specialists to manage and create data related to physical, often historical materials.
These data are in turn presented to the public via other pieces of software that are also developed
by the centre. Public facing outputs take the form of web editions of texts and web reference
tools. In some cases, projects also produce print monographs.

This model is common in this centre, and as a consequence, development staff routinely
produce software for multiple user groups with different functional requirements, and different
usability thresholds. Domain specialists are full partners in the project. They closely interact
with developers and analysts and are prepared to work with tools that require complicated
installation procedures or which have a less than finished feel. Their priority is to have a piece
of software finished enough so that they can advance their research. By contrast, readers of public
facing web editions and reference tools, themselves also typically domain specialists, have an
expectation that the tools they use will be finished to a very high standard. Developing tools for
the public, and doing so in new and innovative ways, is a high priority for the centre, but the
requirements for these tools emerge slowly, sometimes over a period of years as the specialists
work with original materials and develop their understanding about what they mean.

The data produced and managed in these projects are different from commercial data:
they are less structured, orientated around natural language and approximate. One developer
characterised them in this way:

“So a good example are dates. If you say the date of this manuscript is around 1113
well it could be this date or it could be that date. Or even worse somebody is saying it
is that date, somebody is saying it is that date, somebody is saying it is that date. In
the commercial world it is just a single precise date to the millisecond. Here you want
many dates by different people and you want all the opinions shown on your website and
preserved. So the interpretation is very important.”

4.3 How work is done

Developers in this centre tend to work alone, even when assigned to tasks for the same project.
A single person may be assigned to work on all deliverables, or different people may be assigned
to different areas of the software. It is common for developers to work on the same project at
different times. Developers know the others who are working on their projects, and report that
they attend meetings at which other developers are present, however each works in reference to
the overarching project team. Participants identified having an area of technical expertise such as
in application or interface development or in data modelling. Despite this, several recounted the
need to learn new skills to meet requirements for projects that emerged over time. For example,
one application programmer described learning and implementing client-side technologies, while
another developer who was proficient in XML data modelling described a need to learn relational
data modelling.

Developers also take the initiative for prioritising and organising their work. This can involve
adopting new working practices, as in the case of one developer who described introducing a new
working style on his project as “agile-like,” with rapid iterations and frequent meetings with
project partners. Another described how his responsibilities at the organisation are growing,
and how in his present project he extended the original task to do more on his own initiative,
more or less as “the accepted order of things”. Ad-hoc technical teams are important, with one
participant describing “finding” his way on a project with the help of an “amazing” colleague
who offered technical advice and guidance about how to manage relationships with partners.
Another described “luck” in finding the solution to his issue as due in part to the technical
expertise of a colleague who was not working on the project. A third described looking to a
trusted colleague for help before relying on internet fora and other technical documentation.

Page 74 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

4.4 The Problems

Though an aim of this study was to examine things that go wrong in contexts other than in
bug reporting and bug fixing, bugs did feature in some of the stories. The starting point for
discussion with Joaquim was a bug that had been reported to him by a project partner. Valentin,
despite describing his issue as “not necessarily a bug, it’s an improvement” recounted that his
issue nevertheless manifested as a bug four times in the course of a year and a half, in different
pieces of software that were being used and built. The first manifestation brought the issue to
his attention, two later occurrences were “expected,” and one was a surprise, helping him to
realise how “widespread” the issue was, and causing him to re-prioritise and plan for solving it.
James reported finding and fixing small ”secret” bugs[4] as a part of his work to refactor the
storage layer for his software.

Three participants described issues directly connected to writing software. Joaquim de-
scribed an issue in implementing an interaction model for annotating digital images in a
browser. Valentin described problems in rendering special characters from historical texts in
web browsers. Evan described the personal challenges he faced in getting a local copy of an ap-
plication framework up and running. These included resolving version dependencies in installed
software and correcting filesystem path information in a configuration file.

In three other cases, the issues described revealed how external factors influence software
development in this organisation. Richard described developing a data model for a project that
would take into account two legacy models, work that involved close interaction with a project
partner to identify and fully specify concepts. His issues primarily arose from pressures on his
time, the need to “get something working” for this project, while still meeting the demands of
other projects. James described a breakthrough in his thinking about how to re-architect a piece
of software. His story detailed not the thing going wrong, but its flip side, how longstanding
“motivators for change” that came from the larger research community in which he participates
were suddenly resolved. Marisa described issues she faced in meeting complicated, ambitious
requirements for a user interface. Her incident included technical aspects, but also involved
learning how to recognise her own limits and to manage the expectations of her project partners.

4.5 Time

Every participant reported a working pattern of “fits and starts”, the need to pick up a task
and set it down as required to meet the demands of multiple projects. Perhaps as a result of
this practice, the issues described by participants included relevant details that were at times
temporally distant from one another. In the stories recounted by Richard and James, details
were given that had occurred at least a year prior to the interview. Evan and Marisa reported
events with two clear intervals, one occurring in the weeks leading up to the December holiday
break, and the other in the weeks following the break. Valentin reported events that occurred
a year and a half prior to the interview, and the timeline for his interview included several
distinct decision points, moments when the issue manifested in a way which changed priorities
and actions. Evan’s timeline was much more compressed, comprising the events of a single day
which had occurred in the week prior to the interview. He set out the major episodes at the
beginning of the interview, and these remained relatively stable for the rest of the interview.

In some cases, timelines were more difficult to establish, perhaps because work related to
the issue was ongoing at the point at which the stories were collected. Valentin, with whom
a timeline was quickly established, was coming to the end of his development on the project
he discussed. Evan was at the very beginning of his work on the project, and did not have a
long history of experience to relate. By contrast, Joaquim, James, Richard and Marisa were
interviewed in the midst of longstanding work on a project, and seemed to have more difficulty
in establishing a sequence of linked events. A timeline did emerge, but it was established in
analysis, and wasn’t particularly useful in structuring the interview protocol. In these cases, the
timeline was also not as precise, and possibly not as accurate.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 75 of 192

As might be expected, finer detail was collected about events that occurred close to the
point of interview. For example, Joaquim was able to report in some detail his interactions
with a debugger and IDE for work related to the incident that had occurred the day previous,
but did not report in such detail the process he used to research technologies at the start of
his work for the project some four months prior. Likewise Evan was able to recall in detail his
experiences of a few days previous, but did not provide as much detail about troubleshooting a
related incident some two months prior.

5 Discussion

Three themes have emerged in analysis of the cases of Joaquim, Valentin and Evan, the infor-
mants who reported incidents directly connected to writing software. This section identifies and
defines these themes, and presents a report of each.

Thrashing is identified in the Bell Labs study as poorly directed, ineffective problem solv-
ing. There is some suggestion that novices and experts thrash, but novices fail to realise they
are doing it in good time, and fail to break out of it. Experts, by contrast, realise when they
are thrashing, and seek help from colleagues with more experience. In these interviews, Evan
describes a day in which he spent time thrashing while trying to set up a local copy of a web
application framework.

Tolerating - Valentin describes how he tolerated an error for over a year, implementing
temporary solutions along the way. He reports this activity as strategic, a behaviour that is
consistent with descriptions of expert debuggers in the Bell Labs study.

Compromising - These interviews suggest that developers settle at times for sub-optimal
solutions in order to move work along. This is exemplified in Joaquim’s story, in which a bug
fix results in a working solution, but one with which he is intuitively dissatisfied.

5.1 Thrashing: At that point I made a cup of tea

Evan described a day in which things went wrong while setting up a local copy of an
open source web application framework, a task necessary to complete in order that the
“real work” could begin. Though relatively new to the framework and to the language it
is implemented in, he had done the task before for a different project a couple of months
prior. That time the process had not been smooth, and he had not written anything
down, and his goal now was to cement the approach that had been followed. The task
began well. He was able to locate and install all of the required software modules, and to
get the web server to start without reporting any errors. However images weren’t loading
and web-pages looked funny when loaded in the web browser. After “poking around in
the dark” for an hour or so, and becoming increasingly annoyed and confused, he was
able to narrow the issue down to one of configuration, and to copy the necessary setting
from the previous project’s files. He was relieved, until he loaded a page that he expected
to work and a different error message appeared. At that point, he stepped away from
the computer and made a cup of tea.

The story recounted by Evan is unique among the interviews in the rich perspective it
provides about things that go wrong as they occur. His is a vivid and sometimes harrowing
account of “thrashing,” described in the Bell Labs study as an ineffective process of going over
and over a problem. He is aware that his approach was unsystematic, flawed and risky, calling
it a process of attrition, and noting at one point an awareness that “if I plugged the dam
somewhere it was going to burst somewhere else”. At other points he described his approach as
“basically experimenting” and “hacking around.” He is also aware that he is a novice. In fact
it is because he is “wary of screwing things up” that he has undertaken this task in the first
place.

Page 76 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

External factors may have contributed to his difficulty. He was working on a home computer,
tunneling into a virtual machine hosted on his machine in the office. He became confused in
switching between environments, turned around about what he had done, “what I’d changed
and what hadn’t changed.”

He faced two obstacles. The first was one of conguration and is noted in the tutorials and
documentation of the open source framework to be tricky, suggesting that other developers
have encountered similar difficulty. The second involved a dependency between modules of the
framework which could only be resolved by downgrading one of the two to an earlier version.
Both of these issues had been encountered in an earlier installation of a local environment for
a different project nearly two months prior, before a holiday break.

Thrashing is described as a negative novice behaviour in the Bell Labs study. Novices were
found to fail to recognise that thrashing is happening, and to be unable to break out of it. The
reports suggested that experts might thrash, but that they were able to attend more quickly to
emotional cues that they were doing it, and to seek help sooner from colleagues with greater
expertise.

By contrast, in Evan’s story, thrashing is not only “annoying and confusing” it is also useful,
because it forces him to take a closer look at the software he is using and building. As he puts
it:

“You know this is quite informative ’cause obviously you would get something and it
would work out of the box and you don’t really think about it again, so even though this
was an annoyance, it was quite useful to actually have to look into those relationships.”

Evan was also able to recognize when he had reached the limits of his knowledge and
experience. His description of the strategy he employed at this stage is insightful:

“I’d spent long enough messing with the configuration files. I realised either it wasn’t
there or I’d broken it completely. Let’s get it back to how it was - you know I think you
take a step back and you think okay it should be working the way it is so let’s move on
to the next thing and try and understand.”

In the end, Evan gets everything working, but his confidence in the solution is not high. He
is not seeing any error messages or funny behaviour which suggest to him that everything is
working now, “touch wood”. He considers the day to have been a “personal failure,” but he is
more confident when describing how his knowledge of the application framework has grown:

“I’m comfortable with creating that environment, I’m comfortable with getting up and
running and also I’m much more aware of creating something that’s got a bit of longevity.”

5.2 Tolerating: I wouldn’t say “cropped up”. I expected to see the error.

Valentin describes an issue that surfaced as a bug several times over the course of nearly
two years, in tools used by the developer and in different areas of the software be-
ing developed. The issue was related to the use of Unicode, which presented particular
complexities when introduced to the domain. Though Valentin has years of commercial
software development experience and considers himself to be well-versed in this stan-
dard, a solution was not immediately apparent. He explains that the first occurrence
of the issue in the organisation’s documentation wiki prepared him for later manifes-
tations. These he managed by “setting aside the complexity” of the problem and by
making assumptions about users’ environments. At two stages, he implemented tempo-
rary solutions, a strategy that allowed him to concentrate on fulfilling more important
requirements for the project, and to analyse the problem “in the background”. In the
end, a permanent solution was found with the help of a colleague who is more skilled in
client-side development.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 77 of 192

Valentin’s story is striking in its clarity. Though this particular situation is new to him, he
is an experienced developer, and this is reflected in the way he describes organising his work:

“I didn’t want to be in the situation where I’m approaching deadline, a phase where
we have to do a demonstration or release this on the live website and I have to find a
solution in just a very limited time for a problem I’ve never encountered before. So I’d
rather prepare the thinking and explore things in different directions to be sure that I
will be ready for that.”

The findings of the Bell Labs study relate specifically to expert debugging behaviour, how-
ever they resonate at points with comments made by Valentin. That study found that expert
debuggers think extensively about problems before taking action. For Valentin, this takes the
form of partial, temporary solutions. As with expert debuggers, Valentin provides evidence that
he uses the time to find information about what to try next, he plans and prepares before taking
action.

The story recounted by Valentin, like the Bell Labs reports, also includes evidence of sophis-
ticated interpersonal skills in interacting with domain experts. He used feedback from domain
experts to prioritise and plan when the issue appeared in an unforeseen area of the software.
This occurrence made him realize that the problem was more widespread than he had thought,
and also clarified for him its importance to the domain experts. He notes that he felt pressure
at this point to identify a strategy for addressing the issue:

“I had to say something, to tell them that I have a strategy, not necessarily a solution,
but a strategy.”

Valentin is confident and pleased with the ultimate solution, describing it as “very clean”
and “well established”. However, he realises that if he had not had the help of a colleague, he
may have had to accept an inferior alternative. He is also keenly aware of how his own limits
contributed to the issue. Though he had a superficial awareness of the solution that was adopted,
he admits that his knowledge was lacking and that he “hadn’t done his job” at keeping up with
user interface development.

5.3 Compromising: I’m just not that happy with it yet

Joaquim described fixing a recently reported bug in a tool he is building to support
detailed editorial work on medieval manuscripts. Recreating the flawed behaviour was
tricky because the conditions under which it occurred were not accurately reported, and
triggering the bug required performing an unplanned-for action multiple times. However
the fix itself was trivial, involving altering basic conditional behaviour in a single function.
Now he has a produced a solution which is meeting requirements. He is not satisfied,
however, explaining that he is not “still not very happy with it yet,” and that he is not
sure how well it is working. He is aware that his understanding of how the open source
library he is working with is still developing. He is cautious, describing the library he
has found as “not the right way, a better way”. This caution extends into the software,
causing Joaquim to hold back on promoting the function where the bug was located into
the general API he is designing.

The details of Joaquim’s story are less emotionally vivid than those given by Evan. He,
like Valentin, has spent a number of years developing software in commercial and academic
environments, and of the three developers, has spent the most time in this organisation. However
his account included less evidence of overt strategy than that of Valentin, perhaps because his
story was collected in the midst of his work on the project. The details he recounts suggest

Page 78 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

that at times even experienced developers make simple mistakes and settle for solutions with
an intuitive sense, rather than a rational understanding that they are flawed.

Though most strongly exemplified in Joaquim’s story, evidence for this theme was also
provided by Evan and Valentin. It also surfaced in accounts given by James, Richard and
Marisa. These developers did not recount incidents so directly connected with writing software
but, like Joaquim, were interviewed in the midst of longstanding work on a project.

Compromise was related in terms of an intuitive sense of how well software is functioning,
a sense which at times contradicts cues given by the software. Joaquim has achieved a working
solution in his design, but he is dissatisfied and still feels that something isn’t right, that it may
not be working well enough. Evan has no information that things aren’t working, but is still
wary. Everything is working now “touch wood”.

Closely related to this, informants conveyed that they had settled for a sub-optimal solution
in aesthetic terms. Evan has gotten his application framework to run, but is aware that it is
“pretty dirty”. Joaquim described working with event handling in web-browsers first as “not
nice,” and later explained a particular event handling scenario as a “bit of a disaster”. James
describes his refactoring work as “good enough”, but notes that he would have liked it to be a
“a little prettier”.

Compromising is informed by past events, and shapes future expectation. Evan expects that
he will have similar kinds of problems when he promotes his software to a different environment.
Valentin reported that he expected to see occurrences of the rendering error based on past
occurrences. As he described it, “this [the first occurrence] prepared me for that”. Richard
doesn’t think he has achieved the perfect data model, but isn’t sure what exactly might be
wrong. Even though his project is behind schedule, he feels that they have “moved too quickly”
and as a result are going to have to settle for a less than “ideal” model.

Valentin suggests that intuition can dissuade developers from compromising, describing an
unused alternative solution as “very ugly,” something to be used only as a “last resort”. Similarly,
Marisa recounts nearly giving up, before trying again to find a solution for a respected project
partner:

“I didn’t want to go and say... It’s impossible. Trying to find something that was maybe
not everything that they wanted but better...You don’t give up.”

6 Limitations

Stories were collected from a single organisation, and may not represent software development in
different sectors, or in organisations with different work practices. As these stories were gathered
retrospectively, it is possible that details were forgotten or distorted[3].

Indeed, the accounts given yielded rich evidence for thrashing tolerating and compromising,
but cannot fully explain them. Was Evan’s story of thrashing solely the result of his lack of
experience? Was Valentin’s story an unambiguous example of an expert programmer at work?
Joaquim’s story suggests that there may be more to both stories. Of the three, his is the
only story collected while he was in the midst of a long development arc. He is the developer
with the most experience in the organisation and yet the bug he fixed was trivial, and might
have been interpreted as a novice error. These facts and the way he describes settling for now
suggest that the perspective developers hold when stories are collected is important. Gathered
early in a development or learning process, errors may lend themselves to novice explanations.
Gathered completely after the fact, decisions related to things that go wrong may be reported as
strategic. However when they are gathered in the midst of work, a murky middle area emerges
that deserves closer examination.

All of the themes suggest that errors influence and inform development work, however the
theme of compromising in particular indicates that developers use intuition to identify and
manage flaws in the software they are building. This sense is described in terms of doubt,

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 79 of 192

confidence, and satisfaction. However, it is not clear to what extent or in what ways they use
this sense while work is happening.

Retrospective elicitation also cannot explain how individual perspective might obscure de-
tails of how thrashing, tolerating and compromising co-occur in a single development process.
Joaquim’s original implementation took less than an hour. The bug may have resulted in part
from an earlier, hasty decision to get it working. Similarly, though Valentin reports having
consciously implemented partial, pragmatic solutions, this strategy crystallised in response to
interactions with project partners and managers in which the priority of the issue was empha-
sised to him. This suggests that even though the story was recounted as strategic, there may have
been moments in which he settled for rather than tolerated interim solutions. Neither Valentin
nor Joaquim report periods of thrashing like those reported by Evan. However, Joaquim does
report a moment of confusion about the source of the bug and Valentin reports being surprised
by a manifestation of the issue in an area of the software he had forgotten about.

7 Conclusions

The critical decision method was used in this study to elicit rich accounts of issues faced in one
kind of software development. The analysis examined things that go wrong beyond bug fixing,
and emphasised the perspective of the developer toward problems. This analytical perspective
has yielded three insights. First, it provides a detailed look at what happens when a developer
thrashes, and suggests that thrashing may hold value for the developers who engage in it.
It includes evidence of expert behaviour that is consistent with related studies, but extends
the applicability of such findings to development activities other than bug fixing. Finally, by
considering development activity more generally, a nuanced view of how flaws are intuitively
understood and managed over time emerges. This view might be explored in future research
by examining how a developer’s perspective toward particular choices changes in the course of
work on a project.

8 Acknowledgements

We thank the software developers who shared their experiences with us. This research is sup-
ported in part by ERC grant AdvG 291652-ASAP (Nuseibeh) and SFI grant 10/CE/I1855
(Nuseibeh).

References

1. Algirdas Avižienis, Jean-Claude Laprie, and Brian Randell. Dependability and its threats: A taxonomy. In
Renè Jacquart, editor, Building the Information Society, volume 156 of IFIP International Federation for
Information Processing, pages 91–120. Springer Boston, 2004.

2. Victor R. Basili and Barry T. Perricone. Software errors and complexity: an empirical investigation. Com-
munications of the ACM, 27(1):42–52, 1984.

3. B. Crandall, G.A. Klein, and R.R. Hoffman. Working minds: A practitioner’s guide to cognitive task analysis.
The MIT Press, 2006.

4. A. Endres. An analysis of errors and their causes in system programs. In Proceedings of the International
Conference on Reliable Software, pages 327–336. ACM, 1975.

5. Jared T. Freeman, Thomas R. Riedl, Julian S. Weitzenfeld, Gary A. Klein, and John D. Musa. Instruction
for software engineering expertise. In Proceedings of the SEI Conference on Software Engineering Education,
pages 271–282, London, UK, UK, 1991. Springer-Verlag.

6. M. Leszak, D.E. Perry, and D. Stoll. Classification and evaluation of defects in a project retrospective. The
Journal of Systems & Software, 61(3):173–187, 2002.

7. D. Perry. Where do most software flaws come from? In A. Oram and G. Wilson, editors, Making Software:
What Really Works, and Why We Believe It, pages 453–494. O’Reilly Media, Inc., 2010.

8. D. Perry and C. Stieg. Software faults in evolving a large, real-time system: a case study. In Proceedings of
the 4th European Software Engineering Conference on Software Engineering, pages 48–67. Springer-Verlag,
1993.

Page 80 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

9. D.E. Perry and W.M. Evangelist. An empirical study of software interface faults. pages 32–38, 1985.
10. Dewayne E. Perry and W. Michael Evangelist. An empirical study of software interface faults — an update.

In Proceedings of the Twentieth Annual Hawaii International Conference on Systems Sciences, volume II,
pages 113–126, January 1987.

11. Brian Randell. On failures and faults. In Keijiro Araki, Stefania Gnesi, and Dino Mandrioli, editors, FME
2003: Formal Methods, volume 2805 of Lecture Notes in Computer Science, pages 18–39. Springer Berlin /
Heidelberg, 2003.

12. Thomas R. Riedl, Julian S. Weitzenfeld, Jared T. Freeman, Gary A. Klein, and John D. Musa. What we have
learned about software engineering expertise. In Proceedings of the SEI Conference on Software Engineering
Education, pages 261–270, London, UK, UK, 1991. Springer-Verlag.

13. N.F. Schneidewind and H.-M. Hoffmann. An experiment in software error data collection and analysis.
Software Engineering, IEEE Transactions on, SE-5(3):276 – 286, May 1979.

14. Julian S. Weitzenfeld, Thomas R. Riedl, Jared T. Freeman, Gary A. Klein, and John D. Musa. Knowledge
elicitation for software engineering expertise. In Proceedings of the SEI Conference on Software Engineering
Education, pages 283–296, London, UK, UK, 1991. Springer-Verlag.

15. D. Zorich. A survey of digital humanities centers in the united states. Council on Library and Information
Resources, 2008.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 81 of 192

Conducting Field Studies in Software Engineering:
An Experience Report

Rebecca Yates

Lero - the Irish Software Engineering Research Centre
University of Limerick, Ireland

rebecca.yates@lero.ie

Abstract. Involving practitioners in software engineering research is crucial for relevant, applica-
ble results, but finding willing participants can be difficult. This experience report describes some
of the issues that can block or mar field studies of software engineering, and suggests tactics to
avoid or mitigate these problems.

1 Introduction

Field studies of software developers at work are important for generating externally valid soft-
ware engineering research results. Unfortunately, persuading software practitioners to partic-
ipate in research projects can be difficult, and conducting the studies themselves has many
potential pitfalls.

This paper reports on the experiences from a study of software engineering onboarding (i.e.
their period of familiarisation with the company, the development team and the unfamiliar
code and tools) (Yates 2011). This project collected recordings of onboarding sessions using a
camcorder and screen capture software, interviews with the new developers, and questionnaires
to capture the participants’ background as developers. Out of around 70 approaches to a variety
of companies, eight were willing to participate in some way.

The lessons learned from setting up and conducting the study are discussed here in the hope
that this information will be of use to others designing similar field studies. Please note that
the interpretations of events are only my opinion.

2 Finding participants

Having designed a field study, the first stage is to find willing participants. In this section, I
discuss methods for reaching potential participants, understanding their concerns about partic-
ipation, mitigating those concerns, and common responses from contacts.

2.1 Contacting developers

Personal contacts The most successful way to find participants was through personal contacts
in industry, academia and other groups. The majority of the field studies were set up via friends
and colleagues. As with job-hunting, spreading the word about the search can lead to useful
introductions, which in turn can lead to field study opportunities.

University-friendly companies Some companies contact favoured universities as part of
their recruitment drives. Companies who recruit in this way are more likely to be positive
about academia in general and the institution in particular, so this is a good source of potential
participants. As my research required software teams that were taking on a new member, I
responded to recruitment emails sent to the university’s computer science department. This
strategy was occasionally successful.

Page 82 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Social networking Social networks (such as Twitter, LinkedIn and mailing lists) can be used
to broadcast requests for participation. A colleague reported some success with this technique for
a low-involvement request (completing an online survey), but it did not generate any responses
to my more involved proposals.

Careers fairs Careers fairs provide a opportunity to meet face-to-face with company represen-
tatives. However, the representatives are typically either HR staff (who may pass on details of
the research but are unlikely to be enthusiastic themselves) or junior developers (who may be
enthusiastic but have little influence within their organisation). I had hoped that careers fairs
would allow me to contact companies preparing to take on new hires, but this strategy did not
prove a fruitful source of participants. If this approach is used, it is important to be clear that
one is not actually looking for a position with the company, or the conversation can become
very confusing.

Participant recommendations Initial participants can be asked to recommend others who
might be willing to participate. I did not try this technique, but based on the comments I had
after the data collection, I believe that it would be fruitful with participants who found the
experience positive. In the case of this observational study, participants often commented that
the involvement was much less onerous than expected, required very little of their time, and
generated some valuable introspection; with these assurances, the recommended contacts might
be more inclined to participate.

2.2 Common concerns

Software developers and their managers are likely to be enthusiastic about research projects that
address problems they are living with, or opportunities to “show academia what the real world
is like”. However, across all organisations, two major concerns prevent developers becoming
involved with field studies: time pressures and security concerns. Addressing these issues upfront
may turn an automatic ‘no’ into a constructive negotiation.

Time pressures While managers and developers may be broadly enthusiastic about a research
project, often their major concern is that involvement will take up time (both during the actual
data collection, and the overhead of arranging permissions, NDAs and so on). With many
software development projects operating under tight deadlines, or already running late (see
Perlow (1999)), any extra distractions may be considered unacceptable.

It is important, therefore, to be very clear about how much time the research will take up
on top of the practitioners’ everyday work. Project managers will require time estimates for
surveys and interviews, and a list of actions including administration (such as NDAs and visitor
passes) which will also take time to complete. If the bulk of the data collection is fly-on-the-wall
observation of developers’ normal activities, and therefore does not take time away from work,
emphasising this may help to persuade contacts that participation presents little risk to their
schedules.

Intellectual property Protecting intellectual property is sometimes a concern for potential
participants (albeit not usually the primary concern). A non-disclosure agreement (NDA) is
often enough to allow the research to proceed. Large corporations typically have dedicated legal
teams and standard procedures for creating NDAs, while very small companies may not require
NDAs at all (though ethically, the data and the participants must still be protected to the same
degree). Medium-sized companies may struggle with this because participants see the need for
IP protection but lack the resources or procedures to set this up. In all cases, NDAs may take
longer than expected to set up, which may impact the research schedule.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 83 of 192

IP is less of a concern when software is not the company’s main line of business. It may be
more comfortable for (for example) a materials supplier to allow access to its in-house stock
management system, than for a software development company to permit published research
on its flagship software product.

Project-specific issues The details of the project may introduce extra constraints on the
search for participants. My research project focussed on onboarding, so I sought out software
teams that were planning to introduce a new developer to their team in the near future. Many
potential participants were enthusiastic about the project but unable to help because no new re-
cruits were joining. This was sometimes even the case when the company was actively recruiting,
because finding the right person could take many months.

2.3 Persuasion

A contact who is in a position to approve the research will have a set of questions about the
requirements and implications of getting involved; these questions are often common to all
organisations. However, if this person is not the initial point of contact, it can be difficult to
communicate these details through a chain of command. Misunderstandings may lead to difficult
situations where managers agree to participate, only to discover that they have actually been
asked for something very different.

To mitigate this problem, the purpose and requirements of the research can be provided
to the organisation on a single-page PDF (see appendix for a sample document used in my
research). This provides a quick and accurate summary of the proposed research, which can be
passed through an organisation from the initial contact to the correct person. The content of the
information sheet evolved in response to frequently asked questions and occasional feedback.

This experience suggested that the most important points to be clear about were:

– The purpose of the research.
– The actions required from the participants and others in the company.
– The timescale of participation (in particular, any time taken away from work).
– The ways in which the collected data would be used and protected.

2.4 Responses

Common responses include:

That sounds interesting, but no. This is very common.
Sorry, we don’t participate in research at Company X. This may simply mean that this

contact is not interested in the overhead of organising participation. It may still be possible
to conduct a study at this company via another, more enthusiastic contact.

An initially positive response, and then nothing. This may indicate that the company
is too busy to participate, but occasionally a polite reminder will allow the conversation to
move forward.

No response at all. This is the most common outcome. Occasionally, out of the blue they
will reply months later (in one case to let me know that the NDA was set up and they were
ready to help).

We would like to help but we are not in a position to do so. My study had the addi-
tional requirement that participating companies had new developers joining their teams. It
is occasionally worth contacting them again after several months to see if the situation has
changed.

Yes, we’d like to help, let’s set up a meeting... It does happen.

Page 84 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Given the number of contacts (including multiple contacts for large companies) I found
it useful to maintain records of contacts, particularly to highlight those that gave a positive
response but had not arranged to participate. A spreadsheet function can show the number
of days since the last communication, to ensure that timely reminders are sent and potential
participants are not lost.

3 Technical issues on-site

Having negotiated access to a company, it is important to make the most of the opportunity
and avoid wasting the participants’ time. Most of the potential pitfalls can be avoided through
good preparation.

Ambient noise Ambient noise can pose a problem for audiovisual recording. Open plan offices
can be unexpectedly loud, and meeting rooms can have air-conditioning that nobody knows
how to control. Even areas that seem quiet at first may be used at breaktimes for coffee, loud
conversations and games of pool and pingpong. Depending on the nature of the field study,
this may be unavoidable, but if the study does not require the participants’ usual working
environment, the participants may be able to book a quiet room for the study.

Some microphones are directional and can be aimed to capture more of the desired sound.
Getting to know the audio equipment’s capabilities beforehand will allow better recordings to
be made. Depending on the purpose of the recordings, ambient noise can be frustrating, but is
rarely a major problem.

Software installation and use As companies grow larger, they are more likely to hand
control of their IT systems to dedicated teams. This can be an issue if the research requires the
installation of any software (for example, screen capture or task recording). The IT department
may have prevented the installation of any new software on participants’ machines.

Occasionally, participants already have suitable software on their machines (for example,
screen capture is currently available as part of QuickTime on Snow Leopard). If not, participants
can be asked to preinstall the software, allowing them time to negotiate permission with their
IT departments if required.

An alternative approach is to bring standalone (“portable”) copies of the required software
on a USB key (these do not require installation). In this case, the participants’ OS may not
be known in advance, so it is worth bringing different versions of the software to cover all
eventualities.

It is very important to minimise the risk of negative effects of participation. Providing
software is a risk because of the possibility of introducing viruses or other malware. Make very,
very sure that any software you ask them to install or use is safe.

Running extra software on the participant’s computer may cause it to slow down, impacting
their interactions with it. In the case of screen recording software, the performance impact can
be minimised by reducing the video quality and preventing unwanted audio recording.

Power sockets Power sockets can be a surprising issue. In many offices, every available socket
is in use, or the only available socket is on the other side of a walkway. The activity to be recorded
may take place away from any power sockets, and participants may move from place to place
(e.g. to access whiteboards or demonstrate hardware). Again, familiarity with the recording
equipment will prove valuable - for example, knowing how a camcorder will behave if unplugged
during recording. It can also be a good strategy to bring an extension cable.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 85 of 192

Data size Depending on the nature and length of data capture, data files may become very
large. This creates several issues.

Data files can be kept small in the first place by choosing appropriate recording quality
settings. Some screen capture software defaults to very high quality settings, and also records
audio which may not be required.

During long sessions, the recording device may fill up before the participants have finished.
Knowing the quality settings and the hardware specifications, it is possible to calculate in
advance how much storage will be required (or how much of a session can be recorded at once).
It may be possible to take advantage of coffee breaks to swap storage devices (e.g. spare memory
cards) or transfer data files into storage, but this can be a lengthy process.

Data storage can be a particular problem if recording software is in use on the participant’s
computer and they do not have enough free space available. In this case, one option is to
save the file directly to an external drive (this also avoids lengthy data transfer times after
the recording session). An unexpected issue in this study was the 4GB file size limit on older
Windows machines; files larger than this become corrupted and unusable.

Questionnaires As part of my study, I asked participants to complete an online questionnaire
about their background as developers. Despite testing the questions with colleagues beforehand,
some of the questions were difficult for participants to answer accurately. Examples include
the question “how long have you worked at this company?”. This apparently straightforward
numeric question was difficult to answer for the developer who worked for the company as a
contractor, then worked elsewhere, and then returned to the company as an employee. A free
text box often allows more intelligent answers.

In another scenario, the questionnaire had to be hastily adapted because a non-developer
became involved in the recordings and the questions were worded with the assumption that all
participants would be developers.

4 Ethical issues of collaboration

Sharing data It is important to be clear with the participants and the company about who
the recordings or other data will be shared with. Typically, recordings should not go beyond
the participants and the research group, but occasionally other employees in the same company
may ask to see or hear them. This could be an issue if the participants, believing the data
collection to be private, have been discussing other employees or office politics, or making jokes
that could be misinterpreted. Sharing the recordings could have negative consequences for the
participants; this must be avoided.

Participant consent Information does not always flow as freely through corporations as
one might hope. It is entirely possible to set up a field study with a manager, and arrive
to discover that the participants themselves have not been informed or consulted about the
planned research. This presents the ethical issue of informed consent; participants may then feel
pressured into participating.

This scenario could be avoided by requiring potential participants to complete an online
survey or other task before the recording session. This would ensure that they were aware of
the field study and able to discuss any concerns beforehand.

Unexpected participants During a field study, it is fairly common for extra employees to
interact with those who have agreed to participate in the research. A pre-prepared explanation
and spare participant consent sheets provides the option for them to join the study, if they wish,
without major disruption to the session.

Page 86 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

5 Thanking participants

It is often recommended to “give something back” to the companies involved in the form of
presentations about the research. So far, not a single company has taken me up on this (probably
because of the time pressures mentioned earlier).

As thank-you gifts, physical Amazon gift vouchers were appreciated, but electronically sent
vouchers were often mistaken for spam. A thank-you card and a box of chocolates or biscuits
were appreciated in office environments.

6 Related discussion

Further discussions on ethical issues can be found in the special issue of Empirical Software
Engineering focusing on ethics, edited by Singer & Vinson (2000), and data collection techniques
for field studies are examined by Lethbridge, Sim & Singer (2005).

Experimentation in the field does not always go to plan. Exton, Avram, Buckley & LeGear
(2007) provide a discussion of technical and social issues that affected an experimental setup.

7 Acknowledgements

This work was supported, in part, by Science Foundation Ireland grant 04/CE2/I303 1 to Lero -
the Irish Software Engineering Research Centre (www.lero.ie). The author thanks Jim Buckley
and Norah Power for their comments and advice.

References

Exton, C., Avram, G., Buckley, J. & LeGear, A. (2007), An experiential report on the limitations of experimen-
tation as a means of empirically investigating software practitioners, in ‘Psychology of Programming Interest
Group’, pp. 173–184.

Lethbridge, T., Sim, S. & Singer, J. (2005), ‘Studying software engineers: Data collection techniques for software
field studies’, Empirical Software Engineering 10(3), 311–341.

Perlow, L. (1999), ‘The time famine: Toward a sociology of work time.’, Administrative Science Quarterly
44(1), 57–59.

Singer, J. & Vinson, N. (2000), ‘Ethics and empirical studies of software engineering’, Empirical Software Engi-
neering 5, 89–91. 10.1023/A:1009859121816.

Yates, R. (2011), Expert explanations of software, in ‘Psychology of Programming Work in Progress’.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 87 of 192

The Issue

• On joining a company, or moving to a new project, a software developer is faced

with unfamiliar code and has difficulty contributing. Ramping up to full

productivity can take up to six months.

• In research at Microsoft, 56% of developers reported that understanding

someone else's code was a serious problem.

• Expert software developers are able to mentor new team members – but the

experts aren't always available, and mentoring can be time-consuming.

Research Proposal

• To address this issue, I'm investigating how experts explain their code to new

team members. Through video recordings, screen capture, code analysis and

interviews, I'm seeking to understand what information about a codebase is most

useful in this situation.

• This is a new approach to the problem. To ensure valid and useful results, it's

important to involve industrial partners.

• More information about the data collection can be found on the reverse.

Outcomes

• This kind of research can answer questions such as:

◦ Which parts of the code are important for a new team member to know?

◦ How are diagrams used to convey information?

◦ How useful was the explanation to the newcomer?

◦ How could the ramp-up be improved?

• I hope that this research will lead to recommendations for mentoring techniques

or tool support for new team members, reducing ramp-up time and increasing

developer productivity.

If you have any further questions, or would like to participate, please contact me:
(rebecca.yates@lero.ie). Thank you for your time.

Rebecca Yates is a PhD student at the University of Limerick, Ireland, supervised by
Jim Buckley and Norah Power. Prior to this, she worked as a software engineer.

Images from the pilot
study at the University

of Limerick

Research Proposal

Page 88 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Thank you for considering helping with this research into expert explanations of
software. This page details the steps typically required for participation.

Beforehand:

We arrange a time for the data collection session.
I am most interested in a newcomer's first introduction to the codebase. The walkthrough typically takes
between one hour and half a day. Newcomers may be new hires, or existing employees moving to a
different project within the company.

We set up an NDA if required.
This can be supplied by your company or created by the University of Limerick.

On the day:

The participants read and sign the Participants Rights document.
This document covers their rights regarding anonymity, their right to pause or abandon the recording for
any reason, and describes how the collected materials will be used.

We install screencapture software on their machine.
 e.g. the freely available CamStudio (unless a suitable program is already installed). This is because the text
on screen doesn't show up clearly on the camcorder.

I place the camcorder and start recording.
This is a small camcorder on a desktop tripod, and is pointed at the screen. It's unobtrusive, and can be
moved easily to follow the conversation to whiteboards or other locations.

The participants work as usual, with the expert explaining the code to the newcomer.
I move the camcorder if required, and don't interfere with the work in progress.

After the session, I take a photo of any diagrams that were used.
Like the screencapture, this just ensures a clear copy in case it's not readable on the video.

I analyse the source code under discussion.
This is for the quantitative part of the research, comparing the path of the explanation to the code metrics.
All copied materials are stored encrypted using ecryptfs and are not released; if code cannot be removed,
on-site access would suffice.

Follow up:

The participants complete an online questionnaire.
This is a short (~10 minutes) questionnaire on their background as software developers.

The newcomer gives a short interview.
This takes place around three weeks later, and asks how useful the explanation was. This can be completed
in person or by phone and should take less than half an hour.

Optionally, I can provide a report or presentation on this research.
To respect the privacy of the participants, this is a report on the research in general, and does not name any
individuals or companies. As detailed on the previous page, this report would focus on parts of the code
base that are important to new team members, how diagrams can be used effectively, the usefulness of
different types of information and general improvements to the ramp up process.

If you have any further questions, or would like to participate, please contact me:
(rebecca.yates@lero.ie). Thank you for your time.

What's involved?

Images from the pilot
study at the University

of LimerickPPIG 2012, London Metropolitan University 21-23 November 2012 Page 89 of 192

Paper Session 5

Learning to Program

Page 90 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Comments on the papers from the session on Learning Programming

Benedict du Boulay

Human Centred Technology Research Group

University of Sussex
b.du-boulay@sussex.ac.uk

The four papers in the session on Learning Programming cover differing areas of the

topic, though they are united in that they report work that is very much in progress,

and in two cases explicitly concentrate on a future research agenda (Bednarik and

Orlov, Major et al.) rather than on reporting results. Two of the papers are concerned

with novices learning their first programming language (Bornat et al., Major et al.),

one looks at novices learning their second programming language (Mselle) and one

focuses on differences between novices and experts in terms of their gaze patterns

(Bednarik and Orlov). Two of the papers are essentially concerned with pedagogy

(Mselle, Major et al.), one with code understanding (Bornat et al.) and one with

perception (Bednarik and Orlov).

Mselle argues for the value of a paper and pencil notation, MTL, that can be used to

describe the sequence of memory states of a notional machine as it executes small

programs. The notation is not generated automatically but is drawn by hand, either by

teachers of programming or by learners getting to grips with understanding the way a

language that they are learning works. Mselle reports an experiment in which

undergraduates used the notation to help them learn their second programming

language but did not go to lectures. The end of course results for these students were

compared with those who went to lectures and used the usual text book. There were a

number of flaws in the experiment, as Mselle himself points out, but the results

provide some support for the value of MTL. For me the big question centres around

the best way that such a notation should be used: alone or in pairs or groups? In

comprehension or in debugging tasks? Instead of lectures and lab classes or as

addition to them? Reasoning from code to MTL diagrams, as in the paper, or from

MTL diagrams to code? There are obvious links to the work of Bornat, Dehnadi and

Barton in that MTL could provide a notation for expressing (possibly incorrect)

beliefs about sequence and assignment, see below.

Bornat, Dehnadi and Barton explore two issues
1
. First is the cumulative nature of

first year university computer science curricula and the way that success or failure

with the customary initial concepts of sequence and assignment has consequences for

getting to grips with later and more complex coding concepts. The second is the

hypothesis that a prerequisite for learning to program is an ability to see a computer

program as a small machine that executes its instructions in a consistent way, even if

that ability is based on an incorrect version of that consistency. They describe a test

that goes some way towards distinguishing those who think consistently about

sequence and assignment from those who do not and looked at the consequences for

each kind of student on future success.

1 I need to declare an interest here, as I am currently working with Bornat and
Dehnadi on these issues.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 91 of 192

mailto:b.du-boulay@sussex.ac.uk

Their work has received criticism, but the basic notions about the consequences of the

cumulative nature of learning to program, and the necessity to be able to understand

how code is actually executed are clearly important. While they are not directly

concerned with pedagogy but with understanding, Mselle’s MTL notation might well

provide a tool to assess understanding as well as to elucidate it.

The paper by Major, Kyriacou and Brereton sets out a plan to test the hypotheses that

learning to program through the use of robot simulator is an effective method and

improves learners’ perceptions of programming. There is a long history to the idea,

going back to the early 1970s, that program code can be externalised for pedagogical

purposes though driving either a real robot (such as the Logo Turtle) or a simulated

one (such as Karel the robot for Pascal) or characters in a game (such as in Alice) and

much has been written on the issue covering both the cognitive and the motivational.

While the specific robot simulator that they have in mind may be up to the minute, the

big questions remain as they were before. Will students be more engaged and willing

to exert effort to drive this simulator to do what they intend than the other problem-

solving environments that have been developed? Will the basic concepts of

programming -- sequence, assignment, loops, conditions, procedure calls and so on --

be learnt more easily and accurately? Will the three main systems be easy for learners

to disentangle – the robot simulator and its behaviour, the programs and their

execution that drive the robot, and the underlying computer providing file storage,

editing and other tools in support of the first two.

Bednarik and Orlov are concerned with understanding more about the way that

human perception works, particularly in the case of complex, multi-window displays.

Various techniques have been used in the past, including eye tracking as well as

blurring out parts of the image, to get an idea of where programmers look while using

complicated graphical interfaces and how important peripheral vision is in such tasks.

Bednarik and Orlov set out a research agenda exploring how eye tracking and

peripheral vision interact to enable the programmer both to see in detail what they are

paying attention to, as well as to understand enough of the visual context to gain

supportive information from it. This might have practical applications in that a

system might be able to save time and power by not computing parts of the interface

that the programmer will not (or cannot) pay attention to. However the main outcome

is more likely to be in increasing our understanding how people conduct problem-

solving using complex graphical interfaces. Just as in the work on Air Traffic

Controllers, Ships’ Bridge Commanders, and London Underground System

Controllers, simply adding more information does not always lead to better

performance and fewer errors. Oftentimes it’s redundancy of information and (off

screen) fail safe systems that win the day. There ought to be a productive coupling of

these two authors’ work on perception with Green and others’ work on the cognitive

dimensions of notation.

Page 92 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Teaching Novices Programming Using a Robot Simulator:
Case Study Protocol

Louis Major Theocharis Kyriacou Pearl Brereton

School of Computing and Mathematics

Keele University, UK
l.major@keele.ac.uk t.kyriacou@keele.ac.uk o.p.brereton@keele.ac.uk

Keywords: POP-I.B. programmer education, POP-V.B. research methodologies, POP-VI.E. Computer science
education research

Abstract
This protocol provides details of a case study design that will investigate the use of simulated robots
as introductory programming teaching tools. This research is motivated by the results of a Systematic
Literature Review which indicated that such work would be valuable. The protocol will help to ensure
that a reliable, transparent and rigorous study is performed. Furthermore, potential problems have
been considered and accounted for in advance of its implementation. The protocol may also act as a
point of reference for other researchers interested in performing a case study.

1. Introduction
In this paper a protocol for a planned case study is presented. Case studies are empirical strategies for
research which involve an investigation of a phenomenon using several sources of evidence. This case
study will investigate the use of simulated robots as introductory programming teaching tools. The
research has been influenced by the results of a Systematic Literature Review (SLR) which indicated
that such work would be valuable. A range of participants will be involved in the case study including
novice programmers and trainee high school teachers. Data collected during the study will be used to
evaluate the effectiveness of a robot simulator, and associated workshop, which have been developed
to support the learning of introductory programming. This research aims to contribute to knowledge
by addressing the findings of the SLR. Moreover, this is the first case study to examine the
implementation of a robot simulator in such a context.

The remainder of this paper is organised as follows. In Section Two information relating to the
background of the research project is presented. Section Three provides information about the design
of the case study. Section Four offers an overview of data that will be collected while Section Five
provides details of how this will be analysed and interpreted. In Section Six measures which have
been taken to ensure the validity of the case study, in addition to a consideration of potential
limitations, are outlined. This is followed by a summary in Section Seven.

2. Background
Learning to program a computer is a difficult task for novices (Kelleher and Pausch 2005). Various
efforts have been made by educators to overcome such a problem by implementing active learning
environments (McGill 2012). This has included using robots as teaching tools (Fagin 2003, Lauwers
et al 2009, Martin and Hughes 2011, McWhorter and O'Connor 2009). The work that is presented is
motivated by the results of a SLR which investigated the use of robots in such a manner (Major et al
2011a, Major et al 2012). In total, 36 papers were accepted in the SLR. Of these: 25 examined the
effectiveness of physical robots, seven the effectiveness of simulated robots and four the use of
physical and simulated robots together. 26 papers (75%) report robots to be effective when used to
teach introductory programming. However, the potential to further investigate the use of robots
remained, particularly in regards to simulated robots. This is because the quality and rigour of the
seven papers related to simulated robots was judged to be inadequate as: four offer a ‘lessons learned’
account, or description of an approach, and provide no empirical data (Becker 2001, Buck and Stucki
2001, Enderle 2008, Ladd and Harcourt 2005); one describes the results derived from interviews as

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 93 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

being non-generalisable as only four novices were involved (Borge et al 2004); one specifies the use
of a questionnaire but presents no quantitative data (Lemone and Ching 1996); one describes the
implementation of pilot lessons but does not undertake detailed analysis (Sartatzemi 2005).

As a result of the SLR, and after reviewing educational software guidelines (Squires and Preece 1999,
ANSI Standards 2001, Beale and Sharples 2002), a robot simulator and associated workshop material
have been developed. The simulator is modelled after a small real world robot called the Mark III1.
The robot has two actuators and several input devices. The workshop covers the fundamental
programming constructs identified in the ACM/IEEE Computer Science Curriculum Joint Task Force
Report (ACM/IEEE 2008). This includes: basic syntax and semantics of a higher-level language;
variables, types, expressions and assignment; simple I/O; conditional and iterative control structures;
methods and parameter passing; structured decomposition. In addition, the workshop also includes an
introduction to arrays. The ACM/IEEE recommend a minimum coverage time of nine hours for the
fundamental constructs they identify. With the introduction of arrays the workshop will last around 10
hours in total. Java has been selected as the programming language that will be taught as this is used
on Computer Science courses at Keele University as it is currently one of the most widely adopted
programming languages (TIOBE 2012). The simulator and workshop were piloted with a number of
novice programmers in order to validate the procedures and instruments. Other research has also taken
place including the hosting of introductory programming sessions involving 23 pre-service and seven
in-service ICT/Computer Science teachers. These sessions were used to evaluate an early version of
the robot simulator and to determine participant’s attitudes towards the teaching of programming.
Some of this research is described in Major et al (Major et al 2011b).

This case study will form part of a PhD project. The case study methodology is being used as it is
highly flexible and suitable for complicated studies involving multiple human participants. Case
studies are strategies for research which involve an empirical investigation of a phenomenon using
several sources of evidence (Robson 2002). One strength of case studies is that they are able to
provide a deeper understanding than controlled experiments (Runeson et al 2012) whilst remaining
capable of achieving scientific objectives (Lee 1989). The development of a protocol helps to ensure
reliable, transparent and targeted research which considers potential problems in advance (Yin 2009).

3. Design
In this section information relevant to the case study design is outlined including the aim of the study,
propositions, workshop structure, participants, data sources, cases, procedures and roles.

3.1 Aim
This is an exploratory case study as it aims to seek new insights (Runeson et al 2012). Moreover, it is
also considered to be a positivist case study as past evidence has been examined (as detailed in the
SLR), a range of variables will be measured, propositions will be tested and inferences will be drawn
from samples to stated populations (Klein and Myers 1999). This protocol is based on one described
by Brereton (Brereton et al 2008). The aim of this study is to determine whether a robot simulator is
effective for supporting the learning of introductory programming by using such a tool in a specially
designed workshop. The following research question will be asked:
Is a robot simulator an effective tool for supporting the learning of introductory programming?

3.2 Propositions

Four propositions have been developed as a result of the case study aim:
P1 A robot simulator is an effective tool for supporting the learning of introductory programming
P2 A robot simulator improves novice’s perceptions of programming
P3 A robot simulator offers a more effective introduction to basic programming concepts when
compared to other teaching methods
P4 A robot simulator improves trainee ICT/Computer Science teacher’s confidence in their ability to
teach introductory programming

1 http://www.junun.org/MarkIII/

Page 94 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

3.3 Data Sources
Several data sources will be used during the case study. The research question and propositions will
be addressed as follows:

• By using questionnaires to determine participants programming knowledge, in addition to
their attitudes towards programming, both before and after the workshop.

• By administering (and later scoring) programming tests both during and after the workshop,
which have been constructively aligned with the learning objectives of the workshop, in order
to determine programming progress.

• By maintaining a log of events that occur during the workshop session.
• By interviewing three current teachers, who have been involved in the planning of the

workshop sessions, in order to determine their thoughts on the effectiveness of the simulator.

3.4 Workshop Structure, Participants and Cases
Two separate workshop sessions have been scheduled which will involve students with limited or no
programming experience aged between 16 and 18 years old. Each workshop will last two days (5
hours per day) and will involve 10 and 11 students respectively. The two sets of students are studying
at different Further Education (FE) institutions. Two programming tests will be completed by students
in order to gauge progress and a pre- and post-workshop questionnaire will be administered. At the
end of the workshop students will also complete four programming tasks which are designed to draw
together the concepts that they have encountered.

22 trainee ICT/Computer Science teachers will also take part in a workshop that will replicate the FE
students workshop discussed above. Two separate two-day workshops will again be held and this
cohort of trainees will be split. Whereas the students have had limited exposure to programming these
trainee teachers have all encountered programming in some capacity before. Therefore, in addition to
undertaking the assessment tasks designed for student participants, trainee’s confidence in their ability
to teach programming (in addition to their attitude towards the subject) will be investigated. This will
be done by administering a pre- and post-workshop questionnaire. The trainees will also be asked to
compare their previous programming learning experience to the one using the robot simulator.

In addition, a further introductory programming workshop has been scheduled. This will involve a
cohort of 22 Year 9 High School pupils (aged around 14 years old) who are about to embark on a
Computing GCSE qualification and have little or no programming experience. As this group of
participants are still enrolled at High School it is not possible to run the 10 hour version of the
workshop previously discussed (due to pupils having other time commitments). Instead, a shortened
version of the full workshop (lasting five hours) will be delivered. During this modified version of the
workshop pre- and post-workshop questionnaires will be used to collect data.

In order to address the research question this study will be a multiple-case case study:
• Case 1 will be the novice student programmers who are aged 16-18 years old and are

currently in FE. The experiences of 21 students will be considered as part of this case. Case 1
participants will take part in the full two-day workshop.

• Case 2 will be the trainee ICT/Computer Science High School teachers who all have some
programming experience. The experiences of 22 trainees will be considered as part of this
case. Case 2 participants will take part in the full two-day workshop.

• Case 3 will be the novice student programmers who are aged around 14 years old and are
currently in High School. The experiences of 22 students will be considered as part of this
case. Case 3 participants will participate in a shortened one-day version of the main
workshop.

3.5 Case Study Procedure and Roles

LM will deliver the introductory programming workshops and will be the case study leader. PB and
TK reviewed an early version of the case study protocol and will continue to be consulted as the study

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 95 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

progresses providing research support and advice. The case study protocol has also been evaluated by
an independent expert (Barbara Kitchenham of Keele University).

3.6 Ethical Considerations and Participant Code Numbers
Data collected from participants will be stored securely in accordance with the Data Protection Act
1998. Real names, raw, analysed and demographic data will not be associated with any participant.
Any identifying features arising from the interviews will be removed during transcription. All data
will be exclusive to members of the research team. All participants will receive an information leaflet
and informed and written consent forms will be received from all participants. All participants will be
given a unique code number. This will be written by participants on all data collection instruments.
Keele University’s Research Ethics Panel has approved the use of the robot simulator, and workshop,
for research purposes.

4. Data Collection
Details of data that will be collected during the case study is provided in this section.

4.1 Case 1: Novice Programmers (FE Students)

Pre-Workshop Questionnaire

A paper based questionnaire will be completed by novices before the workshop in order to determine
their past programming experience and attitude towards the subject. An overview of the content of
this questionnaire is presented in Table 1.

Novice’s Past Programming Experience Novice’s Attitude to Programming Misc.

Have novices previously programmed Should programming be taught in schools Gender

What languages have novices used (if any) Would novices consider learning to program

Why novices previously programmed Problems while learning to program

Was previous experience challenging Stereotypes associated with programming

Enjoyment of previous experience

Table 1 – Pre-Workshop Questionnaire Overview (Case 1 Participants - Novices)

In-Workshop Programming Exercises

Two paper based programming exercises will be completed during the workshop in order to monitor
programming progress. These will draw on concepts that students have encountered.

In-Workshop Researcher Log

The lead researcher (LM) will keep a personal log of incidents or issues that occur during the
workshop session according to pre-determined criteria.

Post-Workshop Questionnaire

A second paper based questionnaire will be completed by novices after the workshop in order to
gauge their thoughts on the workshop experience. In addition, novices will again be asked about their
attitude towards programming. Table 2 provides an overview of this questionnaire.

Page 96 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Table 2 – Post-Workshop Questionnaire Overview (Case 1 Participants - Novices)

Post-Workshop Programming Exercises

Novices will complete four programming challenges that have been constructively aligned with the
learning objectives of the workshop session and draw on the concepts encountered. At least 30
minutes will be required for this. These exercises will determine whether deep learning has taken
place. Case (Case 2008) describes deep learning as when students aim towards understanding whereas
surface learning is where students aim to simply reproduce material in a test or exam without actually
understanding it. Code will be collected and graded according to a three point scoring system:

A) Participant’s code shows evidence of deep learning as knowledge gained during the workshop has
been used to critically solve a new problem. At least 80% of code is correct.

B) Participant’s code shows some evidence of deep learning as the new problem has been attempted
and successfully solved in part. Between 50% and 80% of code is correct.

C) Participant’s code shows no or little evidence of deep learning as no or little attempt has been
made to solve the problem. The participant may have not differentiated between general
principles and examples. The participant may have simply tried to repeat information from
memory or has merely copied previous code without trying to adapt it to solve the new problem.
Less than 50% of the code is correct.

4.2 Case 2: Trainee ICT/Computer Science Teachers

For Case 2 participants (the trainee ICT/Computer Science teachers) different pre- and post-workshop
questionnaires will be used to collect data. The procedures for the in-workshop programming
exercises, in-workshop researcher log and post-workshop programming exercises, however, remain
the same as those described for Case 1 novice programmers.

Pre-Workshop Questionnaire

A paper based questionnaire will be completed by the trainees before the workshop in order to
determine their past programming experience and attitude towards the subject. An overview of the
content of this questionnaire is presented in Table 3.

Trainee’s Past Programming Experience Trainee’s Attitude to Programming Misc.

Have trainees previously programmed Should programming be taught in schools Gender

What languages have trainees used Confidence teaching programming in school

Why trainees previously programmed Perceived difficulty teaching programming

Enjoyment of previous experience/Identification
of concepts previously used

Was previous experience challenging

Table 3 – Pre-Workshop Questionnaire Overview (Case 2 Participants – Trainee Teachers)

Novice’s Workshop Programming Experience Novice’s Attitude to Programming Misc.

Enjoyment of session Programming plans going forward Gender

Difficulty of session Has simulator changed perceptions

Thoughts on effectiveness of simulator Has simulator dispelled any stereotypes

Most/least liked aspects of simulator (up to three) Would novices consider learning to program

Thoughts on effectiveness of workshop Should programming be taught in schools

Comparison of previous programming learning
experience (if any) against the workshop

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 97 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

Post-Workshop Questionnaire

A second questionnaire will be completed by trainees after the workshop in order to gauge
participant’s thoughts on their workshop experience. In addition, trainees will also be asked about
their attitudes towards programming. Table 4 provides an overview of this questionnaire.

Trainee’s Workshop Programming Experience Trainee’s Attitude to Programming Misc.

Enjoyment of session Consider using simulator in own lessons Gender

Difficulty of session Confidence teaching programming in school

Thoughts on effectiveness of simulator Perceived difficulty teaching programming

Most/least liked aspects of simulator (up to three)

Thoughts on effectiveness of workshop

Comparison of previous programming learning
experience against the workshop

Table 4 – Post-Workshop Questionnaire Overview (Case 2 Participants – Trainee Teachers)

4.3 Case 3: Novice Programmers (High School Students)
For Case 3 participants, the same pre- and post-workshop questionnaires will be used as for Case 1.
The in-workshop researcher log will also be completed. Due to this workshop being shorter in time,
however, the programming tests will not be implemented.

4.4 Additional Data Source: Teacher Interviews
Teacher’s thoughts on the robot simulator as a means of introducing programming concepts to
novices will also be collected. Themes will include the suitability and effectiveness of the robot
simulator as an introductory programming teaching resource. Semi-structured interviews will be used
during this process and will be recorded with the consent of the interviewee for later transcription. By
the time of the interviews all three teachers will have seen the robot simulator, the workshop sessions
and will have discussed with their students about the workshop experience.

5. Analysis
As outlined in Section 4, several sources of data are to be collected during the case study. This will
enable the triangulation of collected data which will strengthen the findings of the case study due to it
allowing for converging lines of enquiry and corroboration. Triangulation involves taking multiple
measures of a studied object and is relevant for qualitative, quantitative and mixed method studies
(Runeson et al 2012). Triangulation also helps to address the potential problem of construct validity
(discussed in Section 6). An electronic case study database will be used to organise and document
collected data. This will be made available to secondary investigators and will help to ensure the
transparency of the case study process. A chain of evidence will also be established. Details of how
collected data will be analysed during the case study is presented as follows:

• Table 5 provides details of the analysis strategy for data collected from Case 1 (FE Novice
Programmers) participants

• Table 6 provides details of the analysis strategy for data collected from Case 2 (Trainee
Teacher) participants

• Table 7 provides details of the analysis strategy for data collected from Case 3 (High School
Novice Programmers) participants

In regards to the teacher interviews each interview will be transcribed before being thematically
analysed for commonalities.

Page 98 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Data Source Description

Pre-Workshop Questionnaire Qualitative and quantitative analysis

In-Workshop Programming Exercises Examination/comparison of participants programming
knowledge during the workshop

In-Workshop Researcher Log Notable events discussed. Common trends identified

Post-Workshop Questionnaire Comparison with pre-workshop questionnaire results in

addition to further analysis

Post-Workshop Programming Exercise Analysis of participant’s programming progress, and
evidence of deep learning, by grading participant’s code
according to a pre-determined three point scale

 Table 5 – Analysis Strategy for Case 1 Data (FE Novice Programmers)

Data Source Description

Pre-Workshop Questionnaire Qualitative and quantitative analysis. Comparison with
previously collected data reported in Major et al 2011b

In-Workshop Programming Exercises For those without substantial Java programming
experience analysis of how knowledge progressed during
the workshop by examining, comparing and scoring
responses. Separate analysis of data collected from
participants with considerable Java experience

In-Workshop Researcher Log Notable events discussed. Common trends identified

 Post-Workshop Questionnaire Comparison with pre-workshop questionnaire results in

addition to further analysis. Comparison with collected
data reported in Major et al 2011b

 Post-Workshop Programming Exercise For those without substantial Java programming
experience analysis of programming progress by grading
code according to a pre-determined three point scale.
Separate analysis of data collected from participants with
considerable Java experience

 Table 6 – Analysis Strategy for Case 2 Data (Trainee Teachers)

Table 7 – Analysis Strategy for Case 3 Data (High School Novice Programmers)

Data Source Description

Pre-Workshop Questionnaire Qualitative and quantitative analysis

In-Workshop Researcher Log Notable events discussed. Common trends identified

Post-Workshop Questionnaire Comparison with pre-workshop questionnaire results in
addition to further analysis

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 99 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

5.2 Rival Explanations
It is also intended that a further analytical strategy, examining rival explanations, will be adopted and
embedded in the data collection and data analysis stages. Examining rival explanations involves
engaging in a systematic search for alternative themes, divergent patterns and rival explanations
(Patton 2001). Reporting that a case study sought out, considered and did not find evidence to support
a number of plausible rival explanations enhances the credibility of a case study and helps to counter
the suggestion that the results are shaped by any predispositions or biases. Yin (Yin 2009) lists many
types of potential rivals while Rosnow and Rosenthal (Rosnow and Rosenthal 1997) discuss factors
that can impact upon the result of experiments involving human subjects. Several of these issues are
considered as potentially relevant to the case study and will be addressed as follows:

Rival Explanation Description How to Address

Null Hypothesis

Observations are the result of
chance circumstance only

Workshops to be replicated. Multiple sources of evidence
to be used to support findings

Novelty of the
Simulator

The novelty of the simulator
encourages participants to
say they have learnt more
than they actually have (i.e.
participants confuse interest
in the learning mechanism
with actual learning)

Is addressed by the scoring process which distinguishes
between deep and surface learning on the post-workshop
programming exercises

Experimenter
Expectation Effect

The scoring of the
programming tests is
influenced by the
experimenter’s expectation
that the simulator is an
effective learning mechanism

Will be addressed by adhering to the marking schedule
documented in Section 4.1. A random sample of this data
(programming exercises completed by 12 participants)
will also be marked by a second member of the research
team (TK) according to this schedule. Disagreements in
the scoring of these tests will be resolved by consulting
the other research team member (PB) and by grading the
exercises collected from all participants collectively

“Good Subject
Effect”

When participants mark their
subjective opinions strongly
in favour of the simulator in
order to aid the research
project and not because it
helped them to learn
programming

Is addressed in several ways: 1) By the scoring process
used to grade participants programming progress 2) By
asking participants to identify up to three things they
like/dislike about the simulator – participants are likely to
be more truthful when identifying positive and negatives
than simply answering a question on whether the
simulator helped them to learn 3) If far more positives
than negatives are reported this would corroborate
positive answers to the questionnaire questions related to
the effectiveness of the workshop and robot simulator

Implementation
Rival

The implementation process
(e.g. the nature of the
workshop sessions), not the
robot simulator, accounts for
the results

Is addressed by asking participants to rate (on a five point
scale) the effectiveness of the simulator in addition to the
effectiveness of the workshop in general. If substantially
more participants rate the workshop as effective, and the
simulator as ineffective, then the nature of the workshop
itself may account for the results of the study

Table 8 – Consideration of Potential Rival Explanations

Page 100 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

5.3 Interpretation
During the analysis stage data will be used to address the four propositions as follows:

P1. A robot simulator is an effective tool for supporting the learning of introductory programming

This proposition will be supported if:

• 75% of novices are awarded either an A or B on the post-workshop programming exercise
• The average score of novices on the in-workshop programming tests is greater than 50%
• 50% of novices rate the robot simulator as an effective introductory programming learning

tool on the post-workshop questionnaire
• All of the teachers interviewed believe the robot simulator is an effective tool for supporting

the learning of introductory programming

P2. A robot simulator improves novice’s perceptions of programming

This proposition will be supported if:

• A comparison between novice’s pre- and post-workshop questionnaire data shows a positive
improvement in regards to participant’s perceptions of programming

• All of the teachers interviewed believe the robot simulator helps to improve novice’s
perceptions of programming

P3. A robot simulator offers a more effective introduction to basic programming concepts when
compared to other teaching methods

This proposition will be supported if:

• 50% of trainees who have previously been taught programming believe their previous
introductory programming learning experience to be less effective than the one using the
robot simulator

• 50% of novices who have previously been taught programming believe their previous
introductory programming learning experience to be less effective than the one using the
robot simulator

• All of the teachers interviewed believe the robot simulator offers a more effective introduction
to basic programming concepts when compared to other teaching methods

P4. A robot simulator improves trainee ICT/Computer Science teacher’s confidence in their ability to
teach introductory programming

This proposition will be supported if:

• A comparison between trainee’s pre- and post-workshop questionnaire data shows a positive
improvement in trainee’s confidence in their ability to teach introductory programming

The in-workshop researcher logs will be used to ensure that any significant incidents or issues which
occur during the study, and could impact upon its findings, are documented according to pre-
determined criteria. The logs will not be used to directly address any of the case study propositions.

6. Plan Validity and Study Limitations
In this section measures which have been taken to ensure the validity of the case study, in addition to
a consideration of potential limitations of the study, are presented.

6.1 Plan Validity

In order to ensure the rigour and reliability of the case study several measures have been taken.
Firstly, as documented in Appendix A, this protocol has been designed after considering Per Runeson
and Martin Höst’s case study design checklist (Runneson and Höst 2008).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 101 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

Secondly, as suggested by Yin (Yin 2009) in order to ensure construct validity, multiple sources of
evidence (pre- and post-workshop questionnaires, in and post-workshop programming tests, in-
workshop researcher log and teacher interviews) and the establishment of a chain of evidence (plans
to make available a database for secondary researchers, the final report to refer heavily to collected
evidence and the protocol procedures to be followed and deviations documented) are to be used.

In regards to internal validity, a pre-identification of potential rival explanations (see Section 5.2)
coupled with the adoption of a data collection and data analysis strategy which actively investigates
these rivals helps to ensure internal validity is established.

As Case 1 and Case 3 participants are aged between 14 and 18 years old, and do not all come from the
same educational institution, it is believed that the results of the study will be generalisable to a
similar demographic of novice programmers. Moreover, despite all Case 2 participants being enrolled
on a Teacher Training Course (PGCE) at Keele University the programming backgrounds of
participants are significantly varied. As such it is considered that the results of the study will be
generalisable to a similar demographic of trainee ICT/Computer Science teachers. As the case study
protocol has undergone expert review, in addition to peer review, the risk of unidentified threats to the
validity of the study are considered to have been minimised.

6.2 Study Limitations
Aside from the programming exercises, other instruments that will be used during the case study will
collect data that is self-reported (i.e. cannot be independently verified and what participants say in
interviews and questionnaires has to be taken at face value). This may lead to sources of bias such as
selective memory and exaggeration. It is intended that the use of open and closed questions (to
avoiding ‘leading’ participants) and reinforcing the anonymous nature of the study will help to reduce
the potential impact of self-reported bias.

Another possible limitation of the case study is that the interviewees and student participants will be
self-selected. Indeed, in Major (Major 2012) it is described how some potential learner participants
chose not to be involved in a study after they were approached. There is a risk that a similar
occurrence during the case study could result in some data being excluded from the final report. By
inviting a broad selection of participants to take part in the research (which in total will number over
65), however, it is predicted that this risk has been minimised.

7. Summary
In this paper a protocol which provides details of a case study that will investigate the use of a robot
simulator as an introductory programming teaching tool has been presented. Such research is being
undertaken as a Systematic Literature Review indicated that this work would be valuable. The
development of a case study protocol in advance of the main study will help to ensure that reliable,
transparent, targeted and rigorous work is performed. Furthermore, potential problems which may
affect the study have been considered and accounted for in advance of its implementation. This
protocol provides background information, details of the planned study design, information about the
strategies for data collection and data analysis in addition to a consideration of factors which could
affect the validity of the study. This protocol may also act as a point of reference for other researchers
interested in performing a case study.

References

ACM/IEEE Interim Review Task Force, 2008. Computer Science Curriculum. ACM/IEEE.

ANSI Standards Committee on Dental Informatics, 2001. Working Group Educational Software
Systems Guidelines for the Design of Educational Software.

Beale, R. and Sharples, M., 2002. Design Guide for Developers of Educational Software. British
Educational Communications and Technology Agency, 1. pp. 1-29.

Page 102 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Becker, B.W., 2001. Teaching CS1 With Karel the Robot in Java. In SIGCSE '01: Proceedings of the
32nd SIGCSE Technical Symposium on Computer Science Education, pp. 50–54. ACM.

Borge, R., Fjuk, A. and Groven, A.K., 2004. Using Karel J Collaboratively to Facilitate Object-
Oriented Learning. In ICALT 2004, pp. 580–584.

Brereton P., Kitchenham B., Budgen D. and Li Z., 2008. Using a Protocol Template for Case Study
Planning. Proceedings of EASE 2008, BCS-eWIC.

Buck, D. and Stucki, D.J., 2001. JKarelRobot: A Case Study in Supporting Levels of Cognitive
Development in the Computer Science Curriculum. In Proceedings of the 32nd SIGCSE
Technical Symposium on Computer Science Education, New York, NY, USA, pp. 16–20. ACM.

Case, J., 2008. Education theories on learning: an informal guide for the engineering education
scholar. Higher Education Academy Engineering Subject Centre, Loughborough University.
Accessed Online: http://hdl.handle.net/2134/9730 (2nd May, 2012).

Enderle, S., 2008. Grape: Graphical Robot Programming for Beginners. In Research and Education in
Robotics EUROBOT, 33, pp. 180–192. Springer Berlin Heidelberg.

Fagin, B., 2003. Measuring the Effectiveness of Robots in Teaching Computer Science. In 34th
SIGCSE Technical Symposium on Science Education, pp. 307–311. ACM.

Kelleher, C. and Pausch, R., 2005. Lowering the Barriers to Programming: A Taxonomy of
Programming Environments and Languages for Novice Programmers. ACM Computer Survey,
37 (2), pp. 83–137.

Klein, H. K. and Myers, M. D., 1999. A set of principles for conducting and evaluating interpretive
field studies in information systems. MIS Quarterly, 23(1):67.

Ladd, B. and Harcourt, E., 2005. Student Competitions and Bots in an Introductory Programming
Course. J. Comput. Small Coll., 20 (5), pp. 274-284.

Lauwers, T., Nourbakhsh, I. and Hamner, E., 2009. CSbots: Design and Deployment of a Robot
Designed For the CS1 Classroom. In Proceedings of the 40th ACM Technical Symposium on
Computer Science Education, New York, NY, USA, pp. 428-432. ACM.

Lee, A. S., 1989. A scientific methodology for MIS case studies. MIS Quarterly, 13(1):33.

Lemone, K.A. and Ching, W., 1996. Easing into C++: Experiences with RoBOTL. SIGCSE Bull., 28
(4), pp. 45-49.

Major, L., 2012. An evaluation of the Advanced Diploma from the Perspective of Staff and Learners.
Research in Post-Compulsory Education. Volume 17, Issue 1, March 2012.

Major, L., Kyriacou, T. and Brereton, O.P., 2011a. Systematic Literature Review: Teaching Novices
Programming Using Robots. In 15th International Conference on Evaluation and Assessment in
Software Engineering (EASE 2011), Durham University, UK, 11 - 12 April 2011. IET. pp. 21-30.

Major, L., Kyriacou, T. and Brereton, O.P., 2011b. Experiences of Prospective High School Teachers
Using a Programming Teaching Tool. In Proceedings of the 11th Koli Calling International
Conference on Computing Education Research (Koli Calling '11), Koli National Park, Finland,
17-20 November 2011. ACM, New York, NY, USA. pp. 126-131.

Major, L., Kyriacou, T. and Brereton, O.P., 2012. Systematic Literature Review: Teaching Novices
Programming Using Robots. In IET Software (To Appear).

Martin, C. and Hughes, J., 2011. Robot dance: edutainment of engaging learning. Proceedings of the
23rd Psychology of Programming Interest Group, PPIG (2011), York, UK, 6-8 September.

McGill, M. M., 2012. Learning to program with personal robots: Influences on student motivation.
ACM Trans. Comput. Educ. 12, 1, Article 4 (March 2012).

McWhorter, W.I. and O'Connor, B.C., 2009. Do LEGO Mindstorms Motivate Students in CS1? In
SIGCSE '09, pp. 438-442. ACM.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 103 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

Patton, M., 2001. Qualitative Research and Evaluation Methods (2nd Edition). Thousand Oaks, CA:
Sage Publications. p. 553.

Robson, C., 2002. Real World Research (2nd Edition). Blackwell.

Rosnow, R. and Rosenthal., R., 1997. People studying people - Artefacts and Ethics in Behavioural
Research. W.H. Freeman and Co, New York.

Runeson, P. and Höst, M., 2009. Guidelines for conducting and reporting case study research in
software engineering. Empirical Softw. Engg. 14 (2), pp. 131-164.

Runeson, P., Höst, M., Rainer, A. and Regnell, B., 2012. Case Study Research in Software
Engineering: Guidelines and Examples (1st Edition). Wiley.

Sartatzemi, M., Xinogalos, S. and Dagdilelis, V., 2003. An Environment for Teaching Object-
Oriented Programming: objectKarel. In Proceedings of ICALT 2003, pp. 342-343.

Squires, D. and Preece, J., 1999. Predicting quality in educational software: Evaluating for learning,
usability and the synergy between them. Interacting with Computers, 11 (5), pp. 467-483.

TIOBE Programming Community Index for April 2012. Accessed Online:
http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (24th August, 2012).

Yin, R.K., 2000. Rival explanations as an alternative to reforms as experiments. In L. Bickman (Ed.)
Validity and social experimentation: Donald Campbell’s legacy. Thousand Oaks, CA : Sage.

Yin, R. K., 2009. Case Study Research: Design and Methods (4th Edition). Sage.

Appendix A: Case Study Design Checklist

Item Checklist Question Comments

1 What is the case and its units of analysis? See Section 3 ‘Design’
2 Are clear objectives, preliminary research

questions, hypotheses defined in advance?
One main research question (see Section 3.1) and several
propositions (see Section 3.2) have been outlined

3 Is the theoretical basis - relation to existing
literature or other cases - defined?

Results of a previously completed SLR (Major et al
2011a, Major et al 2012) provide the basis for this study

4 Are the authors’ intentions with the research
made clear?

The purpose of the study is to determine whether a robot
simulator is an effective tool for supporting the learning
of introductory programming (see Section 3.1 ‘Aim’)

5 Is the case adequately defined (size, domain,
process, subjects…)?

See Section 3 ‘Design’

6 Is a cause–effect relation under study? Is it
possible to distinguish the cause from other
factors using the proposed design?

See Section 5.2 ‘Rival Explanations’ and Section 6.1
‘Plan Validity’

7 Does the design involve data from multiple
sources (data triangulation), using multiple
methods (method triangulation)?

The case study design involves collecting multiple forms
of data using multiple data collection methods (as detailed
in Section 4 ‘Data Collection’). Collected data will be
triangulated as outlined in Section 5 ‘Analysis’

8 Is there a rationale behind the selection of
subjects, roles, artefacts, viewpoints, etc.?

Yes. This is described throughout the protocol document

9

Is the specified case relevant to validly
address the research questions

Expert and peer review of the protocol, use of multiple
sources of evidence and the establishment of a chain of
evidence help to overcome potential issues with construct
validity

10 Is the integrity of individuals/organisations
taken into account?

This factor is recognised in Section 3.6 ‘Ethical
Considerations and Participant Code Numbers’

Page 104 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Observing Mental Models in Novice Programmers

Richard Bornat1, Saeed Dehnadi1 and David Barton2

R.Bornat@mdx.ac.uk, S.Dehnadi@mdx.ac.uk, bartond@trinityhigh.net
1School of Science and Technology, Middlesex University, London, UK;

2Redditch Trinity High School, Redditch, UK

Abstract. A test which partitions subjects into those who appear to use an algorithmic model of
program execution and those who do not has been automated. Experiments have been conducted
in a UK school with a year cohort of students aged 13-14 and in a Mexican university with a
cohort of novice computer scientists. In the school about a third of subjects appeared to use an
algorithmic model, which we find surprisingly many; in the university there were around half in the
same category, which is in line with university results in the UK. Operation of the online test and
the analysis tool is described. Interviews with subjects in the school revealed some ways in which
the algorithmic classification may be expanded. End-of-course results are not yet available for the
test subjects, so statistical associations have not yet been explored.

1 Background

Dehnadi (2006, 2009) observed that some novices confronted by simple programming exercises
give rational but incorrect answers. Their answers are algorithmically plausible though not
always orthodox: for example, they might assign the value of a variable from left to right rather
than right to left, or move a value in an assignment rather than copy it. He devised a test made
up of questions about assignment and sequence programs, delivered to novice programmers
without giving an explanation of the questions; those who consistently gave algorithmically-
plausible results were significantly more likely to pass the end-of-course examinations than
those who did not. Dehnadi et al. (2009) summarise the results of his experiments, applied to a
large number of students in a wide range of universities in the UK, showing that consistent use
of an algorithmic model is not simply the result of background programming experience, and
that by contrast such experience on its own has little or no effect on success in the end-of-course
examination; it also gives references to and discussion of previous related work.

Robins (2010) took note of Dehnadi’s results, and hypothesised that learning to program
is difficult because courses present a sequence of topics, each strongly supporting the next. If
a student fails to understand one topic, then the next becomes far more difficult. In statistical
simulations he showed that quite weak topic-on-topic dependencies produce strongly bimodal
course results, a ubiquitous effect in first courses in programming which is otherwise hard to
explain. It seems likely that Dehnadi’s test quantifies a cognitive obstacle which trips up many
students early on in their first programming course. We hypothesise (at this stage without ex-
perimental confirmation) that many novices find it difficult at first to understand that machines
act utterly formally, without considering the consequences and without intention.

Ford and Venema (2010) administered Dehnadi’s test to a course cohort after the course
examination. Only 50% of those who passed the course could answer the multiple-assignment
questions using the correct programming-language model. This opened up a new way of using
the test, as a measure of successful learning in supposed practioners.

We want to administer Dehnadi’s test more widely, in schools as well as in universities,
and to administer it in non-English-speaking countries. To do so we decided to construct an
automated version.

2 An online test

Dehnadi’s test was paper-based, which made it difficult and expensive to administer – all the
test cohort had to be gathered, examination-style, in the same room at the same time – and

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 105 of 192

expensive to assess – he had to read every test script and apply a fairly intricate algorithm to
come to a judgement of ‘consistency’ or ‘inconsistency’.

We had hoped to be able to integrate the test into one of the widely-used ILEs (Interactive
Learning Environments) such as Blackboard or Moodle, so that teachers could easily administer
it as part of the normal course activity, could receive data on performances of the individuals
and groups, and could easily correlate the test results with course results. We would also avoid
difficult questions about data protection by operating entirely inside the ILE firewall. But
the question format of the ILEs we looked at were unhelpful, and none of them were able to
implement the subtleties of the assessment algorithm (see section 2.1).

int a = 10; int b = 20; a = b;

int a = 10; int b = 20; b = a;

int big = 10; int small = 20; big = small;

int a = 10; int b = 20; a = b; b = a;

int a = 10; int b = 20; b = a; a = b;

int a = 10; int b = 20; int c = 30; a = b; b = c;

int a = 5; int b = 3; int c = 7; a = c; b = a; c = b;

int a = 5; int b = 3; int c = 7; c = b; b = a; a = c;

int a = 5; int b = 3; int c = 7; c = b; a = c; b = a;

int a = 5; int b = 3; int c = 7; b = a; c = b; a = c;

int a = 5; int b = 3; int c = 7; b = a; a = c; c = b;

int a = 5; int b = 3; int c = 7; a = c; c = b; b = a;

Fig. 1. Dehnadi’s test questions

We had already developed a program which could generate the paper version of Dehnadi’s
test from a textual description such figure 1, using a formal description of each of his models to
generate the answers and producing LATEX code for the question and answer sheets. We took
the output of the program and transcribed it into SurveyMonkey (SurveyMonkey, 2012). Each
question was coded as a multiple choice; subjects could tick as many responses as they wished;
there was a text box to enter alternative answers. A sample question is shown in figure 2. There
were some difficulties in the transcription, so to improve accuracy we modified the generator
program to produce also a text file that could be pasted, piece by piece into SurveyMonkey to
produce an exact version of the test. Question answers are presented in a randomised order by
the SurveyMonkey mechanism, in order to avoid the questionnaire bias which might arise if the
same model appeared in the same answer-position in each question.

2.1 Analysing the output

SurveyMonkey can generate a CSV (comma-separated values) output of survey responses, each
line of the output corresponding to one session with a particular subject. Our generator pro-
gram was modified to analyse this output, applying a version of Dehnadi’s original assessment
algorithm (Dehnadi, 2006, 2009). Mental models are made up of an assignment model (one of
M1-M11, each describing the action of a single assignment statement) and a sequence model
(one of S1-S3, each describing the action of a number of assignments written one after the
other). Each mental model determines an answer to each question, which can be a tick in a
single box or in several boxes. In all but the first three single-assignment questions there are
many responses – sets of ticks – which are ambiguous in their interpretation.

To resolve this ambiguity Dehnadi had used a marksheet (figure 3) with a column for each
assignment model. An ambiguous answer marked all the columns whose assignment model
generated that answer. Marks were notionally in pencil. Then marks in the column with the
most ticks were notionally inked, and ‘consistency’ in answering the test was judged as follows:

Page 106 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Fig. 2. One of Dehnadi’s test questions in SurveyMonkey

Participant

code

Age Sex Time to do

test

Prior programming A-Level/s Prior programming

courses

Course result

Assignment
No

effect

Equal

sign

Swap

values

Assign-to-left Assign-to-right
Add-Assign-to-

left

Add-Assign-to-

right
Questions

Lose-

value

(M1)

/Ss / I

Keep-

value

(M2)

/Ss / I

Lose-

value

(M3)

/Ss / I

Keep-

value

(M4)

/Ss / I

Keep-

value

(M5)

/Ss / I

Lose-

value

(M6)

/Ss / I

Keep-

value

(M7)

/Ss / I

Lose-

value

(M8)

/Ss / I

Values

don't

change

(M9)

/ S

Assign

means

equal

(M10)

/ S

Swap

values

(M11)

/Ss / I

Remarks (including participants’

working notes)

1

2

3

4

5

6

7

8

9

10

11

12

C0

C1

C2

C3

Additional notes:

s.dehnadi@mdx.ac.uk r.bornat@mdx.ac.uk Simon@newcastle.edu.au

Fig. 3. Dehnadi’s marksheet

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 107 of 192

1. A response with six inked marks in the same column for Q1-Q6 (single and double assign-
ment) was judged consistent.

2. Otherwise, a response with 8 or more inked marks in the same column was judged consistent.
3. Otherwise, a response with fewer than 8 marked rows (two-thirds of questions) was judged

blank.
4. Otherwise, the response was judged inconsistent.

Note that the assessment ignored the subject’s use of sequence models, because of the difficulty of
analysing the test results on paper. Note also that ‘consistency’ is an abbreviation for ‘consistent
use of a recognised rational mental model’: Dehnadi was not judging a psychometric attribute
of the subject, but rather a particular characteristic of their test performance.

The analysis tool uses a similar algorithm, but takes account of the use of sequence models to
refine its judgements. Each subject’s answer to each question is a set of ticks (write-in answers
are converted to ticks of imaginary boxes with that answer). The first three questions don’t
require a sequence model, so answers to those questions are interpreted ambiguously as using
any one of the sequence models. Rather than using ‘consistent’ and ‘inconsistent’, which can be
misinterpreted, it makes judgements ‘Algorithmic’ and ‘Unrecognised’.

Each question-response – a set of ticks – corresponds to a set of mental models, use of
any of which will generate that response. The tool looks for the mental model which appears
most often in the responses over the whole test (by analogy with Dehnadi’s ‘inking’ step). If
a single model is used in each of the first six questions, the response is judged ‘Algorithmic
(first 6)’; otherwise a single model used eight times gives ‘Algorithmic overall’. This is a harsher
assessment scheme than Dehnadi’s because, for example, a subject who uses M2+S1 in four
questions and M2+S2 in four others would not be judged Algorithmic, though Dehnadi would
have labelled them ‘consistent’: so there’s a lesser judgement ‘Possibly algorithmic’, assessed by
considering only the assignment model and ignoring the sequence models used. There is also a
judgement ‘No change’ applied to those who simply ticked the values from the original state
(Dehnadi would have judged them ‘consistent’ using model M9).

3 A first experiment

We applied the test to 126 school students in an ‘academy’1 at the end of year 9 (ages 13-14).
These students had been exposed to programming with MIT Scratch (MIT, 2007) and to ICT
tools such as Microsoft Office (Microsoft, 2012). The analysis of their responses is shown in
table 1.

Table 1. School experiment

Algorithmic Possibly algorithmic Unrecognised No change Blank
overall first 6 overall first 6

42 2 4 0 70 5 3

Although these students were not complete novices, they had not been exposed to any notion
of assignment, hardly at all to sequence, and not at all to formal programming notation. In
fact most judged Algorithmic used the sequence model S3, in which assignments are executed
in parallel. They were a complete year cohort, not a group self-selected for their interest in
programming. In undergraduate novice computer scientists we have typically seen 50% or more
judged algorithmic; we were surprised to find that as many as a third of these school students
appeared to use an algorithmic model in 8 out of 12 questions, and that almost none had
answered fewer than 8 questions.

1 A state-funded school with a comprehensive – non-selected – intake and a state-approved aspirational agenda
for its pupils.

Page 108 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Because the test was marked by a program, we could analyse the responses in minutes and
review the judgements immediately. The school allowed us to interview some subjects on the
afternoon of the day they took the test, some selected by them and some selected by us. The
school’s selection included both Algorithmic and Unrecognised subjects, in each group some
who their teachers had expected to be placed there and some surprises. We picked out some
more Algorithmic and Unrecognised individuals, and in the time we had left we tried to select
at random from the students in the classroom. Overall we interviewed about fifteen subjects,
out of 40 who had taken the test that morning.

We found that every interviewed student judged Algorithmic, prompted only by the question
“what did you think was happening?”, reported use of the mechanism identified by the analysis
tool. Three of those judged Unrecognised reported something new to us: two seemed to have
switched models mid-test, and one seemed to be using two models at the same time, reporting
both answers. Some other Unrecognised students answered that question with a shrug, and we
hadn’t enough time to probe their thinking.

The analysis tool was refined to try to pick up the sequential and concurrent model users.
Observation of the data showed that some subjects had ticked all or almost all the answer boxes
in each question, and a judgement ‘Ticked everything’ was applied to them: we feel that those
responses are a kind of protest, more Blank than Unrecognised. It was also possible to see that
some students appeared to be algorithmic in 6 out of the last 9 questions (double and triple
assignments). The refined analysis is shown in table 2. The drop in ‘Algorithmic overall’ is due
to a decision to demote consistent use of the Equality model to ‘Possibly algorithmic’; other
changes are due to introduction of new judgements.

Table 2. School experiment (refined analysis)

Algorithmic Possibly algorithmic Unrecognised No Ticked Blank
overall first 6 last 9 sequential concurrent overall first 6 last 9 change everything

39 2 7 7 1 5 0 2 54 5 3 3

Dehnadi’s marksheet assessment would have reported 48 ‘consistent’; the tool reports 46 in
the corresponding columns ‘Algorithmic overall’, ‘Algorithmic (first 6)’, ‘Possibly algorithmic
(overall)’ and ‘Possibly algorithmic (first 6)’. It has spotted 6 rejections where the marksheet
algorithm would have had 3, though a human marker would surely have noted the ‘Ticked
everything’ responses at least informally as rejections.2 It has demoted 3 ‘consistent’ responses
to ‘No change’ and recognised two ‘inconsistent’ responses as the same thing.

Some of the new judgements may or may not correlate with success in the course examina-
tion. The ‘Algorithmic (sequential)’ category is small but may prove interesting; the ‘Algorithmic
(concurrent)’ category may be an artefact of looking too hard. So may the ‘first 6’ and ‘last 9’
judgements. ‘last 9’ is especially problematic in this experiment: inspection of the tool’s output
showed that one way to produce it was to tick the same answer in each of the last six questions,
an aspect of questionnaire bias that we hadn’t previously noted. The generation/analysis tool
has already been modified to check tests for that particular bias so that in future experiments
we don’t provoke such opportunistic behaviour.

4 A second experiment

LimeSurvey (Limesurvey, 2012) is an open-source tool which provides a very similar mechanism
to SurveyMonkey but also allows direct input of survey descriptions. Although the copy-and-

2 Dehnadi didn’t see of that kind of response in his experiments. It may be that school students are more
rebellious than undergraduates and college students, or it may be a consequence of online administration of
the test. At the time of administration the analysis tool didn’t generate this judgement, so we weren’t able to
interview any of the corresponding subjects.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 109 of 192

Table 3. Mexican experiment (refined analysis)

Algorithmic Possibly algorithmic Unrecognised No Ticked Blank
overall first 6 last 9 sequential concurrent overall first 6 last 9 change everything

44 2 7 3 1 3 0 3 20 1 0 8

paste mechanism of SurveyMonkey allows accurate transcription of test questions and answers,
it is somewhat tedious, and SurveyMonkey requires payment in order to support a test with
as many questions as Dehnadi’s together with administrative questions such as ‘what is your
name’, auxiliary questions such as ‘have you programmed before’, and so on. We modified the
generator tool to generate an XML file describing the test to LimeSurvey (still using the original
test as in figure 1, because we hadn’t at that time recognised the ‘last 9’ questionnaire bias).
Edgar Cambranes-Martinez of the University of Sussex translated its English texts into Spanish.
This Spanish version was tried out on 92 students from a university novice computer science
cohort in Mexico.

Analysis of the results is in table 3. This result is like Dehnadi’s results (Dehnadi, 2009) in
UK universities: 49, or just over half, would have been judged ‘consistent’ by him (Algorithmic
or Possibly algorithmic, overall or first 6). The ‘Algorithmic (sequential)’ category is present,
as in the first experiment, but proportionally a little smaller in this case (3/93 rather than
7/126). Most of the other categories are populated too, but we note that there were no ‘Ticked
everything’ protests.

5 The benefits of interviewing

The statistical association of ‘consistent’/‘inconsistent’ judgements in Dehnadi’s test with suc-
cess/failure in the course examination is highly significant. But viewed as a predictor of success
or failure in the course examination the test doesn’t do so well (Bornat et al., 2008). Less than
20% of his ‘consistent’ subjects fail, which makes ‘consistency’ look like quite a good predictor
of success, but over 40% of ‘inconsistent’ subjects pass, which makes ‘inconsistency’ not such a
good predictor of failure (see (Dehnadi et al., 2009), table 9). Those ‘false negatives’ are clearly
very interesting.

It was always clear that Dehnadi’s experiments were incomplete without interviews with
both kinds of subjects. We have so far carried out only a very few very unstructured interviews
under difficult conditions, but we immediately saw that there were some previously unrecognised
ways of answering the test with an algorithmic mindset. So far those categories which we have
recognised and can pick out from the data with an analysis tool cover few subjects, but we
expect that more careful interviewing of more subjects judged Unrecognised will refine our
analysis still further.

In the school experiment, almost all of the subjects placed in one of the algorithmic cat-
egories were those expected to do well by their teachers, but our tool also picked out some
others. From the 40 that were tested during our visit the tool spotted four of these surprises:
each one on interview reported use of the model the tool had identified. The teachers were
delighted because they had an opportunity to congratulate students who didn’t otherwise get
much encouragement, and the students were gratified.

In at least one case an interview revealed a novel description of an algorithmic model. It was
unfortunately impossible to explore that description further at the time. Future experiments
will certainly try to explore subjects’ descriptions in depth.

One surprise in our interviews was that at least one student, although judged Unrecognised,
is keen to learn programming, but only if it has nothing to do with ICT. We were able to assure
him that it doesn’t, but we don’t yet know if he will be successful.

Page 110 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

6 Conclusions and further work

Now that we have an online test and an automatic analysis tool, it is much easier to conduct
an experiment and to analyse its result. The analysis tool has already shown us some ways in
which the test can be improved (removal of one kind of questionnaire bias) and can recognise
some new groups who seem to be responding algorithmically. It remains to be seen how closely
its judgements align with course success.

The most striking result from the two experiments we have conducted with the new tools
is that interviewing subjects soon after test administration is very illuminating. We expected
to find something, but not so much, so soon and so easily. We intend to do very much more
interviewing in future experiments.

Interviews can do much more than tell us if our tools are getting the ‘right’ result. We want
to know why subjects who aren’t recognised as algorithmic by the tools answer as they do,
because we are interested in understanding the obstacle to learning which the test has begun to
quantify. We haven’t so far been able to conduct interviews which probe in that way: certainly,
short interviews with apparently un-algorithmic school students were unproductive.

7 Acknowledgements

We are grateful to the staff of Trinity High School, Redditch, for allowing us to test their
students, and to the students for their good-humoured cooperation. We are grateful to Edgar
Cambranes-Martinez for assistance in translating the test into Spanish, and for administering
the test in Mexico.

References

Richard Bornat, Saeed Dehnadi, and Simon. Mental models, consistency and programming apti-
tude. In Simon and Margaret Hamilton, editors, Tenth Australasian Computing Education Confer-
ence (ACE 2008), volume 78 of CRPIT, pages 53–62, Wollongong, NSW, Australia, 2008. ACS. URL
http://crpit.com/confpapers/CRPITV78Bornat.pdf.

Saeed Dehnadi. Testing Programming Aptitude. In P. Romero, J. Good, E. Acosta Chaparro,
and S. Bryant, editors, Proceedings of the PPIG 18th Annual Workshop, pages 22–37, 2006. URL
http://www.ppig.org/papers/18th-dehnadi.pdf.

Saeed Dehnadi. A Cognitive Study of Learning to Program in Introductory Programming Courses. PhD thesis,
Middlesex University, 2009.

Saeed Dehnadi, Richard Bornat, and Ray Adams. Meta-analysis of the effect of consistency on success in
early learning of programming. In PPIG ’09: Proceedings of the 21st Annual Workshop of the Psychology of
Programming Interest Group, 2009. URL http://www.ppig.org/papers/21st-dehnadi.pdf.

Marilyn Ford and Sven Venema. Assessing the Success of an Introductory Programming Course. Journal of
Information Technology Education, 9:133–145, 2010.

Limesurvey. Website, 2012. URL http://www.limesurvey.org.
Microsoft. Office website, 2012. URL http://office.microsoft.com.
MIT. Scratch, 2007. URL http://scratch.mit.edu/.
Anthony Robins. Learning edge momentum: A new account of outcomes. Computer Science Education, 20(1):

37–71, 2010. doi: 10.1080/08993401003612167.
SurveyMonkey. Website, 2012. URL http://www.surveymonkey.com.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 111 of 192

Investigating the role of programmers’ peripheral vision:
a gaze-contingent tool and an experiment proposal

Roman Bednarik
University of Eastern Finland

roman.bednarik@uef.fi

Paul A. Orlov
St.Petersburg State Polytechnical University

paul.a.orlov@gmail.com

Keywords: eye tracking, programming, perceptual span, experiment proposal

Abstract

Previous research of visual attention in programming has shown differences in how expert and novice
programmers attend to the available information. What has not been yet sufficiently investigated is the
degree with which the information is sampled by the peripheral vision during programming. Such
issues have been investigated by a contingent-window paradigm in other domains and we have thus
developed a tool allowing such studies in programming. In this paper, we introduce the tool and a
proposal for an experiment we plan to conduct.

1. Visual attention in programming

Computer programmers typically develop software using highly dynamic, integrated development
environments (IDE). These tools often present information in adjacent windows that provide multiple
representations about the software. One line of psychology of programming (PoP) research employs
so called contingent window paradigm to investigate how programmers coordinate the representations
during comprehension and debugging (Romero et al., 2002).

Other studies have employed eye-tracking as a proxy to visual attention during programming. Since
Crosby and Stelovsky’s 1990 seminal paper (Crosby and Stelovsky, 1990), a body of knowledge
about attention in programming has been growing, indicating that expertise in programming is
characterized by distinct patterns of visual attention (Bednarik, 2012). For example, expert
programmers employ a wider range of strategies during debugging with multiple representations
(Bednarik, 2012) that develop over time (Bednarik and Tukiainen, 2008), they attend to beacons
(meaningful areas of code) (Crosby and Stelovsky, 1990), and attend to output more often than
novices during debugging (Hejmady and Narayanan, 2012).

Beyond single user studies, recent developments in dual eye tracking methodology allowed expansion
of eye tracking programming studies to multiple user situations (Jerman et al., 2012). Jermann and
Nüssli (2012) conducted a study in which pairs of programmers collaboratively comprehended source
code while their visual attention was captured using an eye-tracker. They found that programmers’
attention is often coupled and this coupling increases during code selection episodes accompanied by
speech. Bednarik et al. (2011) transferred the point of gaze of an expert programmer to the display of
novice programmers while explaining an algorithm. They showed that the attention of the novice
programmers was more similar when the gaze of the expert was shown, but that had no effect on the
comprehension outcome.

An area deserving a deeper investigation in PoP is the role of visual attention beyond the fixation
point. In other domains, such as in reading, the perceptual span - the breadth of attention surrounding
the point of gaze - plays a significant role during stimuli processing. The size of perceptual span
directly influences the spread of covert attention during scanning of stimuli, and thus mediates
performance. In search, for instance, the span varies depending on the difficulty of the distractor.

In programming, we hypothesize, wider perceptual span provides (expert) programmers faster and
more effective navigation in source code and better information extraction in coordination of various
representations. Further, we conjecture, compound and more difficult expressions have effect on
perceptual span and the difficulty again interacts with expertise.

Page 112 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

2

2. Perceptual span and Gaze contingent moving window paradigm

For most of the awaken time human’s vision fixates objects. Fixations, the relatively stable
movements of the eyes when perception is turned on, typically last about 300ms. Saccades, on the
other hand, are rapid ballistic movements lasting no more than tens of milliseconds during which
perception is virtually shut down. While fixations are required for perception to happen, there is a
question about the size of the perceptual area around the center of fixation within which detailed
information can still be sampled without an additional eye movement. Dodge suggested calling this
area a fixation zone (Dodge, 1907).

In his research of the perceptual span in reading, Rayner discovered that the size of perceptual span is
not constant but varies as a function of text difficulty. The size of the span decreases when text is
difficult to read (Inhoff et al., 1989; Rayner, 1986). Rayner also suggested that the visual field can be
divided into three regions: foveal, parafoveal and peripheral. Although acuity is very good in the
fovea (the central 2° of vision), it is not nearly as good in the parafovea (which extends out to 5° on
either side of fixation), and it is even poorer in the periphery (the region beyond the parafovea)
(Rayner, 1998). Studies by Gippenreiter (1964) shown that participants recognize objects positioned
10-15° from the center of fixation. The perception of the peripheral signal occurred simultaneously
with the preparation of the saccade, when the eye was still on the fixation point (Gippenreiter, 1964).

Several methods have been developed in past to evaluate the breadth of attention, many of which fall
under the category of moving window paradigm. One of the most prominent techniques to investigate
the role of perceptual span under this paradigm is gaze-contingent multiresolutional display
(GCMRD) (Reingold, Loschky et al., 2003). Such systems combine eye-tracking and a stimulus so
that the center of fixation is determined by an eye-tracker and the current fixation areas on the
stimulus are rendered in sharp focus while the rest of the stimuli is blurred. The properties of the
focused area can be contingent on the characteristics of the fixation, for example, longer fixations
cause the focused area to be enlarged.

There are numerous applications for GCMRD systems, such as in resource-demanding graphics
environments to allow for efficient 3D rendering and modeling, and in video and image compression
methods. The following lists some of the main issues that arise when constructing GCRMD systems
(Reingold, Loschky, et al., 2003):

 Can we construct just undetectable GCMRDs that maximize savings in processing and
bandwidth while eliminating perception and performance costs?

 What are the perception and performance costs associated with removing above-threshold
peripheral resolution in detectably degraded GCMRDs?

 What is the optimal resolution drop-off function that should be used in guiding the
construction of GCMRDs?

 What are the perception and performance costs and benefits associated with employing
continuous vs. discrete resolution drop-off functions in still vs. full-motion displays?

The range of applications of GCMRD extends beyond restricting views and bandwidth savings. For
instance, intelligent interfaces can make use of gaze-contingent zooming, where the available
information about the object increases with the proximity of attention to the object. One example of
measuring attention in similar systems builds on face-detection algorithms. The closer a person is to
the monitor, the higher level of attention and the higher level of detail are employed. The amount of
information depends on the distance of the human face of the monitor (Harrison, Dey, 2008).

3. Gaze-contingent moving window in PoP

In programming research, the gaze-contingent window paradigm has previously been employed in a
series of studies of Romero et al.. As an alternative to gaze-contingency, the authors employed the
Restricted Focus Viewer (RFV) (Jansen et al., 2003). RFV emulates gaze-contingency by mouse-
contingency in such a way that a user controls the position of the only focused area on the screen

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 113 of 192

3

using the computer mouse. The movements of the mouse are recorded and are supposed to be the
estimates of the point of gaze in time. In a replication study Bednarik and Tukiainen (2007) however
demonstrated that in programming such assumption does not hold, and in addition, the restriction
interferes with natural strategies.

One explanation of the findings is that programmers do need to use the peripheral information for
some purposes, and when the periphery is masked, the performance decreases because peripheral
information is not available directly. Thus, a question arises concerning the role of periphery and size
of perceptual span in programming. Bednarik and Tukiainen reported that when using RFV,
programmers glanced towards the blurred areas and that the contingency had slightly different effects
depending on expertise.

Their study does not provide an answer why the programmers perform in this way. A hypothesis to
investigate is whether expert programmers are better able to extract parafoveal and peripheral
information without moving the eyes and when the cost of accessing the information increases
because of blurring, they need to perform extra eye-movements.

There are numerous questions spanning from the notion of role of the perceptual span that need to be
investigated to provide a qualified answer. What is the size of perceptual span of a programmer? Is
there a relationship between expertise and size of perceptual span? How do changes to the size of the
visible area influence behavioral patterns of programmers? Would limiting the perceptual span for
novice programmers have detrimental or positive effects on performance?

These questions determine the objectives of the research planned here. Answers to the above
questions will not only help in understanding the role of attention in programming, but could also will
be useful when asking what effects expertise in programing has on visual attention skills.

In the rest of this paper, we present a study proposal to investigate the role of perceptual span in
programming and a tool allowing GCMRD in programming.

4. Objectives and Methods of the planned research

The primary goal of the study is to determine the role of visual attention span in programming. We
aim to conduct studies and test hypotheses about the influence of the perceptual span area on the
behavioural patterns of programmers. To achieve this goal it is necessary to set up a number of
experiments.

We put forward the following working hypothesis:

 The pattern of gaze of programmers when working with a restricted window IDE would be
different to the pattern of gaze without blurring, dependent on the expertise of the programmer
and task at hand.

We aim to answer the hypothesis by running a series of studies in which participants of distinct
expertise would be engaged in various tasks such as comprehension and debugging. We will
systematically modify the size of the contingent window. The dependent measures of the studies
would include debugging and comprehension performance, task difficulty index, and eye-tracking
measures.

The following section describes the design of the gaze contingency tool developed for the planned
studies.

5. Gaze contingent IDE

To test the hypotheses it is necessary to first create an appropriate research framework. To our
knowledge, existing solutions such as RFV do not allow unrestricted stimuli presentation and thus we
decided to develop an extension with such functionality by ourselves.

We began developing the platform adhering to the following requirements:

Page 114 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

4

 The system has to be able to serve as a standard software development tool in Java
programming language.

 The source code in the editor panel will be blurred except for an area whose center is defined
by a direction of programmer gaze.

 The transition from focused to blurred areas should be gradually smoothed.

 All movements of the focused area should be logged along with all source code elements that
were at the point of fixation.

To satisfy the first requirement, we selected NetBeans as the experimental environment.
Implementation of the source editor window blurring was carried out with the help UI library
SWING. We have overridden the render method so the whole image on the screen was blurred. It was
decided that the method of implementation of the blur will be based on a combination of pre-prepared
maps of the gradient and the current image. This allows modifying the gradient map in a graphics
editor or using programming. Changing the map scale is possible too, as well as affine mapping that
allows using any 2D image as a gradient map. A screenshot of the application is shown in Figure 1.

Figure 1. Screenshot of the experimental application.

The figure shows that the source editor window is blurred (and washed and line numbers and vertical
scrolling, and color tips for scrolling). The sharp zone is shown only at the fixation point.

Developing of the logging mechanism for source code elements that have hit the point of fixation was
carried out also by using the SWING library. The position on the screen indicates the corresponding
substring in the source code. After that, when we find the substring, we use a Java parser to detect the
type of substring. Such information can further be used for modifying the contingency, for example,
only certain elements or types of stings could be rendered in full, responding immediately to the user's
input. As a result, the output log files are similar the following example (Table 1):

Dot Expression Kind Time File
385 noFill METHOD 1348066278437 MyBall.java
385 noFill METHOD 1348066278437 MyBall.java

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 115 of 192

5

… … … … …
238 points FIELD 1348066278721 MyBall.java
433 strokeWeight METHOD 1348066279859 MyBall.java
621 Math CLASS 1348066280619 MyBall.java
… … … … …

627 sin METHOD 1348066281232 MyBall.java
633 Math.sin((float) NONE 1348066281421 MyBall.java

Table 1. – log file example.

In this fragment, the "Dot" field corresponds to the caret location in the text file of source code,
"Expression" is the substring in user’s focus. The "Kind" column contains the type of substring which
is obtained from JavaSource parser, "Time" is a precise timestamp of the fixation and "File" is the
name of the opened source file. We will employ the logs for analysis of the visual attention patterns
during navigation in the source code. A demonstration video can be found online at
http://vimeo.com/49874161.

5. Future gaze-contingent IDEs

The phenomena of perceptual span and peripheral vision are not only of theoretical interests. They
may be incorporated into the solutions of important practical HCI problems such as design of
graphical user interfaces in general and software development interfaces in particular. Designers of
interactive user interfaces wish to display information to the users so that it is attended, processed and
used in the right time. Information about what information is processed and when thus contributes to
better designs of interactive systems.

We wish to expand the debate about visual attention in programming by discussing the role of
perceptual span and peripheral vision. We presented a gaze-contingent extension to a commonly used
programming tool and an outline of studies to investigate its effects in programming tasks. Further
steps include refining the experimental design and executing the study.

5. References

Bednarik, R.(2012) Expertise-dependent Visual Attention Strategies Develop Over Time During
Debugging with Multiple Code Representations. International Journal of Human - Computer
Studies 70, pp. 143-155.

Bednarik, R., Tukiainen, M.(2008) Temporal eye-tracking data: Evolution of debugging strategies
with multiple representations. In Proc. ETRA Symposium, 99-102

Crosby, M. E., Stelovsky, J. (1990) How do we read algorithms? A case study. IEEE Computer 23, 1,
24–35.

Dodge, R.(1907) On experimental study of visual fixation.-"Psychol.Monogr.", v.35, p.95.

Gippenreiter J.B. (1978) Movements of the human eye. Monography, Moscow, pub. Moscow
University, 256p.

Harrison Chris, Anind K. Dey.(2008) Zoom: Proximity-Aware User Interface and Content
Magnification. CHI 2008 Proceedings I am here. Where are you? April 5-10, Florence, Italy.

Hejmady, P., Narayanan, H. N.(2012) Visual attention patterns during program debugging with an
IDE. In Proceedings of the Symposium on Eye Tracking Research and Applications (ETRA '12),
Stephen N. Spencer (Ed.). ACM, New York, NY, USA, 197-200.

Inhoff, A. W., Pollatsek, A., Posner, M. I., & Rayner, K. (1989). Covert attention and eye movements
during reading. Quarterly Journal of Experimental Psychology, 41A, 63-89.

Page 116 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

6

Jansen, A. R., Blackwell, A. F., & Marriott, K. (2003). A tool for tracking visual attention: The
Restricted Focus Viewer. Behavior Research Methods, Instruments, & Computers, 35, 57-69.

Jermann, P., Nüssli, M. (2012) Effects of sharing text selections on gaze cross-recurrence and
interaction quality in a pair programming task. In Proceedings of the ACM 2012 conference on
Computer Supported Cooperative Work (CSCW '12). ACM, New York, NY, USA, 1125-1134

Jermann, P., Gergle, D., Bednarik, R., Brennan, S.(2012) Duet 2012: dual eye tracking in CSCW. In
Proceedings of the ACM 2012 conference on Computer Supported Cooperative Work Companion
(CSCW '12). ACM, New York, NY, USA, 23-24

Rayner K. (1998) Eye Movements in Reading and Information Processing: 20 Years of Research.
Psychological Bulletin 1998, Vol. 124, No. 3, 372-422

Reingold E. M., Lester C. Loschky, George W. McConkie, David M. Stampe. (2003) Gaze-Contingent
Multiresolutional Displays: An Integrative Review. HUMAN FACTORS, Vol. 45, No. 2 pp. 307-
328.

Romero, P., Lutz, R., Cox, R., Du Boulay, B. (2002) Co-ordination of multiple external
representations during Java program debugging. In HCC ’02: Proceedings of the IEEE 2002
Symposia on Human Centric Computing Languages and Environments (HCC’02), IEEE
Computer Society, Washington, DC, USA, 207.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 117 of 192

Learning Programming by using Memory Transfer

Language (MTL) without the Intervention of an Instructor

Leonard J. Mselle

Dpt. Computer Science

School of Informatics and Virtual Education

University of Dodoma

Mselel@yahoo.com

Keywords: Program visualization, Memory Transfer Language, program parsing.

Abstract

Visualization as a technique used to teach programming is gaining momentum. Memory Transfer Language

(MTL) is a programmer-driven visualizer used to learn programming. This article reports on results obtained from

a class experiment where MTL was used by non-novices to learn programming. The experiment was carried out

to test the effectiveness of MTL in assisting students to learn programming (in a second language) without the

intervention of a teacher. Results between the experimental and control group revealed that the group that studied

programming using MTL without teachers’ intervention performed better than the group that studied

programming using conventional approach.

1. Introduction

Since at least the 1980s, computer science education researchers have searched for ways computer science

teachers can better support their students (Du Boulay et al. 1981), (Du Boulay 1986). Recently, program

visualization in the form of algorithm animations has yielded positive results (Hundhausen and Brown 2007),

(Naps et al. 2003). To understand programming, the learner must be able to analyze/parse the program tokens

unambiguously (Ben-Ari and Sajaniemi 2003). Program animation is a means to facilitate a learner to visibly

parse the code. However, most of the current animators are entirely machine-driven. Helpful as it is, machine-

driven animation subordinates the learner to the machine. The side effect of machine-driven animation is the

denial of full authority to the learner.

So far, MTL is the only sketch-based language in programming books that can be used as a learner-driven

visualizer and parser. MTL is a sketch-based language used by authors, instructors and learners to parse the code

as it affects computer memory (Mselle 2011b). MTL is used to describe the program behavior by means of

concrete models and visualization (2011c). In other words MTL is a tool for program parsing without actively

depending on the machine.

1.2 A brief discussion and illustration of MTL

MTL is a learner-driven compiler or parser whose general framework is as illustrated in Figure 1.

Figure 1- The general framework of MTL

MTL

Errors

Source code in high level language Object code in machine-semantics

Page 118 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

MTL is not machine dependent. It does not demand any knowledge or special rules for the learner to employ

MTL. Successful use of MTL is directly tied with understanding the program and nothing else. Examples on the

use of MTL to translate different programs and to visualize different programming aspects are demonstrated in

Figures 2 through 8.

Figure 2 demonstrates how MTL is used by the learner to parse variable declaration, data feeding and data

operation.

Figure 2 - Parsing variable declaration, assignment and data operation by MTL

Using MTL, the relationship between variable and computer memory (RAM) is clearly visualized. Concepts of

variable declaration, identifiers, data feeding, assignment, data operation such as addition, and data outputting are

visualized by simple model which mimics the RAM.

Figure 3 shows how MTL can be used to parse functions/methods.

Figure 3- Parsing functions by MTL

Using MTL, abstract concepts such a functions, parameters and return() funtion are physically visualized by the

same single model.

/* Program One Step one. Step two. Step three.

 Variables, data feeding and assignment */ Declaration Assignment Operation

public class one{

Translation of Program One by MTL

 public static void main(String[] args) { Code Code Code

int x; int x; x=4; x=x+y;

int y; int y; RAM y=7; RAM RAM

x=4; x RESERVED x 4 x 11

y=7; y RESERVED y 7 y 7

x=x+y; FREE FREE FREE

}

}

/* Program Two (Methods)

 */

public class functions { Code Code

 int sq(), x, z; RAM x=TextIO.getlnt(); RAM

 /** Creates a new instance a method*/ x RESERVED x 6

 public static void main(String[] squareValues) { z RESERVED z RESERVED

int sq(), x, z; FREE FREE

 System.out.println("Enter the number to square");

 x=TextIO.getInt(); Code Code

z=sq(x); z=sq(x); RAM y*y RAM

 System.out.println("The square of", x "is: ", z); x 6 x 6

 } z RESERVED z RESERVED

public static int sq(y){ y 6 y 6 X6

 return(y*y);

 }

} Code

return(y*y); RAM

x 6

z 36

y 6 X6

Translation of Program Two by MTL

Step one. Declaration Step two. Data feeding

Step three. Function call Step four. Function execution

Step five. Return

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 119 of 192

Figure 4 shows how MTL is used to translate arrays, array declaration and data feeding in arrays.

Figure 4- Parsing array declaration and array feeding by MTL

As demonstrated in Figure 4, the concept of arrays as a data structure different from other simple data types such

as integers is clearly visualized. Data feeding in an array using subscripts is clearly visualized.

Figure 5 shows how MTL is used to translate a for loop.

Figure 5- Parsing a for loop by MTL

Loops constitute a big hurdle to programming students (Dehnadi and Bornat 2006). With MTL the control

mechanisms that are achieved through loops are physically visualized, making it easy for the learner to determine

the role(s) of each variable.

Figure 6 shows how MTL is used to demonstrate branching or selection.

//Program 4

public Classtfive{

public static void main(String[] args){ RAM RAM RAM RAM

int n, i; n RESERVED n 0 n 0 n 1

n=0; i RESERVED i RESERVED i 1 i 2

for(i=1;i<4;++i) { FREE FREE FREE FREE

n=n+i;

} int n, i; int n=0;

System.out.println(n); n=n+1; (1+1)

System.out.println(i); ++i; (1+1)

} }

} RAM RAM RAM

n 3 n 6 n 6

i 3 i 4 i 4

FREE FREE FREE

Loop round 2 Loop round 3 End of loop

n=n+1; (1+2) n=n+1; (3+3) NOT TRUE

++I; (2+1) ++I; (3+1)

} }

Translation of Program 4 by MTL

for(i=1;i<4;++i) { for(i=1;i<4;++i) { (i<4)

Execution of: Execution of: Execution of:

i=1;

Loop round 1

for(i=1;i<4;++i) {

1. //Program 3 RAM RAM

2. Public class feedarray{ RESERVED 4

3. public static void main(string[] args){ z RESERVED z 6

4. int z[3]; RESERVED 8

5. z[0]=4; FREE FREE

6. z[1]=6;

7. z[2]=8; int z[3];

8. }

9. }

Translation of Program 3 by MTL

Execution of: Execution of:

z[0]=4;

z[1]=6;

z[2]=8;

Page 120 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Figure 6- Parsing a branch by MTL

Selection in programming is another aspect not easily understood by programming students. MTL enables the

learner to verify why a certain branch is taken and another branch is not taken.

Figure 7 shows similarities and differences between a while loop and a for loop.

Figure 7- Demonstration of similarities and differences between while and for loop constructs by MTL

//Program 5 Translation of Program 5 by MTL

public Classif{

public static void main(String[] args){ RAM RAM RAM

int n, i; n RESERVED n 5 n 5

double ans; i RESERVED i 10 i 10

System.out.println(Enter two nos.); ans ans ans

n=TextIO.getInt();

i=TextIO.getInt(); Execution of: Execution of: Execution of:

if(n>i) int n, i; n=TextIO.getInt(); if(n>i)

ans=n/i; double ans; i=TextIO.getInt(); is 10>5?

else NO

ans=i/n; RAM Jump the branch

} n 5

} i 10

ans

Execution of:

else

ans=i/n;

ans=(10/5)=2

RESERVED

2

RESERVED RESERVED

//Program 6

public Classeven{

public static void main(String[] args){ RAM RAM RAM RAM

int n, i; n RESERVED n 0 n 0 n 1

n=0; i RESERVED i RESERVED i 1 i 2

for(i=1;i<4;++i) { FREE FREE FREE FREE

n=n+i;

} int n, i; int n=0;

System.out.println(n); n=n+1; (1+1)

System.out.println(i); ++i; (1+1)

} }

} RAM RAM RAM

n 3 n 6 n 6

i 3 i 4 i 4

FREE FREE FREE

Loop round 2 Loop round 3 End of loop

n=n+1; (1+2) n=n+1; (3+3) NOT TRUE

++I; (2+1) ++I; (3+1)

} }

//Program 7 RAM RAM RAM RAM

public Classeght{ n RESERVED n 0 n 1 n 3

public static void main(String[] args){ i RESERVED i 1 i 2 i 3

int n, i; FREE FREE FREE FREE

n=0;

i=1; int n, i; n=0;

whle(i<4){ i=1; n=n+1; (1+0) n=n+1; (1+2)

n=n+i; i=i+1; (1+1) i=i+1; (2+1)

i=i+1; } }

} RAM RAM

System.out.println(n); n 6 n 6

System.out.println(i); i 4 i 4

} FREE FREE

} Loop round 3 End of loop

while(i<4) { while(i<4) {

n=n+1; (3+3) NOT TRUE

i=i+1; (3+1)

}

for(i=1;i<4;++i) { for(i=1;i<4;++i) { (i<4)

Loop round 1

Translation of Program 6 by MTL

Loop round 2

while(i<4) { while(i<4) {

i=1; for(i=1;i<4;++i) {

Translation of Program 7 by MTL

Execution of: Execution of:

Execution of: Execution of: Loop round 1

Execution of:

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 121 of 192

Sometimes, having different loop structures which accomplish more or less the same objective is a source of

confusion to students. Clear understanding of their similarities and minor differences may mitigate

misconceptions. Using MTL as shown in Figure 7 different programming constructs can be compared and

contrasted visibly.

Figure 8 shows how MTL is used to illustrate the concept of pointers in programming.

Figure 8- Demonstration of pointers by MTL

In Figure 8, the relationship between pointers and hexadecimal address scheme is visualized. The concept of

pointers as variables that store addresses as opposed to other data types is visually demonstrated.

As demonstrated in Figures 2-8, MTL enables the author, instructor and the learner to employ the same model and

the same symbol-type to show and describe the meaning of different aspects of programming. Questions like;

what is a variable, why is it declared, what is the difference between an int and a double type, what is data

feeding, what is data operation, what is an array, what are array subscripts, how are arrays different from simple

data types, what is a loop, what mechanisms undergird looping, what are differences and similarities between

different loop constructs, what are pointers, how do pointers differ from other types of variables such as integers,

etc. are clearly visualized by the means of a single symbol and one model.

As demonstrated in the works of Mselle (2010, 2011a, 2011b, 2011c) and as shown in Figures 2-8, MTL

approach reduces ambiguities which are rife in introductory programming.

2. Problem

Although the use of MTL in teaching programming has been reported to produce positive results (Mselle 2010,

2011a), there is no report about experiment conducted on non-novice programmers to find out if students can use

MTL to learn a new programming language without an instructor during their second language study.

Many colleges and universities have undergraduate curricula which include learning to program in more than one

language. It is a common practice, for example, to find schools or colleges teaching Programming in C++ during

one semester and Programming in Java in another semester. The practice of teaching students more than one

programming languages is aimed at first making students aware of various languages that can be used in

programming and secondly improving students’ programming abilities. While the first motive is achieved, the

second motive which is essential is hardly achieved (Dehnadi and Bornat 2006). In addition, most research works

//Program 8 RAM RAM RAM

public Classpt{ A0 FREE val A0 RESERVED val A0 7

public static void main(String[] args){ A1 FREE x A1 RESERVED x A1 RESERVED

int val; A2 FREE y A2 RESERVED y A2 RESERVED

intObj x; A3 FREE A3 FREE A3 FREE

intObj y; Before Exe- Execution of: Execution of:

val=7; cution of int val; va=7;

x=&val; Program 8 intObj x;

y=x; intObj y;

}

} RAM RAM

val A0 7 val A0 7

x A1 A0 x A1 A0

y A2 RESERVED y A2 A0

A3 FREE A3

Execution of: Execution of:

x=&val; x=y;

Translation of Program 8 by MTL

Page 122 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

on program visualization have concentrated on testing the impact of animation tools in circumstances where the

instructor is directly involved (Ben Bassat et al. 2001).

3. Objective

The objective of this study was to evaluate the impact of MTL in aiding non-novice programmers to pursue

programming studies without the intervention of an instructor during their study of a second language.

To determine the impact of MTL in aiding programmers to pursue their programming lessons without the

intervention of an instructor, a class experiment was conducted, where examination results from two groups were

statistically compared.

4. The Experiment

To test the hypothesis that MTL can facilitate students pursue their programming classes without the help of an

instructor and perform better than the students who pursue the course with the help of an instructor a sample of

108 third year students of the University of Dodoma (UDOM) was used in the experiment.

4.1 The Sample

Students learning “Java Programming” for the first time in the College of Informatics-UDOM, constituted the

sample for this study. All students had pursued and passed examination in C++ Programming during their first-

year program.

5. Method

A group of 14 students, from the sample of 108 students, who were studying Java Programming for the first time,

volunteered to pursue the course using MTL. These students (n=14) constituted the experimental group. The rest

of students (n=92) constituted the control group. The course syllabus covered; variable declaration and types of

variables, constants, data inputting, data manipulation, data outputting, flow of control, functions, arrays, strings,

introduction to pointers and introduction to file handling, objects, and data encapsulation. The duration of the

course was 52 hours; with 26 hours being used for lectures and 26 hours assigned for laboratory sessions. The

lead lecturer for the subject had eleven years experience in teaching programming in Java. For the purpose of this

study, the experimental group agreed to use the manual entitled “Java for Novice Programmers” as their main

reference book together with any other material while not attending lectures.

5.1 Materials

The materials used included; examination scripts and a programming manual in Java (Mselle 2011b). The

programming manual is written to cover introductory programming which includes; variables and variable

declaration, data inputting, data processing and outputting. Other topics include; flow of control (bifurcation and

looping), arrays, strings, functions, files handling, pointers and objects.

5.2 Procedure

Before the beginning of the course the researcher held a meeting with all students where they were briefed about

the experiment and the unique character of the Java for Novice Programmers manual. Students who volunteered

to pursue the course without attending lectures were given the manual. They were instructed to do all

assignments, laboratories and tests as the rest of the class. In the end of semester, the final examination was set by

the lecturer who was in-charge of teaching the subject. Questions and solutions were reviewed by an external

examiner to ensure adequacy and conformity to the syllabus. Examination scripts (which were all anonymous)

were marked by the leading lecturer. Scores from the final examination (60%) were combined with scores from

two tests and four assignments (40%). After the examination and publication of results, the researchers performed

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 123 of 192

the statistical analysis to find out the degree of difference on scores between the experimental group and the

control group.

6. Results

Statistics on the final scores for the control and experimental group are summarized in Table 1.

Table 1- The examination scores summary

Using final scores, between the control and the experimental group, where the experimental group used MTL, to

learn programming without teacher’s intervention while the control group was instructed through the conventional

approach, results suggest a significant difference statically (A one tailed student’s T-test, R: t=1.921>1.771,

p=0.05). These results agree with claim by Wilson and Moffat (2010) that programming may not be a difficult

subject; rather, it is the way it is presented to the learners which breeds confusion leaving the learners with

various misconceptions which frustrate the effort to learn. With the MTL, aspects such as variable declaration,

assignment, variable overwriting and data operations are made obvious at the very beginning.

As demonstrated in Figures 2 through 8 and in (Mselle 2011b), with MTL, the why variables are declared is made

obvious and what happens to each variable during any action is clearly distinguished. What and how various

operations are carried out and the meaning of assignment and roles of variables are clearly demonstrated at every

turn of the code. Regarding functions/methods; issues such as function call and parameter passing are clearly

visualized. Confusion and ambiguities are potentially mitigated through visualization with MTL.

7. Discussion

The experimental group used MTL to illustrate the execution of code from the machine point of view. In its core,

MTL cultivates the sense of “I am working the machine” on the part of the learner. On the other hand the control

group had no means to visualize their codes. Lack of a tool to illustrate the effect of each line of code on the

machine is a major source of misconceptions (Perkins et al. 1986).

Du Boulay et al. (1981) proposes for a tool representing a notional machine. Du Boulay et al. (1981) advises that

such a device should observe simplicity, be small and have few constructs. He argues in favor of implementing a

language in such a way that, either pictorial or written traces can be displayed. MTL, is a programmer-driven

visualization device which bears most of these characteristics (Mselle 2010, 2011a, 2011b, 2011c), (Samurcay

1985). MTL being programmer-driven, has capabilities to transfer programming authority to the programmer

while creating the sense that the machine is not responsible for the mistakes committed by the learner.

7.1 MTL vs. Machine-based Animation

Popular animation tools such as Blue J, Jeliot and Plan Ani have been reported to be effective in enhancing

programming comprehension (Ben Bassat et al. 2001), (Kuittinen et al. 2003, 2008). Machine-based animations

are suitable for precise close tracking through the machine. In effect, they are a plausible break through.

Nevertheless, since they are entirely machine-driven they concentrate most authority to the machine at the

expense of the learner. In contrast, MTL is an absolutely learner-driven parse/visualizer. Program parsing by

using MTL allows the novice to visually step line-by-line through a piece of code. Using MTL the learner can

actively reveal the history of variables, and how the machine reacts when each statement is executed.

Groups Number Total scores Means STD

Control 92 5728 53 1.543

Experiment 14 797 56.9 2.764

Page 124 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Mselle (2010, 2011a, 2011b , 2011c) has shown that MTL allows the learner to play-back the code from machine

point of view. MTL is a sketch-based language that provides the learner with the absolute authority over the

machine. Since MTL is a learner-driven language, it is unconstrained by the initial design of the code. To its

additional credit, MTL can be used in conjunction with other animators and flow charts to capture advantages

suggested by Ziegler and Crews (1999). MTL is an instrument for the learner to play the role of compiler outside

of machine environment, putting the learner at par with the machine on verification of the correctness or

incorrectness of the program (Perkins et al. 1986). Furthermore, MTL can be integrated into the current

programming materials (Mselle 2011b) a quality not yet attained by the current visualization tools (Naps et al.

2003). These factors seem to provide explanation why the results observed in the experiment are positive.

8. Conclusion

The objective of this study was to test the impact of MTL when used as a learning tool without the intervention of

a lecturer. Specifically, MTL has been proved to be a handy sketch language for learners to parse, track, debug

and understand their programs without teachers’ or machine intervention. Although the subjects of the experiment

were not absolute novices their characteristics do not substantially differ from those of absolute novices because

all of them were learning Java for the first time. Initial results are encouraging though far from conclusive.

There are, obviously, some shortcomings in this study. The sample size is too small to justify generalization. The

population is taken from one university. The students of the experiment group could have been better than those

of the control group.

9. Recommendations

More experiments in different settings should be carried out with a much bigger and diverse sample to confirm

the effectiveness of MTL. More areas of research on effectiveness of MTL in distance learning, and different age

groups are open for future investigation.

References

Ben-Ari, M. and Sajaniemi, J. (2003) Role of Variables from the Perspective of Computer Science Educators.

DOI=http://cs.joensuu.fi/pub/Reports/A-2003-6.pdf.

Ben Bassat, L.R., Ben Ari, M. and Uronen, P. (2001) An Extended Experiment with Jeliot 2000. In Proceedings

of The First International Program Visualization Workshop. University of Joensuu, Pavoo Finland,

September, 2001, 131-140.

Dehnadi, S. and Bornat, R. (2006) The Camel has Two Humps (working title). School of Computing, Middlesex

University, UK.

Du Boulay B., O’Shea, T. and Monk, J. (1981) The Black Box Inside the White Box: Presenting Computering

Concepts to Novices. International Journal of Man-Machine Studies, 14, 237-249.

Du Boulay, B. (1986) Some Difficulties of Learning to program. Journal of Educational Computing Research,

2(4), 459-472.

Hundhausen, C. D. and Brown, J. L. (2007) What you See is what you Code: A 'live' Algorithm Development and

Visualization Environment for Novice Learners. Journal of Visual Languages and Computing, 18(1), 22-47.

Kuittinen, M., Tikansalo, T. and Sajaniemi, J. (2008) A study of the Development of Students' Visualizations of

Program State During an Elementary Object-Oriented Programming Course. ACM Journal of Educational

Resources in Computing, 7(4).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 125 of 192

http://cs.joensuu.fi/pub/Reports/A-2003-6.pdf

Kuittinen, M. and Sajaniemi, J. (2003). First Results of an Experiment on Using Roles of Variables in Teaching.

In M. Petre & D. Budgen (Eds) Proc. Joint Conf. EASE & PPIG 2003.

Mselle, L. (2010) The Impact of RAM Diagrams in Enhancing Comprehension in Programming: Class

Experiment. http://www.ppig.org/papers/22nd-Teach-4.pdf

Mselle, L. and Mmasi, R. (2011a) The Impact of MTL on Reducing Misconceptions in Programming.

DOI=http://dl.acm.org/citation.cfm?id=1999901&dl=ACM&coll=DL&CFID=38905039&CFTOKEN=61705

367.

Mselle, L. (2011b). Java for Novice Programmers. LAP LAMBERT Academic Publishing, Berlin.

Mselle, L. (2011c). “Using Formal Logic to Formalize MTL on the Mould of RTL.” PPIG 2011, The University

of York, UK.

Naps, T., R¨oßling, G., Almstrum, V., Dann, W. Fleischer, R., Hundhausen, C., Korhonen, A., Malmi, L.,

McNally, M., Rodger, S. and Vel´azquez-Iturbide, A. (2003). Exploring the Role of Visualization and

Engagement in Computer Science Education. ACM SIGCSE Bulletin, 35(2), 131–152.

Perkins, D. N., Hobbs, H. R, Martin, F. and Simmons, R. 1986. Conditions of Learning in Novice Programmers.

Journal of Educational Computing Research, 2(1), 37-55.

Samurcay, R. (1985) The Concept of Variable in Programming: Its Meaning and Use in Problem-Solving by

Novice Programmers. Education Studies in Mathematics, 16(2), 143-161.

Wilson, A. and Moffat, D. (2010) Evaluating Scratch to Introduce Younger Schoolchildren to Programming. In

Proceedings of the 22nd Annual Psychology of Programming Interest Group (Universidad Carlos III de

Madrid, Leganés, Spain, September 19-22, 2010). Joseph Lawrence and Rachel Bellamy, editors.

Ziegler, U. and Crews, T. (1999). An Integrated Program Development Tool for Teaching and Learning how to

Program. In Proceedings of the 30
th
 SIGCSE Symposium, March 1999, 276-280.

Page 126 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Paper Session 6

Tools and Their Evaluation

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 127 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

Evaluation of Subject-Specific Heuristics for Initial Learning Environments:

A Pilot Study

Fraser McKay

School of Computing

University of Kent

fm98@kent.ac.uk

Michael Kölling

School of Computing

University of Kent

mik@kent.ac.uk

Keywords: POP-I.B. design of environments; POP-II.A. novices; POP-V.B. interviews.

Abstract

Heuristic evaluation is a “discount” technique for finding usability problems in well-established

domains. This paper presents thirteen suggested heuristics for initial learning environments (ILEs). To

investigate the usefulness of these heuristics to other developers, we conducted a pilot study that

compared two groups of evaluators: one using an older, generalised set of heuristics from the

literature, and one using our domain-specific heuristics. In this study, we compare not just the number

of problems found, but the way in which the problem reports were expressed. There was a significant

difference in the length of written comments when problems were found (those from the new set

being longer). New-set reviews touch on more themes – many make suggestions about what would

improve the problem; many comments refer to a suggested cause-and-effect relationship. As

designers, we find this detail helpful in understanding problems. Quantitative data from this study is

not large enough to support any robust conclusions about the relative thoroughness of the heuristics at

this time, but we plan to use lessons learned from this study in a larger version shortly.

1. Introduction

There are many initial learning environments (ILEs), using different languages, available for

educators to choose from. With the increase in the number of systems on the market, it is becoming

increasingly important to be able to make informed decisions, backed by formal argument, about the

relative quality of these tools. We advocate a significant increase in more formal or semi-formal

evaluations of the quality of educational programming systems.

Heuristic evaluation is a method that is both useful and practical to make such an assessment of many

aspects of educational programming systems. Some of the most frequently used sets of heuristics are

application-area neutral. They specify goals and guidelines for software systems in general. However,

these do not cover all of the problem areas that we are aware of in novice programming. In this case,

application-area specific requirements can be included in the heuristics, and deeper insights might be

gained. This can be done for a variety of application areas, and has been attempted for programming

before (Pane & Myers, 1996; Sadowski & Kurniawan, 2011), though these heuristics have not then

been evaluated, or validated, themselves.

In this paper, we propose a set of heuristics specific to ILEs. These heuristics should improve

heuristic evaluations of such systems by combining a number of relevant aspects and criteria not

formulated in any other set of heuristics. The proposed heuristics include aspects of general usability,

as well as aspects (e.g. motivational and pedagogical effects) relevant to our specific application

domain. To investigate their usefulness for other developers, we conducted a pilot study that

compared two groups of evaluators: one using a popular, generalised set from the literature, and one

using our domain-specific heuristics. In this study, we compared not just the number of problems

found, but the way in which the problem reports were expressed. As designers, we find this detail

helpful in understanding problems. Quantitative data from this study is not large enough to support

Page 128 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

any robust conclusions about the relative effectiveness of the heuristics at this time, but we plan to use

lessons learned from this study in a larger version soon.

1.1. Background
Heuristic evaluation was introduced as a “discount” method of analysing user interfaces without full

user testing (Nielsen & Molich, 1990). When performing a heuristic evaluation, experts compare

interfaces to sets of heuristics – general principles that describe aspects of an ideal system. Nielsen

lists ten separate heuristics, formulated in the style of positive guidelines such as “The system should

always keep users informed about what is going on, through appropriate feedback within reasonable

time.” (Nielsen, 2005b).

Heuristics can also be used in designing interfaces. In this case, designers pay conscious attention to

the set of heuristics during the design process – taking Shneiderman’s “Eight Golden Rules”, for

example (Shneiderman, 1997).

Nielsen’s heuristics are intended to be generally applicable to a wide variety of software interfaces,

and other authors have identified more specialised, domain-specific sets of heuristics. Pane & Myers

(1996) defined a set of heuristics aimed at ILEs. These extend Nielsen’s set with additional heuristics

aimed at identifying issues with problems specific to this target domain.

2. Related work

2.1. Cognitive Dimensions and CD questionnaire
The research presented here, being concerned with programming, also conceptually overlaps with the

Cognitive Dimensions (CD) framework (Green, 1989). The dimensions describe concepts relevant to

cognition and HCI in programming notations, but – unlike heuristics – are not phrased as instructions.

There are some attempts in the literature to use them as heuristics (Sadowski & Kurniawan, 2011).

There are structured forms of cognitive dimensions evaluation (Blackwell & Green, 2000; Blackwell

& Green, 2007), but they are, overall, less restrictive than some heuristic evaluation research (in the

“classical” Nielsen sense, at least). Open-ended comment is more encouraged. The cognitive

dimensions provide descriptions of concepts such as “viscosity” (resistance to code changes) and

“secondary notations” (such as colour and spacing) - a vocabulary for researchers to use when

discussing systems.

2.2. Testing/evaluating inspection methods
Heuristic and CD evaluations, like other “expert-based” methods, rely heavily on human evaluators’

findings; in this case, driven by a set of heuristics. Therefore, it is critically important that the

heuristics are valid in themselves. Validity is generally taken to mean “shown to be useful in

uncovering actual usability problems” (Blandford & Green, 2008). Pane & Myers’s heuristics are

argued from the literature (of the time), but are not evaluated in practice. Nielsen & Molich’s original

heuristics were tested in user studies to refine them and to assess their validity (Nielsen & Molich,

1990). Hartson, Andre & Williges (2001) present a method of comparing evaluation methods,

including three standard metrics (thoroughness, validity and reliability) based on other work. Sears

(1997) formally defines the concepts of thoroughness and validity for evaluating inspection methods.

Thoroughness is a measure of how many problem candidates, in a set of real “reference problems”, a

method finds. Validity is a measure of how many of the candidate problems found are “real” problems

(as opposed to false positives).

3. The new heuristics

The need to define new domain-specific heuristics arose during an on-going effort to design a novel

beginners’ programming tool.

To aid in the design of the new system, we initially applied existing heuristics as design guidelines.

We also conducted evaluations using the cognitive dimensions framework, in their role as discussion

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 129 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

tools, to study some existing ILEs. Pane & Myers’s heuristics seemed a good candidate tool for our

purposes, at first, since they are specifically designed for these kinds of system. However, a major

drawback we encountered with these heuristics is their length. Using them in depth, they produced

very long – and quite cumbersome, thus less useful – evaluations. In total, Pane & Myers have 29

heuristics, grouped under eight of Nielsen’s headings. Differences between the heuristics were not

always clear-cut; there is duplication across some categories, and using them to categorise some of the

problems is distinctly difficult. Some problems seemed to fit two categories equally well, and others

did not neatly fit any. Yet, when using Nielsen’s original heuristics, in order to avoid the length of

Pane & Myers’, the evaluation missed some crucial areas that we consider important for early

learners’ programming systems. While shorter, these heuristics do not achieve the same domain

specific precision.

This experience led to the definition of a new set of heuristics with a number of specific goals of

improvement. The goals were:

(1) Manageable length: The number of heuristics should be limited; it should be much closer

to Nielsen's 10 rules, or Shneiderman’s eight, than Pane & Myers' 29.

(2) Domain-specific focus: The heuristics should cover aspects specific to novice

programming.

(3) Avoidance of redundancy and overlap: As much as possible, problems should fit clearly

into a single category.

(4) Clarity of categorisation: The categories should be clear to evaluators, cover all possible

issues and be easily distinguished.

Blandford and Green (2008) suggest requirements that a new HCI research method should be useful

(“it should reveal important things…”), usable, and used (“would ultimately be used by people other

than its developers and their close friends”).

After identifying target candidates for heuristics based on known problem instances, the authors

evaluated the resulting sets by applying them to existing systems from the target domain. This process

was repeated over several iterations to refine and improve the set.

The systems used for systematic evaluation of the heuristics were Scratch, Alice, BlueJ, Greenfoot

and Visual Basic. Partial evaluations using the new heuristics have also been carried out for Lego

Mindstorms NXT, StarLogo TNG, Kodu, and C#. The first group of systems are the ones that were

used for testing each iteration of the heuristics; the second group are systems that we have evaluated

using the heuristics. We have also used the heuristics to evaluate new designs, which we are working

on as part of the wider project to design a new system.

3.1. New set
There are thirteen heuristics in our set. They are used to evaluate a complete ILE, including the

environment aspects and the programming language aspects. The new heuristics are neither sub- nor

superset of any previously existing set, and have been developed from scratch using well-established

principles from the literature in this development domain.

(1) Engagement: The system should engage and motivate the intended audience of learners.

It should stimulate learners' interest or sense of fun.

(2) Non-threatening: The system should not feel threatening in its appearance or behaviour.

Users should feel safe in the knowledge that they can experiment without breaking the

system, or losing data.

(3) Minimal language redundancy: The programming language should minimise

redundancy in its language constructs and libraries.

(4) Learner-appropriate abstractions: The system should use abstractions that are at the

appropriate level for the learner and task. Abstractions should be driven by pedagogy, not

by the underlying machine.

Page 130 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

(5) Consistency: The model, language and interface presentation should be consistent –

internally, and with each other. Concepts used in the programming model should be

represented in the system interface consistently.

(6) Visibility: The user should always be aware of system status and progress. It should be

simple to navigate to parts of the system displaying other relevant data, such as other

parts of a program under development.

(7) Secondary notations: The system should automatically provide secondary notations

where this is helpful, and users should be allowed to add their own secondary notations

where practical.

(8) Simplicity/Clarity: The presentation should maintain simplicity and clarity, avoiding

visual distractions. This applies to the programming language and to other interface

elements of the environment.

(9) Human-centric syntax: The program notation should use human-centric syntax.

Syntactic elements should be easily readable, avoiding terminology obscure to the target

audience.

(10) Edit-order freedom: The interface should allow the user freedom in the order they

choose to work. Users should be able to leave tasks partially finished, and come back to

them later.

(11) Minimal viscosity: The system should minimise viscosity in program entry and

manipulation. Making common changes to program text should be as easy as possible.

(12) Error-avoidance: Preference should be given to preventing errors over reporting them.

If the system can prevent, or work around, an error, it should.

(13) Feedback: The system should provide timely and constructive feedback. The feedback

should indicate the source of a problem and offer solutions.

We have categorised the heuristics into four sets: those that affect the System as a whole, the Mental

Model, the User Interface, and Interaction with the system. The System and Mental Model

categories relate mostly to functionality, while the User Interface and Interaction categories are

concerned with the presentation of the system. Figure 1 shows the relationship of these sets.

Figure 1. How the heuristics apply.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 131 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

4. Method

Participants were asked to perform a heuristic evaluation of Scratch and Greenfoot, using a given set

of heuristics. They were given tasks to carry out as part of their evaluation and record any usability

problems they found. Each participant was assigned to use either the new heuristics, or Nielsen’s

heuristics (n=6, n=3, respectively). Participants were not told that the purpose of the study was to

evaluate the heuristics themselves. They were not aware that other participants might use a different

set of heuristics. All participants first completed the Scratch task. For various reasons, only five

completed the Greenfoot task, so the Greenfoot task was excluded from this study. The participants

are described in Table 1.

Participants were given a short “refresher” talk on the heuristic evaluation process, as part of their

instructions. Between one and three participants at a time worked independently, in different parts of a

large, quiet room. As well as a copy of the task, participants were given a sheet of paper listing the

heuristics to use. The new heuristics were as presented above, and the existing set was taken from

Nielsen (2005b). Both sets were formatted in the same plain style, and the title did not indicate

anything special about there being multiple sets of heuristics. Participants were asked to record

usability problems on paper pre-printed with columns for recording the problem, and which heuristic

that problem breaks.

Twelve participants initially volunteered. However, due to three either withdrawing or not being

available on the day, only nine participants actually participated in the study. The undergraduates

were recruited through an email list following on from an HCI module. The postgraduates were

recruited through a departmental email to research students. All of the participants were experienced

programmers, and understood that some programming knowledge was required for the task(s).

Though all knew of Scratch, only one had actually used it before – that reviewer had been taught

using Scratch through secondary school. As seen later, the user discovered significantly more

problems than others using the same heuristics.

We did not disclose until afterwards that the purpose of the study is to compare two sets of heuristics.

Reviewer Profile Heuristics Interview

A Undergraduate, had not used Scratch before New Y

B Undergraduate, had not used Scratch before New Y

C Postgraduate, had not used Scratch before New N

D Postgraduate, had not used Scratch before New Y

E Postgraduate, had not used Scratch before New N

F Postgraduate, had not used Scratch before New N

G Postgraduate, had not used Scratch before Nielsen Y

H Postgraduate, had not used Scratch before Nielsen Y

I Undergraduate, had long-term school experience with Scratch Nielsen Y

Table 1. Reviewer profiles.

At the end of the sessions, six participants who had time (three with each set) participated in short,

informal individual interviews. The subject of the interview were the heuristics themselves, rather

than the system under evaluation. The participants were asked open questions about ease or difficulty

to understand and apply the heuristics; how they would describe the heuristics in their own words; and

whether they thought any of the problems they found would have fitted with none of the heuristics, or

more than one.

Page 132 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

5. Results

5.1. Number of problems found
There was no statistically significant difference in the number of problems found by each group.

Sears’s (1997) and Hartson et. al’s (2001) validation methods rely on comparing “thoroughness” and

“validity” per review(er). Using Equations 1 and 2, thoroughness and validity can be calculated for

the Scratch problems (Table 3). However, the small size makes any real statistical analysis of t and v

of little actual value in this case. In the nine results tested, there is little difference in thoroughness in

the two groups. Measuring v does not produce anything notable with these results – none of the

comments were clear “false positives”. If the number of false positives is low (but non-zero), it would

also have little or no reliable predictive value in this small study.

Group N Median Avg Rank Min Max

New 6 0.177 5.167 0.065 0.290

Old 3 0.161 4.667 0.065 0.258

Table 2. U-test of thoroughness (p=0.794).

Equation 1 and Equation 2.

Figure 2 is a diagrammatic representation of problems found per user. In the figure, every column

represents a usability problem, and every row represents one reviewer. If that reviewer found the

particular problem, the grid is marked with a black square. The first six evaluators used the new

heuristics, and the last three used Nielsen’s set (marked by a horizontal line). Similar diagrams are

used in Nielsen’s online material (Nielsen, 2005a). Problems to the left of the vertical centre-line were

found by more than one evaluator. Problems on the right were only found by one person. Problems

are numbered (horizontal, bottom).

Figure 3 summarises the problems found by each heurstics set. Any problem which was found at least

once, for the given set of heuristics, is marked in black. Some problems were found with only one set,

and not the other. A total of 9 problems were identified only with the new set (problems 6, 8, 10, 14,

15, 16, 17, 19, 21). Four problems were found only with the Nielsen set (problems 12, 13, 18, 20). Of

problems which were identified by at least two evaluators, three were uniquely identified using the

new set (6, 8, 10), and none with Nielsen's set.

N
ew

 A

 B

 C

 D

 E

 F

O
ld

 G

 H

 I

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 2. Problems identified per reviewer. Problems (horizontal) are numbered,

and participants’ (vertical) identifiers correspond to Table 1.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 133 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

 Unique * * * * * * * * *

 New

 Nielsen

 Unique * * * *

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 3. Problems identified per heuristics set. Problems found uniquely with one set are marked.

5.2. Comments made
The reviewers made 29 written comments, with the new heuristics; and 19 with Nielsen’s set. The

mean numbers of comments each were 6.0 and 6.18, respectively.

Though the number of comments per-reviewer was similar in most cases, the individual comments

varied greatly in length (as well as giving additional qualitative information – see below). The values

in Table 3 show the differences in numbers of characters. The new-set comments are generally longer.

Group N Mean Min Max

New 29 111.172 28.0 499.0

Nielsen 19 52.105 25.0 113.0

Table 3. Comment length by group (t-test p-value = 0.018)

Two typical comments, from different reviewers, are,

“H8 simplicity. There is something strange with the way a whole block of blocks is moved,

and one has to separate the first of these in.”

“H10, 8. I can not delete an [sic] statement by right clicking it if it's in between a sequence

therefore I had to do 2 steps (separated them, deleted and put the rest back together).”

The longest comments with the new heuristics are paragraph-length. For instance,

“H11. Dragging and dropping the blocks felt slow when doing a sequence of 10, doing the edit

on both cars separately was annoying, and also replacing blocks was annoying, though I found

a trick that helped (first add the new block beneath the old block, then drag it (and all thus all

that follows it) to the right spot above the old block, then remove the old block which as it's the

last item, doesn't uncouple the other blocks). Still, a right-click--delete option would have

saved a lot of time.”

In contrast, a longer comment from the Nielsen group reads,

“H8. Some of the control colours are very similar, slowing down rate that you can guess where

commands are stored.”

(referring to Nielsen’s heuristic 8 – aesthetic and minimalist design).

We are aware that having longer comments, per se, is not the aim of the new heuristics. However, in

addition to being longer, the comments contained more detailed and descriptive feedback. Below, the

comments are discussed in more detail.

Page 134 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

5.3. Comment types
All the comments were coded: for the problems they described, and the nature of the comment. The

coding for types of comment was open – there were no predetermined categories of response that we

were determined to fit eventual results into.

Even though not explicitly instructed to do so, many of the evaluators included suggestions

(sometimes quite detailed) in their problem reports. The following are examples of suggestions, all

from the new heuristics (emphasis added):

“Had to switch tabs a lot, process would be more efficient if they were rearranged, or more

visible at once”.

 [About there being a work-around to shuffling blocks] “Still, a right-click delete option

would have saved a lot of time”.

“maybe have a way of integrating the left hand, e.g. by being able to switch between block-

menus (which is done by clicking a button in the top-left square) with the key-board?”.

“[Would be] Easier to make changes then duplicate rather than editing each one”.

“Maybe try, and balance the sprite pictures so there are a bit more girlish ones…”

“When the last change is compiled the button is still active (even though there is a state

indicating). However it would be better to block it”.

Reviewers made roughly the same number of comments using each set. However, there was a marked

difference in suggestion frequency. There was only one suggestion made with the existing heuristics,

out of 19 comments.

Some of the comments with the new set were phrased as cause-effect pairs. The problem was

described as in other reports, but was also linked to an underlying issue or concept in the system. For

example, the following three:

“No types on the variables, so string/int confusion of 90/ninety could not be prevented”.

“[…] as it’s the last item, doesn’t uncouple other blocks”.

“The dragging blocks is very slow, [because] having to use the mouse a lot makes me use the

right hand a lot more than the left.”

Figure 4. Written comment distribution.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 135 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

5.4. Post-interviews

Qualitative data from the interviews refer to the nature of the heuristics themselves. Some of the

comments queried the wording of particular heuristics (in both sets). For example:

 The wording of “intended audience” in the new set was ambiguous (it having been left

open to reflect the range of systems it could apply to) (New set: 1);

 “Viscosity” (New set: 11) was a more difficult concept to grasp than, for example, error-

proneness;

 “Aesthetic and minimalist design” (Nielsen: 8) did not quite convey, in their opinion, that

“dialogues should not contain information which is irrelevant or rarely needed” (Nielsen,

2005b);

 They could not understand (or in one case, was sure there was none) the difference

between “simplicity”, in the sense of “visual simplicity” (New set: 8) and viscosity.

Although it was not the main purpose of the interview, a few of the participants pointed out an

additional usability problem during interview. These were not solicited by the researcher, but typically

expressed as something that the participant was unsure whether they should record, or say out loud in

the interview. We decided it would be counterproductive to actively ignore a usability problem once it

had been suggested; the researcher wrote on the interview notes that a problem was mentioned aloud.

However, these are not included in the written comments being analysed here, and remain recorded as

part of an actual review of the two systems, not the heuristics.

6. Discussion

6.1. Reflections on the study

Ultimately, this study is not large enough to definitively answer a question about problem

coverage/discovery. The “evaluator effect” – the variability that necessitates using multiple reviewers

– is well reported in the literature (Hertzum & Jacobsen, 2001). Within the nine participants in this

study, we can see variation in how many problems different users found with the same heuristics. The

small sample was then more open to skew. As mentioned, the Nielsen-group evaluator who had been

taught to use Scratch at school found more problems than the others in their group. In a larger group,

this might only have been a single outlier. Alternatively, it might have shown no relationship between

specific prior experience and problem discovery. The evaluators from the other group who found a

similar number of problems had not previously used Scratch. Quantitative data from this study is not

large enough to support any robust conclusions about the relative thoroughness of the heuristics at this

time.

However, this study does show that the new heuristics have found some actual, verifiable problems, at

least as well as Nielsen’s did, and possibly better. We know from the literature that different methods,

like heuristics or user testing, will generally find different problems, and that a more complete picture

of a system is obtained by inspecting it with multiple techniques (de Kock, van Biljon, & Pretorius,

2009; Hertzum & Jacobsen, 2001). In heuristic evaluations, the recommended number of evaluators

varies (Cockton & Woolrych, 2001; Nielsen, 2005a).

Through qualitative analysis, we found extra kinds of helpful information embedded in the problem

reports. This fits with the observation that problem reports made with the new set were significantly

longer. In addition to comments describing a problem, there were many positively-phrased comments

with both sets. These are not usability “problems”, but it would be unproductive to discard them

altogether. For the purposes of this paper, they are not included – in the graph of problem coverage,

for example – but in a “real” evaluation they would certainly provide additional heuristics-based

feedback on the system being tested. The “checkerboard” style summary used in a stricter test would

obscure this entire category of information.

Page 136 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

In those comments that did describe a problem, there were two “special” forms of comment observed:

problems with suggested fixes; and problems where the reviewer linked two issues as having a cause-

and-effect relationship. Examples of both were quoted in the results section of this paper.

The meaning of “viscosity” was an issue in several interviews. One participant, for instance, was quite

confident that,

“viscosity and simplicity are the same anyway.”

The same participant described a problem related to viscosity (and correctly identified as such by

other participants) using the word “simplicity”, and categorised it under the heuristic relating to visual

simplicity/clarity:

 “H8 simplicity. There is something strange with the way a whole block of blocks is moved,

and one has to separate the first of these in.”

Another interviewee understood that the word meant “thick”, or “sticky”, and understood what we

meant by viscosity in this context, but did not think the choice of word “was quite right”.

However, this was not universal – some clearly understood what viscosity meant. For example,

“…first add the new block beneath the old block, then drag it (and all thus all that follows it) to

the right spot above the old block, then remove the old block…”

“Blocks "stick" together by default.”

6.2. Heuristics as a set
The new heuristics may evolve in time, but they are adequate as a useful, and usable, starting point.

We believe they are an improvement over Pane and Myers’s (1996) draft set in the same domain.

Some interview participants commented finding it difficult to categorise problems. Miscategorising is

known to occur in heuristic evaluations, generally (Cockton & Woolrych, 2001).

It may be beneficial to investigate severity ratings – part of the “canonical” Heuristic Evaluation

method by Nielsen, used sometimes but not always (Sim, 2011). We did not use them in this study

because we felt they would simply complicate the comparison; we do not know if having to include a

severity rating makes the evaluators more, or less, likely to report a problem, and whether this varies

depending on the heuristic. It is also important that we see these heuristics as being useful during

design, not just a traditional evaluation. In that case, it seems unnecessary for a designer to

numerically rate problems that they have found themselves.

7. Conclusion and future work

Usability heuristics are used in the evaluation of a range of systems. This paper compares the

characteristics of problem reports made using either new, domain-specific, heuristics, or an

established set of generalised heuristics from the literature in the evaluation of an ILE. Within this

pilot study, we found a significant difference in the kinds of comments reviewers made: reviews made

with the new set typically included longer, more detailed, comments than those with the general set.

Through interviews, we gathered the reviewers’ opinions about the structure of the new heuristics.

As expected with a small group, the quantitative data is not definitive. The structure of this study

proved that problems can be found, in these systems, with these sets of heuristics, and by these kinds

of evaluators. An extended version of the experiment is planned later in the current academic year,

using larger groups of evaluators.

8. References

Blackwell, A. F., & Green, T. R. G. (2000). A cognitive dimensions questionnaire optimised for users.

Paper presented at the Proceedings of the Twelfth Annual Meeting of the Psychology of

Programming Interest Group, 137-152.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 137 of 192

PPIG, London Metropolitan University, 2012 www.ppig.org

Blackwell, A. F., & Green, T. R. G. (2007). A cognitive dimensions questionnaire. Retrieved, 2011,

from http://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/CDquestionnaire.pdf

Blandford, A., & Green, T. R. G. (2008). Methodological development. In P. Cairns, & A. L. Cox

(Eds.), Research methods for human-computer interaction (pp. 158-174) Cambridge University

Press.

Cockton, G., & Woolrych, A. (2001). Understanding inspection methods: Lessons from an assessment

of heuristic evaluation. In A. Blandford, J. Vanderdonckt & P. Gray (Eds.), People and computers

XV (pp. 171-192) Springer.

de Kock, E., van Biljon, J., & Pretorius, M. (2009). Usability evaluation methods: Mind the gaps.

Paper presented at the Proceedings of the 2009 Annual Research Conference of the South African

Institute of Computer Scientists and Information Technologists, 122-131.

Green, T. R. G. (1989). Cognitive dimensions of notations. People and Computers V: Proceedings of

the Fifth Conference of the British Computer Society Human-Computer Interaction Specialist

Group, 443-460.

Hartson, H. R., Andre, T. S., & Williges, R. C. (2001). Criteria for evaluating usability evaluation

methods. International Journal of Human-Computer Interaction, 13(4), 373-410.

Hertzum, M., & Jacobsen, N. E. (2001). The evaluator effect: A chilling fact about usability

evaluation methods. International Journal of Human-Computer Interaction, 13(4), 421-443.

Nielsen, J. (2005a). How to conduct a heuristic evaluation. Retrieved September, 2012, from

http://www.useit.com/papers/heuristic/heuristic_evaluation.html

Nielsen, J. (2005b). Ten usability heuristics. Retrieved 08/12/09, 29, from

http://www.useit.com/papers/heuristic/heuristic_list.html

Nielsen, J., & Molich, R. (1990). Heuristic evaluation of user interfaces. Paper presented at the CHI

'90 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems:

Empowering People, 249-256.

Pane, J. F., & Myers, B. A. (1996). Usability issues in the design of novice programming systems. (

No. 96-132). Pittsburgh, Pennsylvania: Carnegie Mellon University.

Sadowski, C., & Kurniawan, S. (2011). Heuristic evaluation of programming language features. (No.

UCSC-SOE-11-06). Santa Cruz, CA: University of California at Santa Cruz.

Sears, A. (1997). Heuristic walkthroughs: Finding the problems without the noise. International

Journal of Human-Computer Interaction, 9(3), 213-234.

Shneiderman, B. (1997). Designing the user interface: Strategies for effective human-computer

interaction (3rd ed.). Boston, MA, USA: Addison-Wesley.

Sim, G. (2011), Evaluating heuristics. Interfaces, 89, 16-17.

Page 138 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Exploring the design of compiler feedback

Thibault Raffaillac

School of Computer Science and Communication

KTH, Royal Institute of Technology, Stockholm

traf@kth.se

Keywords: POP-I.B. transfer of competence, POP-II.B. maintenance, POP-III.D. compiler feedback

Abstract

Nowadays, programmers willing to start optimising their code must undergo a lengthy interaction

with dedicated profiling tools. This paper proposes as an alternative to make compilers generate

feedback messages aimed at explaining how they understand the code, and how it could be improved.

The study aims at foreseeing the technical integration of feedback notifications in modern compilers,

as well as sketching how Integrated Development Environments (IDE) would display them.

A first comparison of three related works enables the core differentiators to be highlighted: letting the

compiler inform where code is actually fine and does not need any refinement, displaying the

notifications along the relevant source lines rather than in a separate interface, insisting on the absence

of artificial intelligence, and evaluating the importance of each message to filter in a handful. Then, a

preparatory field study is carried to observe different programmers and poll their receptiveness to a

compiler feedback. The findings relate the usefulness of optimisations’ suggestions to fit where users

lack expert knowledge, the existence of dormant interrogations calling for serendipitous information

retrieval, and the avoidable mistakes inherent to Message of the Day windows.

Three prototypes are designed to embody three distinct approaches, using Web tools to provide an

appearance close to code editors along with decent interactivity. With the help of a new user study

with the prototypes, a final set of refinements is discussed so as to shape a coherent result and

differentiate it further: users can create and share sets of feedback messages to supplement the ones

included in their compiler, a list of rules is provided to help designers compose the messages, an

emphasis is laid on transparency to help exhibit the absence of artificial intelligence, and the heuristic

used to evaluate the importance of messages is sketched.

1. Introduction

Compiling a program nowadays is simple. Once the source code itself is written, a single action is

needed to turn it to an executable file. With an IDE such as Eclipse or Microsoft Visual Studio, it is

synonym with clicking on a “Build” button. With a command-line compiler such as the GNU

Compiler Collection (GCC), it is computed with a single command. Past the errors and warnings, as

soon as a working executable is output the compiler will not provide any more interaction.

When it comes to optimization, however, the procedure becomes trickier. By setting the proper

options and command-line flags, it is normally handled transparently by the compiler, yet in practice

this support is irregular (see Aho, Lam, Sethi, & Ullman, 2006, for a technical overview of modern

compilers). While instructions scheduling and register allocation are decently achieved nowadays
1
,

improvements such as making parallel loops or exploit the locality of memory accesses will require

tuning specific options, or the source code itself
2
.

On the other hand, a significant knowledge gap separates the programmer from the compiler. For the

1 With the example of GCC, see http://gcc.gnu.org/wiki/InstructionScheduling and http://gcc.gnu.org/wiki/RegisterAllocation (both accessed

03.09.2012).
2 See the example of GCC at http://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html, and for Intel at

http://software.intel.com/articles/automatic-parallelization-with-intel-compilers/ (both accessed 03.09.2012).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 139 of 192

http://gcc.gnu.org/wiki/InstructionScheduling
http://gcc.gnu.org/wiki/RegisterAllocation
http://gcc.gnu.org/onlinedocs/libgomp/Enabling-OpenMP.html
http://software.intel.com/articles/automatic-parallelization-with-intel-compilers/

 2

PPIG, London Metropolitan University, 2012 www.ppig.org

former, the language syntax
3
, the diversity of architectures and systems, and the basic skills required

for a software engineer (Kreeger, 2009; Lethbridge, 2000), are potentially overwhelming. For the

latter, as quoted from Bose (1988), the compiler is not designed to fully “understand” the high-level,

algorithmic intentions expressed by the user in his (or her) source code.

As a consequence, it is believed that users do not obtain the performance and security they should

expect from their programs. This paper is based on a Degree Thesis which investigated the design and

integration of feedback messages from the compiler, to leverage opportunities of tuning and improve

the user’s mastery in software programming. The method was structured based on Saffer (2009)

proposed methodology, with problem framing as Introduction, competitive analysis and

differentiators as Related work, design research and structured findings as Preparatory study,

prototyping in the dedicated chapter, and testing as User study and future work. My own experience

being that of a C/C++ programmer with a passion for performance, I focused on C++, as this general-

purpose language is widely used in industry nowadays.

1.1. Problem definition

The compiler should extend interaction after the creation of a working executable, to suggest

opportunities of improvement, for example. Software such as Intel VTune Amplifier, SmartBear

AQtime Pro, or Microsoft Visual Studio Analyzer, can typically provide such functionality. However,

they are rather a collection of tools, and require dedicated learning, yet the knowledge gap is not

intended to be dug. The suggestions should not require the user to learn a convoluted interface, hence

the idea of mere feedback messages.

Such notifications are not limited to suggestions; fundamentally they provide feedback on the

compiler’s operation while parsing the source code, on how it was “understood”. They could assure

that a hand-coded optimisation is unnecessary when it is transparently done by the compiler.

Furthermore, they would allow the removal of conditional compilation features such as preprocessing

and generics from programming languages. Indeed, nowadays compilers are capable of evaluating

certain run-time expressions at compile-time. With lack of information, however, users still resort to

the dedicated syntax to enforce early evaluation. Now, if a user is aware of which conditions trigger

the former behaviour, the language can be trimmed from its compile-time semantics.

Beyond feedback, with a little more work the compiler could be able to directly query the

programmer, to suggest local tunings when the language semantics show their limits. Think about the

problem of specifying the underlying search tree structure of a set object. Since the C++ standard

library does not offer this choice, users must cope with the default implementation shipped with their

compiler. If the latter provides several implementations though, it could probably be specified through

pragmas (the compiler-specific preprocessing instruction in C/C++) but again this would require

learning the particular syntax. An alternative here would be to generate a query with radio buttons for

the programmer, and automatically insert the correct corresponding #pragma call.

1.2. Challenges
Many potential issues were identified ahead of this work, with the help of the reactions to simulated

intelligent help highlighted in Carroll (1988). The biggest difficulty would be to properly relate the

messages to their context, that is to output messages which actually interest the user, so as not to be

disabled like a Message of the Day in IDEs. Technically, suggesting improvements, guessing the

critical parts of a program, querying the programmer and binding a low-level transformation to the

source code are challenging tasks. In order to avoid calling for unmanageable artificial intelligence,

the system will aim for a simple implementation. Finally, for a reasonable project the amount of

notifications are expected to become tremendous, hence the need to filter them, as discussed further.

With real-world compilers in mind, the work was conceived to be a realisable project amidst the

acknowledged difficulties. See the differentiators and future work for discussion on how they are

tackled.

3 Refer to the C++ specification, for example (http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372,

accessed 03.09.2012).

Page 140 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=50372

 3

PPIG, London Metropolitan University, 2012 www.ppig.org

2. Related work and differentiators

I started by analysing three previous similar attempts (Table 1), then identified a few differentiators so

as to make this thesis a conceivable choice for real-world development environments.

 VISTA (Zhao et al., 2002) EAVE (Bose, 1988) Matlab Code Analyzer

Learning the

interface

Moderate: GUI separate

from the editor

Lengthy: text interface

separate from the editor

Easy: advisory messages

under the relevant lines

Preliminary

knowledge

Transformations (cited by

name) and RTL

Transformations and

capabilities of the machine

None required, everything

is explained, technically

Amount of

information

Huge: showing step-by-

step optimisations on RTL

Decent since limited to

loops

Decent, but limited to

critical advices

Limits No binding to original

source

Only vectorisation, need to

request advice

No simple feedback or

querying for tuning

Table 1 – Comparison of three related works

2.1. The compiler queries the programmer

A mere advice solicits the user where code needs updating; here we introduce the possibility to simply

inform where code was properly understood, as well as enable direct querying of the programmer.

More specifically, interaction with the programmer can be divided into four distinct tasks (Figure 1).

The compiler should be able to:

 inform: tells how well a portion of code was compiled, relates a compilation technique,

promotes a coding practice, introduces a feature from the standard, etc.

 alert: incites the user to correct a supposed flaw, notifies about a potential vulnerability which

could arise with further lack of attention, recommends a performance tweak. This is the task at

hand in Code Analyzer. As opposed to the previous task, here we request some code to be

fixed. Also, the difference with compiler warnings is that the latter concern code which might

not execute with the intended meaning, though here only tuning is involved.

 ask: inquires a clarification about a portion of code. Sometimes an alert is insufficient, when

the clarification cannot be expressed by updating the code. In cases like choosing the

implementation of a tree structure (set or map in C++) or the character set (Latin-9, UTF-8,

etc.) of a string object, the interface could trigger radio buttons to query the programmer.

This task would further benefit from languages being designed with a supplemental detailed

semantic, accessible with pragmas or menus in the IDE to avoid burdening the main syntax.

 answer: responds to a direct interrogation from the user. The requirement for artificial

intelligence is not discussed in this paper, though an attempt to test its design was made further

in the second prototype.

Figure 1 – On the left image, arrows indicate who initiates the communication. On the right one, lines

bind each task to which data is discussed (a dotted line indicating the data is not to be modified).

Programmer

Compiler

in
fo

rm

a
le

rt

a
sk

a
n
sw

er

inform
Source code

main semantic

Compilation data

detailed semantic

alert

ask answer

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 141 of 192

 4

PPIG, London Metropolitan University, 2012 www.ppig.org

2.2. No separate interface
VISTA, EAVE, and to a greater extent profiling tools in general provide the performance analysis and

suggestions of improvement as an interface distinct from the editor. This requires users to learn how

to use it, and this knowledge acts as a disincentive on their commitment to start profiling. Here we

will bind the messages to the relevant source line, much as in Code Analyzer.

No interface has to be learned here, the only limit to the user’s will to tune the program is the

messages’ clarity, which is discussed further in this paper. Moreover, such an interface can easily be

implemented: in practice a compiler like GCC already outputs a line number along with every

warning and error, and an IDE such as Eclipse is able to display warnings and errors in relation to the

targeted line. This also helps the context to be accurately identified, as opposed to one of the

challenges exposed earlier.

2.3. Cooperation instead of assistance

VISTA, EAVE and to a lesser extent Code Analyzer illustrate what an assisting agent is: it waits for

the user to request help, it does not query him/her, and it focuses on helping the user fix an issue

rather than improving his/her knowledge. By contrast, a cooperation is similar to a discussion, in

which both interlocutors can engage the conversation, ask questions and answer them. Moreover,

there must be no assumption that the programmer is familiar with any of the concepts involved.

Contrary to VISTA and EAVE which refer to the optimization techniques by their names, here the

tasks will give a short explanation and always cite their source, so that the user is never responsible

for owning the proper reference.

This is actually not meant as a human-machine cooperation, since no artificial intelligence is intended.

Instead, it is the designer behind the interaction tasks who is cooperating with the user. Neutrality

needs not be sought then, as the feedback messages and the importance heuristic will embody the

designer’s point of view on how to improve a program. Users Need Rationales, as Carroll and

Aaronson (1988) state, and a liberty for arguing is a decent mean to satisfy it.

2.4. The filtered notifications

In a simple technical design such as the first prototype shown further, or in Code Analyzer, a single

pass on the code generates notifications to be displayed in the development environment – for

simplicity, let us call messages the questions from the third task ask too. In EAVE and Code

Analyzer, the suggestions generated all have critical importance, however we want to consider every

possible feedback here. To avoid burdening the programmer with countless notifications, only a

handful should be selected to be displayed at each build, hence the need to filter them. A simple

solution proposed here is to evaluate a coefficient of importance for each message generated, then

display the few highest rated ones. See the User study and future work for a technical description of

the formula.

Besides, for the sake of transparency and to allow users to retrieve missed feedback, the full list of

published messages must be kept available, that is all the notifications generated before they were

filtered to keep a handful. The integration of this list in code editors is not covered in this paper,

though.

3. Preparatory study

At this point, a series of interviews was necessary in order to evaluate the users’ preferences regarding

the contents of the messages, and ensure there would be no clear rejection of “improvements” to

compilers. I chose to start with a simple algorithmic task. Being in familiar working conditions the

interviewees could share their interrogations through a think aloud, and explain afterwards how they

could optimise their code further. In need for participants with experience in programming, I selected

KTH peers whom I knew had such experience. Each interview would be conducted on a platform the

participant would be familiar with, be it his/her own laptop or a school desktop computer. I would sit

next to the interviewee and give the instructions while he/she had the IDE in sight.

Page 142 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 5

PPIG, London Metropolitan University, 2012 www.ppig.org

Three problems were written, covering a broad range of expertise, on three distinct typical goals in

programming: performance, security and maintainability/extensibility. The problems would be given

in any order, usually two in an interview, so as to fit in 40 minutes. Five interviews were carried over

a month. This rather limited number of participants was fortunately mitigated by the range of their

core fields: Numerical Analysis, Networking, Software Engineering, Cryptography, and Robotics.

It was first observed that all participants had interrogations or misconceptions regarding optimisations

the compiler can perform, which was pounded by their average experience of 9 years in programming,

and 2.5 years in their current language. This incomplete knowledge covered for example: where

objects are stored in memory, the unrolling of loops, or the replacement of a multiplication by 2
n
 with

a binary shift. One could argue that asking a quick working draft then its optimization induced the

production of sub-efficient code in all three problems. This is however meant as a reflection of the IT

industry, where delivery of working software under tight schedule is a core target
4
. The interviews

showed that people perform hardly well at optimizing code, the interface should thus provide help to

produce efficient working code at first draft.

It also appeared that proper optimization is not barely a matter of time. One has to be an expert in the

specific field corresponding to the specific aspect targeted. This leads to projects centred around one

aspect, the others becoming sub-efficient. A perfect example is the BSD family of operating systems:

FreeBSD (performance), OpenBSD (security), NetBSD (portability)
5
. The interface should thus help

to compensate where users lack expertise.

Furthermore, the participants often showed interest in the answers to questions they had previously

been wondering. The existence of such unanswered interrogations which somehow haunt the users,

calls for serendipitous information retrieval (De Bruijn & Spence, 2008). The interface should output

several different messages at each execution and cite a source in each one, so as to expose the user to

much information, that potentially answers a dormant interrogation. Moreover, for the same purpose

the messages should be the shortest, and the number of sources limited to one.

Finally, when observing those using an IDE, I noticed they were all disabling the Message of the Day

tooltip at startup. The reasons they gave were that much of the information displayed would document

basic functionalities, the first few messages were not teaching anything, and they were neither

contextual nor relevant. The first note motivated the requirement for technicality of the messages, that

is they should always seem relevant, not worth being disabled, even if they would be quite complex.

A source link could then provide the necessary details to users willing to follow it. As for the third

note, it instructed to avoid citing what the compiler can do in general, in favour of informing what it

will do on a particular line of code. Thereby, the feedback is closest to the context which triggered it.

4. Three prototypes

As advocated in Dow et al. (2010), I chose to design several prototypes in parallel, each embodying a

distinct approach to the solution. This work does not include their iterations though, which are simply

discussed in the next chapter.

4.1. First prototype: a stripped version for GCC

This prototype (Figure 2) emerged after an unsuccessful proposal for a Google Summer of Code for

GCC
6
, and corresponds to the interaction tasks inform and alert. Confronting the design of a

compiler’s feedback to the internal workings of GCC helped identify the difficulties, and overcome

them with a simple technical scheme. HTML5, CSS3 and JavaScript were used for the neat look and

interactivity they provide. Note that the sample feedback messages presented in all three prototypes

are not meant to be true for any particular compiler; they simply look technical and precise.

4 Refer to the first, third and seventh principles of the Agile development method at http://www.agilealliance.org/the-alliance/the-agile-

manifesto/the-twelve-principles-of-agile-software/ (accessed 07.09.2012).
5 For a brief history and comparison of the three major BSD systems, see http://www.freebsdworld.gr/freebsd/bsd-family-tree.html
(accessed 07.09.2012).
6 Available at http://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/traf/2001 (accessed 13.09.2012).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 143 of 192

http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.agilealliance.org/the-alliance/the-agile-manifesto/the-twelve-principles-of-agile-software/
http://www.freebsdworld.gr/freebsd/bsd-family-tree.html
http://www.google-melange.com/gsoc/proposal/review/google/gsoc2012/traf/2001

 6

PPIG, London Metropolitan University, 2012 www.ppig.org

Figure 2 – Screen from the first prototype
7

The original proposal involved generating the messages from every compilation unit in GCC,

entangling the messages in its source code. The proposed approach here is to use files to store all

possible messages, as pairs {text, trigger}, the latter being a condition on each instruction processed

which enables the output of the corresponding text as a feedback. Though outside the scope of this

thesis, the standardisation of a trigger syntax would allow messages to be written for several

compilers, and be shared among users thanks to their storage in files.

The most important task along with designing the interface was to provide an exhaustive list of

possible messages, to give a clearer idea of its usefulness. In order to manage the enumeration, I

focused on the standard optimizations performed among most modern software:

 Register Allocation (explaining how faster an operation is performed in registers, telling

whether for an inner loop or a function all automatic variables could be stored in registers or

spilling happened, citing the allocation technique used, informing which conditions allow a

data structure to be stored in registers)

 Strength Reduction (indicating when a multiplication by a loop index was carried with an

addition, warning about the use of floating point functions on integers and propose

alternatives, showing the replacement of multiplications with powers of 2 by binary shifts)

 Common Sub-expression Elimination (informing where an expression was found to be

redundant and how the code was replaced, enumerating which operations are taken into

account in CSE)

 Value Range Propagation (telling when a constant has been properly propagated, showing that

the detected range of values of a variable leads to a performance gain, enumerating the types

which can be propagated by the compiler, citing the Static Single Assignment technique)

 Branch Prediction (informing when a dead section was detected and will not be compiled,

showing how branch probabilities translate into code and how performance improves)

 Functions Optimizations (telling when and why a particular function was inlined, informing

about the compilation flags toggling inlining, warning when too many variables are passed to a

function as the registers are limited, telling when Tail Recursion could be applied on a

recursive function, describing how complex objects like classes are passed as arguments and

returned)

7 The first prototype is available online at http://www.csc.kth.se/~traf/thesis/proto1.html.

Page 144 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

http://www.csc.kth.se/~traf/thesis/proto1.html

 7

PPIG, London Metropolitan University, 2012 www.ppig.org

 Data Alignment (explaining why the size of a structure can be bigger than the sum of its fields’

sizes, telling in which case padding was added inside a data structure, informing about the

performance penalty when accessing unaligned data)

 Stack Layout (pointing which variables are stored on the stack, giving figures as to how

performance increases with such storage, proposing buffer overflow protection techniques and

informing which flags enable them, giving the typical stack size on the target system)

 Vectorisation / Parallelisation (indicating whether and why a loop could be vectorised on a

SIMD-capable architecture, describing how to best control vectorisation through flags and

tools, providing figures as to how the performance of a loop increased with the use of SIMD

instructions, telling whether several similar operations could be packed in a single instruction,

suggesting parallelisation libraries to execute simultaneous iterations on parallel threads)

I also focused on the various aspects of a language design (mainly C++) to enumerate a few more

topics for feedback messages:

 Manipulation of files (explaining the difference in performance/cache use/security between the

various input/output functions, pointing out risks for unsafe/unchecked input)

 Time management (warning about the year 2038 bug and discussing means to circumvent it)

 Strings and characters (providing a comparison between null-terminated and sized strings,

explaining how the fast comparison and copying functions translate into code)

 Assertions (giving figures as to how enabling assertions impacts performance, telling whether

assertions are used for value range analysis)

 Style and formatting (warning when a function is too big that it would not fit in a cache, telling

which character set was detected for the source file and how strings are stored in the output,

here the messages can greatly depend on the designer/community)

 Run-time checks (enumerating the list of available checks and the flags enabling them,

informing when such checks have been inserted and their cost)

 Classes (showing when constructors and destructors are inlined, giving the number of system

calls involved in the use of dynamically sized objects, describing the actual implementation of

standard complex classes like bit-fields or hash tables, telling which operations will leave a

certain iterator stable)

 Functions (introducing the overhead of a function call, telling which registers are saved/used)

 Data storage (explaining where in memory the standard instructs a particular static/automatic

variable to be stored, informing where in memory constants are saved, introducing endianness

and why one should care about it, suggesting faster initialization methods like memset)

 Floating point types (warning about the use of equality with such variables, describing the

range of acceptable values including subnormal numbers and the expectable precisions)

 Operators (telling how certain ambiguous operations like integer division behave with negative

operands, comparing the speed of an addition versus a multiplication on the target architecture,

warning when an apparently small operation like a norm has a non-negligible cost, informing

about the possibility of integer overflow and proposing various means to avoid it)

 Control flow structures (explaining how switch statements are converted into fast code)

 Exception handling (describing how this mechanism is translated into code, citing which types

of exceptions are the most easily dealt with by the compiler)

These lists are certainly not exhaustive but already give a strong basis of feedback messages the

interface could implement.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 145 of 192

 8

PPIG, London Metropolitan University, 2012 www.ppig.org

4.2. Second prototype: a communicative compiler
The second prototype (Figure 3) was designed to complement the feedback side with the possibility to

query and discuss with the programmer, corresponding to the interaction tasks ask and answer. After a

successful compilation, the second frame displays a set of spontaneously generated queries. As with

the first prototype, these notifications will change each time a compilation is run. Answering them is

never required; they will default to safe values.

Figure 3 – Screen from the second prototype
8

Technically, this prototype requires a compiler-specific semantic to express the answers to queries. As

an example, clicking “Proceed” on the question in Figure 3 would add #pragma rand

substract_with_carry before line 12, effectively giving this hint for the next build run.

Triggering these messages would then be similar to the first prototype. They would become triplets

{text, trigger, pragma}, where text would be formatted to generate a query, and pragma would

contain the text added to the source code after answering the question.

Enumerating the messages to include in such an interface is not as straightforward as for the first

prototype. It requires seeking the aspects of a language semantics which are incomplete. For C++, I

focused on the aspects which would benefit from the increased expressiveness without burdening the

main semantic:

 Choosing the character encoding of a string or stream, which will influence functions such as

strlen or isspace

 Setting the locale of the program, since the current C standard dedicates a single library to it

 Asserting that a certain variable will never overflow, which could enable certain optimizations

 Choosing the algorithm behind certain mathematical operations such as computing the inverse

square root, while giving the precision of each

 Querying the expectable branching probabilities in a critical portion of code

 Asking whether to maintain an assertion in release mode when sample cases show its failure

 Gathering the properties of an variable read from a stream, to enable the use of faster routines

 Selecting the algorithm to sort an array, the default being usually Quick Sort

 Setting the precision for the storage of time or delays

 Selecting the implementation method to generate random numbers (in C++ a library is

dedicated to it, though in C it is a single function)

8 The second prototype is available online at http://www.csc.kth.se/~traf/thesis/proto2.html.

Page 146 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

http://www.csc.kth.se/~traf/thesis/proto2.html

 9

PPIG, London Metropolitan University, 2012 www.ppig.org

 Choosing the underlying storage of an array of bits (in C++ it is stored as a bitset though it

sacrifices performance in comparison with an array of integers)

 Setting the properties of a container (the implemented directions of iteration, whether the size

often increases, where items are appended, whether stable iterators are required)

 Asking for the implementation method of a binary tree or a hash table

 Proposing the stack protection method against memory corruption including buffer overflows

These semantics being optional, they must not have critical importance on the program. They will

rather be set to tune its various aspects, when the program was already proven to work properly. As

with the previous prototype, this list is certainly not exhaustive, but gives an insight for the usefulness

of the querying improvement.

4.3. Third prototype: a far-fetched alternative

This prototype (Figure 4) goes one step further in the coupling between the compiler and its interface.

It uses a second frame to graphically represent the compiler’s understanding of the various elements

found in the code. It was mostly intended as a place for open suggestions from the testers, and is not

to be matched with the interaction tasks previously mentioned.

Having noticed in the interviews that users had a will to do good despite their refusal of an embodied

interface, I chose to depict the compiler as a living system. The interaction then consists in the user

helping the compiler understand the code, a simple colour scheme being used to inform how an

element is apprehended. The two frames are representing the code as text, however the right one

should evolve towards a more suitable representation, such as a coloured dataflow diagram.

Figure 4 – Screen from the third prototype
9

5. User study and future work

A new series of interviews was scheduled to ensure the goals set after the first one had been met, and

estimate how users would consider the value added. Five interviews of 30 minutes each were

conducted over two weeks, with the requirement that the participants had not participated in the

previous interviews, had had a previous experience with an IDE, and could understand basic C++.

After testing the three prototypes in order, the interviewee would choose his/her favourite and explain

it, then answer a few additional questions about the use of personae (see the next dedicated section).

9 The third prototype is available online at http://www.csc.kth.se/~traf/thesis/proto3.html.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 147 of 192

http://www.csc.kth.se/~traf/thesis/proto3.html

 10

PPIG, London Metropolitan University, 2012 www.ppig.org

Both the first and third prototype were praised, the former for its technical insights, and the latter as a

quick overview of the compiler’s job. As with the preparatory study, few participants were initially

showing interest or added value in a feedback from the compiler. I had to pursue the description to the

personae, until the concept of compiler feedback became clear and coherent. Then they all agreed that

they would not disable the feedback like a Message of the Day, which was my main concern. Some

even expressed they were actually looking forward to seeing a working release in the future.

Surprisingly though, very few interviewees understood the third prototype’s colour scheme at first

glimpse; further iterations should probably explore accentuating the areas requiring attention inside

the very tooltips.

On the downside, the second prototype was generally little understood. This might have been

influenced by the unusual situation of being queried by the compiler. However, in my opinion it was

the presentation as a separate frame which made it difficult to spot the context at hand, that is which

part of the program the question was dealing with. The integration of queries along source lines as in

the first prototype then remains to be tested for future iterations.

5.1. The personae
This idea appeared with the possibility to store messages in files, as discussed in the first and second

prototypes. Provided a trigger syntax is defined, each notification can be stored aside the compiler,

under a triplet {text, trigger, [pragma]}. Sets of notifications can then be stored as files forming

categories of similarly related items. The addition of a field along every message of the first prototype

could further allow the programmer to be aware of the category at hand, and increase or decrease its

further occurrences, in order to receive the most interesting feedbacks.

Categories form the default set of messages shipped with the compiler. To extend and customise this

set, users could create their own files and share them. The persona here is the idea to bind an author to

a file with notifications. Knowing who wrote a certain suggestion could give value to it and mitigate

the effect of a poor feedback, particularly if the author is known for being a good programmer. Here, a

simple and recommended way to store the category and author’s names is though the file’s name.

In practice most testers were very receptive to it, with different intents. One tester did not care about

the author’s name, as long as he/she was a specialist. Another one conceived the sharing of files inside

teams of developers, in companies. A last one considered contributing in online communities of

developers rather than friends.

5.2. A few rules for composing the messages

During the tests, feedback was sought for the relevancy and clarity of the messages. While the testers

were often puzzled with the feedback’s technicality, they were very fine with it. Indeed, two actually

argued that they were used to this situation. The links to references were intended to balance this

complexity, and in practice were praised by all interviewees. The quality of redaction had a great

influence on the participants’ reception of each message, though. The first query in the second

prototype, for example, was systematically deemed too complex, and I always had to explain it. This

difficulty motivated further the addition of personae, to let programmers choose a good teacher, and

sketch a set of rules to help the redaction of further messages:

 Technicality: The feedback should rather be too technical than not enough, and provide a

substantial benefit which will be highlighted.

 Context: Indicate what the compiler will do for a particular line/object rather than what it can

do in general.

 Referencing: Cite one and only one source giving details for the corresponding feedback.

 Neutrality: Balance the amount of positive and negative feedback, that is when a line was well

understood or when it needs tuning.

 Clarity: To be read and understood quickly, each message should receive careful attention and

go straight to the point.

Page 148 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 11

PPIG, London Metropolitan University, 2012 www.ppig.org

5.3. Transparency is crucial
As advocated in Sinha & Swearingen (2002), transparency has been a key design choice along this

work. Providing a reference link along each feedback, targeting the programmer’s knowledge rather

than hacking tips, binding the author to the messages, defining a syntax for notifications and storing

them in text files directly accessible to the programmer, were all choices motivated with transparency

in mind. It should be noted here that transparency is preferred over translucency – selecting what is to

be shown – since no thought restriction on the information given was intended.

In my opinion, transparency is the key means to show and insist on the absence of artificial

intelligence, or “smart assistant”, to govern the suggestions. Giving the qualifier smart to the robot

could make the users feel it is asserted to be smarter than them. Carroll and Aaronson (1988) bring out

many receptiveness issues from interacting with such an agent, which transparency would greatly

mitigate. Indeed, with access to the database of possible messages, and knowledge of who lies behind

them, users are aware of the bounds of the compiler’s intelligence, and will not expect more than it

could actually help.

5.4. A formula to evaluate the importance of each message
As hinted in the differentiators, taking into account the huge range of possible feedback messages will

require the computation of an importance factor along with every message generated, in order to

select a handful to display. For the purpose of being exposed to the programmer and implemented

easily, the formula constructed here aims at simplicity.

Let us note fc a constant criticality factor for the message, n the number of its previous occurrences, fp

a preference factor assigned to its category, and m the number of previous messages displayed on

the same line. A simple recommended formula here would be the average of fc, 2
-n

, fp, and 2
-m

,

provided all are bounded by [0;1]. The strength of such a formula is the simplicity to graphically

represent an average. As a drawback, it does not allow to completely disable one category, though this

is actually possible by simply deleting the corresponding file. Also, the factors averaged might need to

receive an additional scale, which estimation is left to implementation.

Note that reinitialisation of the heuristic is to be taken into account. The compiler might be reinstalled

often, possibly clearing the memory of previously displayed messages (n and m) and preferences (fp).

The more files/categories are stored, the more time will be needed to reach their previous fp values

(considering the programmer can only increase/decrease this factor on every message received). The

number of categories should thus be limited to a dozen on average.

6. Discussion and concluding words

This project started with the idea to have the compiler return performance-helper messages, much as

in the first prototype. The expected design was then pretty clear, though the content of the messages

remained to be defined. However, most of the time was actually spent on communication tasks.

Indeed, the project suffered from the difficulty to clearly state what was intended by a feedback,

because this word can be interpreted quite at will. Moreover, it evolved vastly to seek a coherent

system which could be obviously differentiated from mere compiler warnings, and the dreaded

paperclip assistant from Microsoft. Designing the prototypes with the precision of HTML and CSS

helped dramatically to show exactly what was intended. An actual challenge during this Degree

Thesis was the management of the two rounds of interviews. Though in this paper they occupy a

marginal space, in practice a sheer amount of time was dedicated to them, especially for preparing the

interview plans and the algorithmic tasks.

A few points were left aside during this work, either by lack of time or because they were a matter of

debate. Among them, the initialisation of the system should be mentioned. Introducing the feedback is

important, so that users do not disable it instinctively like a Message of the day. An example for an

introductory text could be: This compiler can output feedback messages telling how it understands the

code, as well as technical suggestions. The list of feedback messages it can generate is contained in

[folder], and can be extended by adding .cfb files downloaded from trusted authors.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 149 of 192

 12

PPIG, London Metropolitan University, 2012 www.ppig.org

Also, this paper does not cover how to identify the level of knowledge of the users. Receiving too

complex/simple feedback might eventually annoy them. While they can choose and download the

notifications’ files to add to the compiler, the initial set of categories could be specifically tailored to

each one’s knowledge, by estimating it with a question along the introductory text, for example.

One last issue which might eventually arise with the possibility to share authored feedback files is the

lack of secure signing. If the author’s name is stored in the name of the file as suggested in this paper,

nothing prevents it to be overwritten, or a wrong set of messages be imputed to the same author. The

rationale behind this choice is similar to the availability of coding guidelines on the Web: it is the

user’s responsibility to fetch the file at the source he/she trusts.

As shown in the tests, the introduction of a feedback from the compiler was well received, either

indirectly for the “big picture” overview it would provide, or for its relevant technical insights. Using

this interface does require very little learning, if any, which is in my opinion a cornerstone of this

work. As for the direction to give to the prospective future iterations of the prototypes, since both the

first and third were deemed promising the focus should be laid on implementing the common basis,

namely generating the feedback messages. An option could then be available to choose how to display

them. Indeed, this choice might depend on the progress of the coding project. At the early stages when

raw code is written, a few technical messages targeting the most critical aspects would be needed, as

in the first prototype. Later in the process when these fragments are assembled, a broader overview

like the third prototype would become useful. Giving these tools to the programmer would then make

optimisation more accessible, outside the sphere of expert programmers.

7. References

Aho, A. V., Lam, M. S., Sethi, R., & Ullman, J. D. (2006). Compilers: Principles, Techniques, and

Tools (2nd ed.). Prentice Hall.

Bose, P. (1988). Interactive program improvement via EAVE: an expert adviser for vectorization.

Proceedings of the 2nd international conference on Supercomputing - ICS ‘88 (pp. 119–130).

New York, New York, USA: ACM Press. doi:10.1145/55364.55376

Carroll, J., & Aaronson, A. (1988). Learning by doing with simulated intelligent help.

Communications of the ACM, 31(9), 1064–1079. doi:10.1145/48529.48531

De Bruijn, O., & Spence, R. (2008). A new framework for theory-based interaction design applied to

serendipitous information retrieval. Transactions on Computer-Human Interaction, 15(5).

doi:10.1145/1352782.1352787.

Dow, S. P., Glassco, A., Kass, J., Schwarz, M., Schwartz, D. L., & Klemmer, S. R. (2010). Parallel

prototyping leads to better design results, more divergence, and increased self-efficacy. ACM

Transactions on Computer-Human Interaction, 17(4), 1–24. doi:10.1145/1879831.1879836

Kreeger, M. N. (2009). Security testing. ACM SIGCSE Bulletin, 41(2), 99.

doi:10.1145/1595453.1595484

Lethbridge, T. C. (2000). What knowledge is important to a software professional? Computer, 33(5),

44–50. doi:10.1109/2.841783

MathWorks. (n.d.). Using the MATLAB Code Analyzer Report. Retrieved September 7, 2012, from

http://www.mathworks.se/help/techdoc/matlab_env/f9-11863.html

Saffer, D. (2009). Designing for Interaction: Creating Innovative Applications and Devices (2nd ed.).

New Riders Press.

Sinha, R., & Swearingen, K. (2002). The role of transparency in recommender systems. CHI ‘02

extended abstracts on Human factors in computer systems - CHI ‘02, 830.

doi:10.1145/506558.506619

Zhao, W., Jones, D. L., Cai, B., Whalley, D., Bailey, M. W., van Engelen, R., Yuan, X., et al. (2002).

VISTA. ACM SIGPLAN Notices, 37(7), 155. doi:10.1145/566225.513857

Page 150 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

http://www.mathworks.se/help/techdoc/matlab_env/f9-11863.html

Evaluating application programming interfaces as
communication artefacts

Luiz Marques Afonso1, Renato F. de G. Cerqueira1,2, and Clarisse Sieckenius de Souza1

1 Departamento de Informática, PUC-Rio
{lafonso,rcerq,clarisse}@inf.puc-rio.br

2 IBM Research Brazil
rcerq@br.ibm.com

Abstract. Application programming interfaces (APIs) allow the reuse of software artefacts by
providing abstractions to other software layers, and their design is critical to enable the effective
use of the underlying software and avoid programming errors. As such, the role of an API designer
should be strengthened in any software project that has reuse among its goals. Also, we should
be able to evaluate the effectiveness of an API in communicating its design to programmers and
identify the tools and techniques that help the designers to accomplish this task, so that APIs
may be easier to understand and use. This paper describes a work in progress that proposes the
use of a combined semiotic and cognitive method to evaluate APIs as an artefact mediating the
communication process between designers and programmers, and also aims to investigate some
possibilities of enhancing this communication.
Keywords: POP-I.B Barriers to programming; POP-II.B Program comprehension; POP-III.C Cog-
nitive dimensions; POP-V.B Research methodology

1 Introduction

Abstraction is one of the central concepts in Computer Science [30], permeating all the activities
related to software construction and use. It is a cognitive resource that allows us to remove details
in order to simplify things and focus attention on the core properties of a complex object [24].
As such, it seems intuitive that, although executed by a machine, a software artefact has its
creation process deeply based on human interpretation.

Reuse is one of the main goals of Software Engineering. To be achieved, software reuse relies
on abstractions in the form of libraries, components, objects, and other artefacts. At each level,
software interfaces allow a programmer to construct new abstractions to be provided to another
layer, exposing new concepts and design, and hiding internal details as needed.

Reusable software components are specified and implemented by programmers to be used
by other programmers in order to construct new software. The reuse of a software artefact
is achieved via its interfaces, which allow new software to call the available operations and
create new functionalities on top of the existing abstractions. Programmers need to realise the
concepts and the design behind the interfaces available in order to use them effectively. From a
human-centric perspective, we can consider that a communication process takes place between
programmers, mediated by the software artefacts involved.

We refer to software interfaces, or APIs (application programming interfaces), as any set of
semantically related operations and data, usually associated with a specific domain. Software
components, modules, libraries and frameworks usually provide APIs that expose their func-
tionality to other software elements. This definition is similar to the one used in the work by
de Souza et al. regarding the study of APIs in the context of cooperative work [13]. APIs play
a central role in modern development environments and languages, since even the most simple
programs depend on the provided library and framework interfaces [23].

Software projects are known to be a difficult endeavour, and defects are usually expected.
Although it is not easy to estimate the percentage of defects related to the incorrect use of
APIs or to misinterpretation of its design, probably every seasoned programmer has already
experienced difficulties and errors when writing code involving a complex API.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 151 of 192

The use of software interfaces may impose a considerable amount of cognitive load on the
programmer, depending on the abstractions involved and the design of the artefacts provided.
The higher this load is, the higher is the intellectual effort needed, which may increase the
error-proneness of the activity of software development.

To illustrate how API design and communication of intent may have an impact on the
work of developers, we present a simple example from the Java API, based on the book from
Bloch and Gafter [5]. The example shows that even well known concepts like date and time,
used in almost all application domains, can be a source of problems. The Java class Calendar
implements some of the functionalities regarding date and time in the language API, and it
contains many set methods that allow the programmer to change an object’s internal fields.
One variant of these set methods is defined as below:

void s e t (int year , int month , int date)

At first, the method’s short description in the documentation looks pretty obvious: “Sets
the values for the calendar fields YEAR, MONTH, and DAY OF MONTH”. Although it may
seem straightforward, a very simple program reveals what is behind the implementation:

Calendar c = Calendar . g e t In s tance () ;
c . s e t (2012 , 8 , 3 1) ;
System . out . p r i n t l n (c . getTime ()) ;

Surprisingly, the output of a Java program containing this code snippet is similar to the
following:

Mon Oct 01 13:21:27 BRT 2012

Most people would expect something like “Aug 31”. The explanation comes from the fact
that the Calendar class handles months in a zero-based integer representation (e.g. 0=Jan). So,
the parameters in the example mean “Sep 31”, which is itself an invalid date. In this case, the
Calendar class silently “corrects” the date overflow to the next day, which is “Oct 1”.

Despite the fact that this simple example may be considered as a bad design decision, it
illustrates how the designer intentions behind an API may differ from the first user interpretation
of its meaning. And if this may happen with a well known concept like date and time, more
complex domains can be a real challenge to the designer in order to represent the concepts,
meanings and behaviour behind an API, and also to the programmer, who has to interpret the
designer’s message and use the software artefact as originally intended.

This paper describes a work in progress in which we aim to analyse software interface
specifications from a human-centric perspective, trying to identify how its effectiveness can be
evaluated and what can be done to enhance the communication of a software artefact design to
programmers. We intend to use a combined semiotic and cognitive inspection method in this
investigation.

The remainder of this paper is organised as follows: section 2 discusses some aspects related
to the view of API design from a communication perspective that motivate this work. Section
3 analyses methods for evaluating APIs from a semiotic and cognitive perspective. Section 4
arguments about the use of some techniques that may influence the communication of design
intent in the context of programming interfaces. Section 5 presents a sample scenario for the
application of the referred methods and possible findings for the type of experiment proposed.
Finally, we describe related work in section 6, and conclude with our final remarks and future
work in section 7.

2 APIs: communicating design

In this section, we look at APIs as a design artefact and analyse the communication aspects
involved in their representation of the designer’s intent to programmers.

Page 152 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Programming is a hard mental work, and a developer usually has to deal with a great
amount of information to write functional code. Problem domain, requirements, specifications,
algorithms, programming language, tools and frameworks are among the kind of knowledge
that is demanded from a programmer to perform his tasks. APIs are used most of the time
when programming in modern languages, especially when dealing with distributed systems and
enterprise frameworks.

API design is critical because it is intended to be written once and used many times, and
later changes may impact users due to compatibility issues. Complex APIs may be daunting, and
difficult usage may discourage adoption, as it increases the demand for experienced programmers
that may be able to use it effectively and efficiently. An example of the consequences of a overly
complex API can be found in Henning’s work [19]. Another article by the same author discusses
the importance of API design [18].

An interesting aspect related to the design of APIs is that they can have many different and
specific goals, which generally make them unique. There can be subtleties behind it that make
some decisions critical to its completeness, usability and flexibility. The design process should
anticipate some crucial aspects about API usage, and this may influence the underlying system
design. For example, the work by Ierusalimschy et al. [22] provides interesting insights about
how the design of the API for embedding Lua scripts in C programs influenced the design of
the Lua language, and vice-versa.

When developing software, a programmer should have a good mental model of the software
artefacts being reused in order to correctly apply these models to his own design, and call
the available operations and services accordingly. If there is not a good understanding about
the abstractions being provided, this can lead to subtle errors that may appear later in the
software life cycle. In a research work dedicated to identifying common software defect causes
and characteristics [20], the authors report that “API misuse is the single most prevalent cause”
of bug patterns detected. Although this work is specific to the Java language, it is a good
illustration of how poor API design may have a strong impact on software quality.

Designing an API is about describing abstractions through type and interface specifications,
and it is usually work assigned to development team members without specific expertise or
training in this design task. Although this may provide good results depending on the team’s
talent, more attention should be paid to the role of an API designer, given the impact that this
activity may have on the overall project outcome. At least, the most experienced members of
a team should be involved, as they have probably seen more of badly designed APIs and may
know better what should be avoided [18].

If we consider that an API represents abstractions created by its designers that need to be
understood by programmers in order to be used effectively, this may be viewed as a communica-
tion process taking place between these two parties, mediated by the software artefacts involved
(specifications, documentation, code, binaries, messages, etc.). More precisely, these artefacts
communicate to the programmers how they should interact with the API, which is itself another
piece of communication. So, in this sense, API design may be regarded as a metacommunication
process taking place between designers and programmers.

In their work [27], Robillard and Deline describe qualitative findings regarding API learning
obstacles and conclude that documentation of intent is one of the most important factors that
impacted learner’s experience. This stresses the importance of effectively communicating to
programmers the API designer’s intentions when developing its abstractions and concepts, and
thus supports our argumentation. Also, they state that “the responsibility from documenting
an API cannot be cleanly separated from the responsibility for designing the API, even though
different skills are involved”. This reinforces the need for a specific role of API designer in the
development team.

The idea of studying API design as a communication process between designer and program-
mer builds on the discipline of Semiotic Engineering [11], which provides a semiotic theory for

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 153 of 192

HCI. Semiotic Engineering has been successfully developed and applied in the last two decades
to study interactive computer systems as “one-shot messages sent from designers to users”,
taking into account the meaning-related and signification processes that occur in the design
and construction of software artefacts.

Although the concepts and methods in this discipline have been traditionally applied to the
analysis of interactive systems in the context of graphical user interfaces, we aim to develop
them further to evaluate the interaction of programmers with APIs, adapting to the differences
of this type of system (a programming interface).

When dealing with interactive computer systems, the designer may convey his message to
the user by means of choosing proper graphical elements in the interface, screen layout, dynamic
system behaviour, and other representations, most of them visual. User interfaces have been the
focus of much attention in the last decade with the availability of new technologies that allow
different forms of interaction, especially touch and voice-based. This gives the designer a rich
toolset to communicate his intent to the user during interaction time.

As to programming languages and APIs, the tools available to the designer usually do not
offer as many possibilities to represent his intentions at interaction time, when compared to
graphical user interfaces for computer systems. The most common resources for communicating
API design are the syntactical representation of the interfaces, and the textual documentation
explaining its concepts and behaviour. The syntactical structure of an API comprehends the
names of the interfaces, operations and data structures, as well as their types. Good name
choices are very important at this level, because they are almost the only representation of
intent available to the designer. They should also be consistent throughout the various elements.

To overcome the limitations of syntactical specification, textual documentation is the most
common medium to complement the representation of the designer’s intentions. Natural lan-
guage documentation is commonly used, but sometimes it may be ambiguous or incomplete.
Documentation may also be augmented with formal descriptions of the operations using a rig-
orous mathematical notation, in an attempt to reduce or eliminate these ambiguities. On the
other hand, this type of notation can be more difficult to be understood by programmers with
less formal background.

In order to give a more dynamic approach to textual documentation, some integrated devel-
opment environments (IDEs) try to bring them closer to the code writing activity, suggesting
operations, parameters and showing their description to the programmer. Although this can be
of great help when writing code, it does not eliminate the need for a more complete description
of the concepts and abstractions behind the API design, which are fundamental to its adequate
use.

Code examples are another important technique to represent the intent behind the design
of an API, as they present use cases from the perspective of the designer’s interpretation of the
abstractions involved, which can be different from the user’s, at least while there is not a clear
comprehension about the message being conveyed. Good examples can eliminate possible gaps
between syntactical and textual description of the API, and its actual use, as they usually make
the concepts and the intent behind the design more concrete. The downside of code examples
is that they can be a source of “copy/paste programming” without a real understanding of the
concepts and the dynamics of the API, but this type of practice is up to the programmer to be
avoided.

Differently from graphical software, a programmer’s interaction with an API occurs when a
program is written, compiled, executed and debugged. The programmer reads the documenta-
tion, writes code to perform a certain task, evaluates the return codes, handles exceptions, runs
the program, analyses the outcome, reads messages, output traces and logs, and so on. This
type of interaction inherently limits the designer options to be “present” at interaction time
when compared to more visual and dynamic system interfaces. One of the research questions
that arises when investigating this subject is how the use of different tools and techniques,

Page 154 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

other than syntactical specification and natural language documentation, can help the designer
perform a more effective communication to the programmers of how interaction with the API
is expected to be done.

As already mentioned, programming with different APIs demands a high cognitive load
from the user perspective. So, the expected result of making the communication of API design
more effective is to lower the hurdle for the programmer to accomplish his task. If we intend to
analyse the representation of API design from the Semiotic Engineering perspective, it seems
natural to combine this analysis with a view of the cognitive impact on the programmers tasks.

In this context, the Cognitive Dimensions of Notations framework (CDN) [2] has been suc-
cessfully employed in previous works related to the evaluation of programming-related tasks [8,
25], and it can provide an interesting counterpart to the semiotic view of API design. In the
next section, we describe this combination of semiotic and cognitive inspection methods in the
context of API design evaluation.

3 Evaluation of APIs

This section refers to existing methods for the evaluation of APIs and proposes the use of
a combined semiotic-cognitive inspection method that can be used in a technical context, to
evaluate a particular API, and in a scientific context, to generate new knowledge in HCI and
Software Engineering.

The discipline of API design and implementation has been extensively studied in the past
decade, as it is a main concern for software development companies that publish APIs to a
large client base. Some of the most representative work in this field come from large software
companies like Microsoft or Google [8, 3]. Their concern originates from the fact that getting it
right before publishing is mandatory, because post-release fixes are costly and may break legacy
code.

Many recent studies in API design have been developed under a usability or learnability
context ([27, 28, 9, 7]), putting stronger emphasis on the user side. Although they are of great
value, it is also important to study this communication process from the designer perspective,
analysing how tools an techniques can be used and improved to make it more effective. We
believe that the combination of semiotic and cognitive methods can be a powerful resource to
help us understand the human-related aspects of API design and software reuse.

Building on related work concerning the validity of new knowledge generated by inspection
methods [12], we intend to adapt the Semiotic Inspection Method (SIM) to the evaluation of
programming interfaces, analysing the communicability of these software artefacts. We expect
that this type of qualitative research may produce interesting insights regarding the effect of
using different approaches to API design, which can serve as input to a more specific quantitative
research in the same subject.

In Semiotic Engineering, signs play a central role in the investigation of the message being
conveyed from the designer to the user. Their analysis relies on a classification scheme according
to the interactive conditions that express their representation. They are divided in three classes:
static, dynamic and metalinguistic.

From the definitions in [12], static signs are “those whose representation is motionless and
persistent when no interaction is taking place”. Dynamic signs are the ones “whose represen-
tation is in motion regardless of users’ actions or whose representation unfolds and transforms
itself in response to an interactive turn”. And, finally, metalinguistic signs “represent other
static, dynamic, or metalinguistic signs”.

The designer’s message conveyed to the users is strongly influenced by the choices made
when combining those different types of signs. This message can be described by instantiating
the metacommunication template [10] :

“Here is my understanding of who you are, what I’ve learned you want or need to do, in
which preferred ways, and why. This is the system that I have therefore designed for you, and

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 155 of 192

this is the way you can or should use it in order to fulfil a range of purposes that fall within this
vision’.’

The signs that compose the software artefacts under analysis should be able to represent the
implicit message described by the instantiation of the metacommunication template, and SIM’s
goal is to evaluate the communicability of these artefacts from the perspective of the designer.
(i.e. the communication sender). The full description of the SIM method is beyond the scope of
this paper, but it can be summarised as a sequence of five steps, where the first three deconstruct
the designer’s message by performing a segmented analysis of the different classes of signs, and
the last two reconstruct it by integrating and interpreting the deconstructed signs. The result
is a characterisation of the designer’s message structure in terms of signs and meanings.

Also in the semiotic context, the work by Tanaka-Ishii [29] provides an interesting account
of the use of signs in programming, stressing the role of identifiers in programs and providing a
semantic classification for them in three levels:

– Hardware: an identifier represents a memory address that stores a pattern of bits
– Programming language: an identifier represents the definition or use of a variable, routine,

module, etc.
– Natural language: an identifier represents a ”message” from the programer who writes the

code to another programmer who reads it

In the context of evaluating APIs as a communication artefact, the natural language level can
be viewed as the most relevant, as it represents the designer intents when creating a software
artefact. At this level, the appropriate choice of metaphors is an important resource for the
effectiveness of an API design.

The inspiration for a combined use of qualitative research methods to evaluate APIs comes
from a recent work regarding the investigation of visual programming environments and compu-
tational thinking acquisition [16], which proposes the use of discourse analysis and inspections
based on Semiotic Engineering methods and the CDN framework. Although the nature of the
object of analysis is different (visual programming environments vs. APIs), we intend to adapt
the method used in order to obtain qualitative findings which are expected to be relevant to
the field of API design.

The basic idea behind the combination of these research methods is to provide different per-
spectives for the same experiment and obtain a more complete cycle of analysis of the findings.
SIM offers insights about sign systems and notations used by the designer to communicate his
vision. CDN provides the basis for a cognitive analysis of the experiments, which is relevant
due to the fact that the use of a new API implies a learning experience for programmers. These
two methods may be complemented by discourse analysis by providing additional evidence to
support or contradict other findings.

To the best of our knowledge, there is no report of a similar experiment using the combi-
nation of these methods. This means that there is no previous evidence that this approach is
effective. On the other hand, there is a high expectancy of obtaining relevant results based on
the application of these methods to the evaluation of visual programming environments.

4 Enhancing the communication of API design

In the previous sections, we presented how the design of an API may be regarded as a com-
munication process, an how it can be evaluated. In this section, we discuss some concepts and
techniques regarding API specification that may influence this communication by offering more
expressiveness to the designer in order to convey his vision of the system to the programmers.

In our current work, the main expected contribution is the evaluation of API design from a
communication perspective and the cognitive impact of the designer’s choices by using a novel
combination of research methods. This may serve as the basis for the comparison of different
API specification techniques and tools, as a secondary contribution from this work.

Page 156 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

The most common form of API specification is the combination of its syntactic elements
written in a formal language and a textual description in natural language of the semantics
of its operations and parameters, as well as its behaviour. The designer has a few options to
represent his vision of the software artefact to the users, namely:

– names for operations and parameters
– types for parameters and return values
– textual description of semantics and behaviour
– exceptions and error codes to indicate misuse of API or unexpected conditions

The sole use of syntactical constructs in interface specifications limits the designer’s options
to be “present” at interaction time to provide more dynamic information to the programmer. In
a programming environment that offers mechanisms for behavioural specification and runtime
monitoring, the designer is able to include a more formal description of its intents that may
give a richer interactive experience to the programmer when dealing with an API.

For instance, contracts [26] are a lightweight formal specification technique based on the use
of preconditions, postconditions and invariants to describe the behaviour of software artefacts.
This form of specification provides more powerful tools to the designer in order to describe how
the interface is expected to be used, and which are the results of the operations depending on
the calling context. This type of specification may interfere on the programmer’s activity by
giving feedback while code is written (static analysis), as well as when the program is executed
(dynamic analysis), since the violation of any assertion may give more information about the
cause and the nature of the problem.

From a cognitive perspective, the use of contracts may also have an impact on the program-
mer’s work, since they provide a more precise description of the API behaviour than textual
documentation, helping the programmer to understand the causes of possible errors by giving
immediate feedback related to API misuses. Putting in CDN terms, contracts may have, for
instance, a higher closeness of mapping to the API behaviour than textual documentation, and
also make hidden dependencies between operations in the interfaces more explicit.

The use of formal behavioural specification languages [17] provide an even higher expressive-
ness to describe a software artefact, and allows the use of tools like model checkers to validate
the specification. Although they can be a very powerful specification resource, they may also
impose a higher demand for abstractions on the user, specially in mathematical terms, which
can possibly have a negative impact on learnability. These are also interesting aspects to be
investigated.

Beyond behavioural specifications, there are further levels that can be approached to de-
scribe a software artefact. In [1], the authors provide a classification of contracts in four levels:
syntactic, behavioural, synchronisation, and quality of service. Most contract systems support
the second level, described in terms of invariants, pre and post conditions, which consist of logi-
cal assertions to describe the system state before and after operation calls, supporting modular
reasoning and runtime verification of these conditions.

The specification of synchronisation contracts can be a valuable resource in expressing the
designer’s intents, as they offer a formal definition of the allowed sequence of operations, which
can be enforced at runtime to prevent an unexpected call pattern, informing the user the precise
reason to why the API does not work as expected in that particular scenario.

Quality of service contracts open the possibility of specifying non-functional aspects of a
software artefact that are more related to the execution environment or the preciseness of
the results of the computation being carried out. Although they usually do not represent a
correctness constraint, they offer the designer the opportunity to specify the limitations or
requirements of an API in terms of its execution environment.

Runtime monitoring of these API constraints may allow a richer interactive experience to
the programmer, as there is a constant verification of the designer’s assumptions and intentions,

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 157 of 192

with a corresponding “alert” in case of violation of these conditions. This signal may come in the
form of a runtime exception, log or trace message, routine call, and so on. These mechanisms
may pinpoint the source of API misuses and provide the programmer with a “higher level”
message indicating what is wrong, which may also have a positive impact from the cognitive
perspective.

We intend to investigate the aspects described in this section using the combination of
methods proposed in section 3. We are currently selecting the appropriate tools and elaborating
the experimental scenario in order to capture the most representative aspects in the context of
API design and use, and we will build on our previous experience regarding user experiments,
as well as on the reports from similar research, in an effort to make the most of the results.

5 Example of application scenario

In this section, we illustrate the concepts presented throughout the previous sections with an
example scenario of application of the inspection methods, and the issues that may arise when
investigating the design of a particular API from a semiotic and cognitive perspective. Once
again, the example comes from the Java language, as it is a popular language that may be
familiar to many readers.

The designers of the Java language and the core API created a single rooted class hierarchy
based on the Object class. This class defines common operations to all Java objects. In particular,
the method Object.equals() provides logical equality comparison, and its default implementation
is as restrictive as possible, since it compares the object address in memory, which makes any
object different from all objects but itself.

Another method in the Object class is hashCode(), which calculates a hash value for an
object. The API designers created it in anticipation of the need of a standard way of allowing
any object to be part of a hash-based collection such as HashMap. The result of the hashCode
method determines the distribution of the objects in this kind of collection, which has a direct
impact on the performance of the searching algorithm.

Although the Object class provides a default implementation for these methods, it is often
necessary to override them. If the programmer wishes to provide logical equality for different
instances of the same class, the equals() method should be overridden. For example, a program-
mer might consider two objects of a Car class equivalent if they have the same registration
number. In this case, it would be necessary to provide a specific implementation for the equals()
method. The method’s documentation specifies that any implementation should satisfy the re-
quirements of an equivalence relation, which means that it should be reflexive, symmetric and
transitive. Also, it should be consistent, returning always the same value (true or false) when
called, provided the internal state of the objects being compared do not change between calls.

There is a strong relationship between these two methods that is commonly overlooked or
ignored by Java beginners. The “rule of thumb” says that, if one overrides one method, the
other should also be overridden, in order to maintain the class consistence, since objects that
are considered “equal” must return the same hash code. One typical consequence of not getting
this right is that an object inserted into a hash-based container may never be recovered.

A quick search for terms like “java hashcode equals” in Google provides many results regard-
ing tutorials, articles and discussions in development forums about this topic. The “Effective
Java” book [4] dedicates almost 20 pages to the discussion of these methods, which shows that it
is not a trivial subject. Due to the inherent complexity of this feature, the misinterpretation of
the designer’s intent behind the API specification may cause subtle defects that can be difficult
to trace [21].

One particular issue related to this characteristic of the Java language can be found in the
Java API itself. The class java.net.URL overrides the equals() method, based on the assumption
that two URLs are equivalent if the name of their host components resolve to the same IP
address.

Page 158 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

The use of domain name resolution inside an equality comparison of URL objects is, by
itself, a bad idea. It makes the URL.equals() operation dependent on the network status, which
means that it may fail or take a long time. Also, virtual hosting allows two different websites to
share the same IP address, which breaks the assumption that two URLs pointing to the same
host may be considered equal.

Apart from being a bad design example, the URL class does not comply with the Ob-
ject.equals() contract, since it breaks the consistency requirement. As it depends on factors that
are external to the object state (i.e. network), the method may return different results between
calls. Also, the timing issues related to name resolution makes the use of URL objects in hash-
based collections impractical. For example, if a HashMap contains URL objects as keys, a get
operation will compare the requested key with the collection elements, calling URL.equals()
repeatedly, and each call will perform a host name resolution in the network.

The URL class example illustrates that the communication of API design intent may involve
three different roles: the designer of the API, the implementor of the API, and the client pro-
grammer. In this case, the developer of the URL class misinterpreted the design of the Object
class, and provided a broken implementation of the original intended artefact. The application
programmer, at the end of the chain, has to deal with the burden of interpreting different “mes-
sages”, one coming from the original Object class designer, and the other from the URL class
developer.

In the context of this work, some of the research questions that arise regarding this example
are: how does the Java API “communicate” these design decisions to programmers ? Could it
be more effective ? What are the cognitive aspects involved, and what tools or resources could
be used to help the programmers get things right, in the first place, especially for beginners ?

From a Semiotic Engineering perspective, the main signs used by the API designers in or-
der to send their message to the users are the method signatures with names and parameters
(static signs), the return values for these methods and other related operations like inserting and
removing from collections (dynamic signs), and the textual description in the Java API docu-
mentation (metalinguistic signs). A detailed inspection might reveal if the signs are appropriate,
and what changes or additions to the API could make this communication more effective. For
instance, there could be better code examples in the documentation, methods to test a class
implementation for consistence regarding these methods, formal specifications (e.g. contracts)
that could be enforced statically or dynamically, and so on.

From a cognitive perspective, a CDN based inspection may provide interesting insights
regarding this particular design. For instance, the issue described may be considered a hidden
dependency between classes in the API, as it is not obvious at first, especially to a novice
Java programmer, that inserting the class into a container may not work if the methods are not
overridden. Also, any change in the internal structure of an object may impact its hashCode() or
equals() implementation, which can be another example of hidden dependency, or even viscosity.
Premature commitments may also arise when a programmer creates a new class, as it is necessary
to anticipate if it will be used in a hash-based container or need a logical equality comparison.

The scenario described in this section can serve as the basis for a user experiment concerning
programming tasks carefully selected to provide qualitative findings regarding a particular API
design, combining the semiotic and cognitive approach, complemented with discourse analysis.
It can also be used in the evaluation of the effectiveness of advanced specification techniques
and tools for the communication of design intent of APIs.

6 Related work

This section presents a brief description of related work concerning the evaluation of API design
and programming activities from a semiotic or cognitive perspective that inspire or influence
our current research.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 159 of 192

Clarke and Becker’s work [8] is one of the first cognitive approaches to API design evaluation
based on the CDN framework. They created a modified version of CDN in order to assess
the usability of an object-oriented library, and conducted empirical studies based on a set of
development tasks which had to be implemented by the participants during videotaped sessions.
The results were analysed to extract patterns of behaviour from the participants that might
help to identify problems in the library’s design.

Maia et al. [25] present a qualitative method to evaluate the flexibility of middleware im-
plementations based on a CDN inspection of representative adaptation tasks to be performed
on the middleware platforms under analysis. Although this work is not specific to API design,
it presents a good example of CDN instantiation to evaluate cognitive aspects of programming
tasks, which is closely related to our objectives.

The work by Farooq et al. [15] describes API usability peer reviews, an inspection method
conducted as a group-based walkthrough of the source code. They contrast this method to
usability tests, arguing that both methods can be used in conjunction and complement each
other, because peer reviews have a lower cost and shorter execution time, but identifies less
usability defects than usability tests.

The work by Dubochet [14] evaluates programming languages as a medium for human com-
munication, based on an experiment using an eye-tracking device and distributed cognition.
Although the goals of this work differ from ours, it provides interesting insights about the
programmer’s cognitive experience when dealing with two different programming languages.

Cataldo et al. [6] performed a quantitative study of the impact of interface complexity on
the error-proneness of the source code of two large systems. In their findings, they concluded
that the increase in interface complexity leads to more bugs in the source code files that use
these interfaces. This may be a good reference for future quantitative research based on our
qualitative results, and reinforces the importance of evaluating the effectiveness of API design
communication, specially when dealing with complex ones.

7 Final remarks and future work

In this paper, we discussed the importance of API design in the context of software reuse, and
presented the motivation for the evaluation of software artefacts from a communication and
human-centric perspective. Also, we proposed the use of a combined semiotic and cognitive
method to perform this kind of evaluation, describing a typical scenario of application, as well
as possible contributions.

We are currently refining the application of the methods to the API evaluation context,
based on the previous experiments concerning visual languages, and selecting scenarios for a
user study to maximise the relevance of qualitative findings. One possible scenario would be the
evaluation of the Java API features described in section 5 by performing an experiment with
undergraduate students in Computer Science. After performing the user experiments based on
the described methods, we intend to analyse the results and report the most relevant findings
in a future work.

We also intend to apply the combined semiotic and cognitive inspection methods to evaluate
APIs which have been previously analysed in related works. This can be an interesting oppor-
tunity to experiment the methods in a context of API evaluation and compare the findings with
the previous results, and also to improve the methodology itself.

In the long term, we expect to achieve the more general objective of providing a practical
and effective approach to API design evaluation, in order to support software projects in which
APIs are considered a critical asset.

Acknowledgements

Luiz Marques Afonso is partially supported by CAPES (PGCI-CAPES-013/10).

Page 160 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

References

1. Antoine Beugnard, Jean-Marc Jézéquel, Noël Plouzeau, and Damien Watkins. Making components contract
aware. Computer, 32(7):38–45, July 1999.

2. Alan Blackwell and Thomas R. Green. Notational systems – the Cognitive Dimensions of Notations frame-
work. In John M. Carroll, editor, HCI Models, Theories, and Frameworks: Toward a Multidisciplinary Science,
Interactive Technologies, chapter 5, pages 103+. Morgan Kaufmann, San Francisco, CA, USA, 2003.

3. Joshua Bloch. How to design a good API and why it matters. In Companion to the 21st ACM SIGPLAN
symposium on Object-oriented programming systems, languages, and applications, OOPSLA ’06, pages 506–
507, New York, NY, USA, 2006. ACM.

4. Joshua Bloch. Effective Java (2nd Edition) (The Java Series). Prentice Hall PTR, Upper Saddle River, NJ,
USA, 2 edition, 2008.

5. Joshua Bloch and Neal Gafter. Java Puzzlers: Traps, Pitfalls, and Corner Cases. Addison-Wesley Profes-
sional, 2005.

6. M. Cataldo, C. R. B. de Souza, D. L. Bentolila, T. C. Miranda, and S. Nambiar. The impact of interface
complexity on failures: An empirical analysis and implications for tool design. Technical Report CMU-ISR-
10-101, School of Computer Science, Carnegie Mellon University, 2010.

7. Steven Clarke. Measuring API usability. Dr. Dobb’s Journal, 29:S6–S9, 2004.
8. Steven Clarke and Curtis Becker. Using the Cognitive Dimensions Framework to evaluate the usability of a

class library. In M. Petre and B. Budgen, editors, Proc. Joint Conf. EASE & PPIG, pages 359–366, April
2003.

9. Aniket Dahotre, Vasanth Krishnamoorthy, Matt Corley, and Christopher Scaffidi. Using intelligent tutors
to enhance student learning of application programming interfaces. J. Comput. Sci. Coll., 27(1):195–201,
October 2011.

10. Clarisse S. De Souza. The Semiotic Engineering of Human-Computer Interaction. The MIT Press, 2005.
11. Clarisse Sieckenius de Souza. Semiotics: and Human-Computer Interaction. The Interaction-Design.org

Foundation, Aarhus, Denmark, 2012.
12. Clarisse Sieckenius de Souza, Carla Faria Leitão, Raquel Oliveira Prates, Śılvia Amélia Bim, and Elton José

da Silva. Can inspection methods generate valid new knowledge in HCI? the case of semiotic inspection. Int.
J. Hum.-Comput. Stud., 68(1-2):22–40, January 2010.

13. Cleidson R. B. de Souza, David Redmiles, Li-Te Cheng, David Millen, and John Patterson. Sometimes you
need to see through walls: a field study of application programming interfaces. In Proceedings of the 2004
ACM conference on Computer supported cooperative work, CSCW ’04, pages 63–71, New York, NY, USA,
2004. ACM.

14. Gilles Dubochet. Computer code as a medium for human communication : Are programming languages
improving ? Psychology of Programming Workshop (PPIG 2009), pages 174–187, 2009.

15. Umer Farooq and Dieter Zirkler. API peer reviews: a method for evaluating usability of application pro-
gramming interfaces. In Proceedings of the 2010 ACM conference on Computer supported cooperative work,
CSCW ’10, pages 207–210, New York, NY, USA, 2010. ACM.

16. J.J. Ferreira, C.S. de Souza, L.C.C. Salgado, C. Slaviero, C.F Leitão, and F.F. Moreira. Combining cognitive,
semiotic and discourse analysis to explore the power of notations in visual programming. To appear in the
Proceedings of VL-HCC’2012 - IEEE Symposium on Visual Languages and Human-Centric Computing.,
2012.

17. John Hatcliff, Gary T. Leavens, K. Rustan M. Leino, Peter Müller, and Matthew Parkinson. Behavioral
interface specification languages. ACM Comput. Surv., 44(3):16:1–16:58, June 2012.

18. Michi Henning. API design matters. Queue, 5(4):24–36, May 2007.
19. Michi Henning. The rise and fall of CORBA. Commun. ACM, 51(8):52–57, August 2008.
20. David H. Hovemeyer. Simple and effective static analysis to find bugs. PhD thesis, College Park, MD, USA,

2005. AAI3184274.
21. J. Howell. What’s the deal with Java equals() and hashcode() ? http://www.summa-

tech.com/blog/2010/01/26/what’s-the-deal-with-java-equals-and-hashcode/.
22. Roberto Ierusalimschy, Luiz Henrique de Figueiredo, and Waldemar Celes. Passing a language through the

eye of a needle. Queue, 9(5):20:20–20:29, May 2011.
23. John M. Daughtry Iii and John M. Carroll. Perceived self-efficacy and APIs. Psychology of Programming

Workshop (PPIG 2010), 2010.
24. Jeff Kramer. Is abstraction the key to computing? Commun. ACM, 50(4):36–42, April 2007.
25. Renato Maia, Renato Cerqueira, Clarisse de Souza, and Tomás Guisasola-Gorham. A qualitative human-

centric evaluation of flexibility in middleware implementations. Empirical Software Engineering, 17:166–199,
2012. 10.1007/s10664-011-9167-7.

26. Bertrand Meyer. Applying design by contract. Computer, 25(10):40–51, 1992.
27. Martin P. Robillard and Robert Deline. A field study of API learning obstacles. Empirical Softw. Engg.,

16(6):703–732, December 2011.
28. Jeffrey Stylos and Steven Clarke. Usability implications of requiring parameters in objects’ constructors. In

ICSE, pages 529–539. IEEE Computer Society, 2007.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 161 of 192

29. Kumiko Tanaka-Ishii. Semiotics of Programming. Cambridge University Press, New York, NY, USA, 1st
edition, 2010.

30. Jeannette M. Wing. Computational thinking and thinking about computing. Philosophical transactions.
Series A, Mathematical, physical, and engineering sciences, 366(1881):3717–3725, October 2008.

Page 162 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG, London Metropolitan University, 2012 www.ppig.org

Sketching by Programming in the Choreographic Language Agent

Luke Church
Computer Laboratory

University of Cambridge
luke@church.name

Nick Rothwell
Cassiel

nick@cassiel.com

Marc Downie
OpenEndedGroup

marc@openendedgroup.com

Scott DeLahunta

Random Dance R-Research
scott@randomdance.org

Alan F. Blackwell

Computer Laboratory
University of Cambridge

Alan.Blackwell@cl.cam.ac.uk

Keywords: POP-I.C. artistic process, POP-III.C. visual languages

Abstract

We describe the Choreographic Language Agent, a programming environment designed for use by
dancers and choreographers in the context of improvisatory composition methods. CLA provides a
means for dancers to interact with a simple but powerful set of 3D geometric transforms, creating a
wide variety of kinematic and dynamic configurations expressed in the form of phrases. These phrases
can be composed in a dynamic visual arrangement, offering sophisticated facilities for provisionality
and version control. Direct interaction with a live 3D rendering is a key feature of the system,
although this rendering is only an intermediate product, designed to offer ample space for alternative
interpretations when mapped onto dance movement. The result is a programming language that
emphasises transience, ambiguity and creative flow rather than the conventional requirements of
professional software engineering contexts.

1. Introduction

The Choreographic Language Agent (CLA) is a project directed by Scott DeLahunta within the R-
Research arm of the London-based contemporary dance company Wayne McGregor|Random Dance.
Working in collaboration with choreographer Wayne McGregor, CLA builds on more than a decade
of research investigating the cognitive processes of making dance (e.g. McCarthy et al 2006). The
early period of this research programme explored the sketch notations used by Wayne McGregor and
members of the company as a component of the creative process. As in many other design disciplines,
the formal notations associated with documenting dance (e.g. Labanotation, Benesh) are of limited
value during exploratory design activity. A Cognitive Dimensions analysis (DeLahunta et al 2004)
identified some of the notational strategies adopted by McGregor as improvised or habitual responses
to the limitations of those more familiar conventions. During the period of this research, McGregor
has been recognised in numerous ways as one of the world’s leading choreographers (for example, he
was appointed principal choreographer of the Royal Ballet, in addition to contributions to popular
culture such as choreographing Harry Potter films and delivering a TED talk on the science of
choreography), so the context of this research can reasonably be considered as representing respected
leading approaches to contemporary dance.

The objective of the CLA project was to develop a computer support system that could contribute to
this creative process. The term “language” refers to the need for novel notation, as well as the fact that
each of McGregor’s works is conceived as developing or extending new languages of dance, created
through processes that include both studio improvisation and analytic perspectives involving multi-
disciplinary collaborations.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 163 of 192

 2

PPIG, London Metropolitan University, 2012 www.ppig.org

2. Requirements

Extensive preparatory work with a wide range of academic collaborators, including a two day
workshop with 12 scientists and 40 participants at a public session, made it clear that the scope of this
project corresponded neither to any existing programming “language”, or any existing choreographic
notation. For those coming to the project from outside the world of professional dance (this includes
some of the present authors), it is worth documenting some of the features that we find to be contrary
to expectations among technical colleagues, although not necessarily surprising to those who have
already worked in contemporary dance.

First, it was not considered necessary (or even desirable) for the display of the CLA to have any
resemblance to the human body. On the contrary, dancers and choreographers find it both natural and
convenient to represent configurations of human bodies using their own bodies. The CLA
representation was intended to be open for interpretation either as movements of an individual dancer,
or of a group, or a more abstract architectural form, not a simple maquette to be copied by a dancer.

Second, it was not required that the CLA should represent movements that fit within the motion
constraints of the human body. On the contrary, Wayne McGregor’s choreography is renowned for
the way in which it extends the range of conventional body motion. To be a useful tool in McGregor’s
choreographic process (and that of many other contemporary choreographers), the CLA should
present the dancers with a problem that must be solved through searching for new movements, rather
than a solution in the form of a movement to be incorporated into the creative work.

Third, the CLA was not intended to create visual content for digital projection in a stage production.
Although several of the authors have significant experience of programming visual arts commissions,
and Downie has provided live computer graphics during Random Dance performances, the CLA is
purely a creative tool, for use in the studio as one component of an improvisational process.

3. Strategy

Wayne McGregor often creates new work through a research process that requires dancers to conduct
various conceptual or intellectual preparations, either in parallel with improvisatory exploration, or in
advance of studio improvisation. During the period that CLA was being developed, several other
scientific projects were also being conducted in association with the creative process – these included
instrumentation of the dance studio with motion recording cameras, and introducing dancers to new
conceptualisations of their dance process through the use of Barnard’s Interacting Cognitive
Subsystems framework (Barnard et al 2000).

CLA played a role that bridged the intellectual and embodied improvisation aspects of this process, by
providing dancers with new abstract conceptions and representations of their work. Some of these
drew rather literally on existing programming concepts – for example, the CLA display would include
a verbal “language” in the form of geometric terms that can be aggregated into “phrases”. These
aspects of the programming language are analogous to familiar aspects of dance – individual
movements that can be aggregated into dance phrases (although explorations of the linguistic structure
within such phrases in contemporary dance does not find any clear token boundaries or grammar –
McCarthy et al 2006). However some aspects were less typical of conventional programming tools –
the program is a starting point from which to explore behaviour, rather than a precise specification of
a required result. It is in this respect that it should be considered a sketching tool, rather than a
software engineering tool.

Nevertheless, there is one respect in which CLA does draw on aspects of software tool design, which
is to introduce some practices of software engineering into the studio context. We particularly
emphasised models of version control, retaining intermediate work products, reviewing version
history, and creating new branches in order to explore alternatives within an iterative and exploratory
process.

Page 164 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 3

PPIG, London Metropolitan University, 2012 www.ppig.org

4. Implementation platform

Figure 1 – the right-hand screen of CLA, as implemented using the Field drawing surface
(individual features are discussed later). The execution cursor is represented by a vertical red line.

CLA was completely implemented within the Field environment from OpenEndedGroup (Downie
2008). Field is primarily a development environment for making digital art, but is sufficiently
powerful that we were able to use it as the implementation platform for an interactive programming
environment. In addition to relatively conventional text editing facilities, Field also includes a
drawing surface that can be used either as a canvas, to arrange pieces of textual code, or to express
control flow between other executable elements. In the case of CLA, control flow is represented as a
cursor that sweeps from left to right across this drawing surface, triggering language phrases as it
passes across them (Fig 1).

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 165 of 192

 4

PPIG, London Metropolitan University, 2012 www.ppig.org

Figure 2- the left-hand screen of the CLA workstation, showing an abstract 3D figure animated within
a virtual stage. The stage is represented by the surrounding box, with labels indicating which sides
are the front/back, left/right of the stage. The thick lines have been created by the user to represent

the skeleton of an articulated figure. The fine lines are added by the system as the figure moves,
leaving a trace of that movement in the 3D space.

In the CLA deployments, Field is augmented with a second screen, which permanently displays a
rendering of a 3D space – a “stage” within which abstract figures can be rendered and controlled by
the language elements (Fig 2). The rendering of walls and floor around this space was an essential
cue, both to navigation, and to understanding of the geometric figure as physically situated rather than
simply an abstract “form in space”. The view of this rendering is controlled by a 3D mouse (3D
Connexion Space Navigator), allowing users to explore the figures by interactively rotating the
viewspace during program creation or execution. The rendering of the geometric configuration in this
space is intentionally minimal – points are simple spheres, connected by armatures. Both the points
and connecting links are blurred, to emphasise their intention as material for interpretation, rather than
precise specification of dance movement.

Page 166 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 5

PPIG, London Metropolitan University, 2012 www.ppig.org

Figure 3 – detail of the CLA window showing the history tree

Finally, CLA relies on the Mercurial version control system to manage the capture and branching of
exploratory changes. Every action within the Field drawing surface results in a change being logged
to Mercurial, and users can return to any previous edit state by clicking on a node within a graphical
tree at the side of the drawing surface (fig 3). Further changes then result in an automatic branch,
starting from that node, and growing alongside the previous history. This provides considerably more
power than conventional stack-based undo and redo (even when the whole stack is available, as in the
Photoshop History palette).

5. Features of the CLA editor

Figure 4 – the structure of the phrase language in CLA

The fundamental elements of the phrase language have three types, distinguished by colour-coding in
the Field drawing surface (Fig 4). The first of these specifies a transformation to be applied to these
points (e.g. “rotate-about-centre”). The second specifies one or more points, usually by reference to

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 167 of 192

 6

PPIG, London Metropolitan University, 2012 www.ppig.org

the 3D space (e.g. “leftmost”). The third specifies conjunctions of other phrases – either to be
executed concurrently, or with one immediately following the other. Rather than the jigsaw-like visual
cues that have become routine in systems such as Scratch, unbound connection sites are indicated
more organically, as whiskers extending to the side of incomplete phrase elements offering hints
about what might be placed there.

Figure 5 – “speed bumps” to change the relative animation speed

Any number of these phrases can be distributed around the drawing surface. On pressing play, the
cursor moves across the drawing surface from left to right, animating the 3D transformations as it
crosses them. The relative duration of a completed phrase corresponds to its width on the screen – it is
possible to stretch or squash it by dragging the sides. The resulting combination of sequential and
concurrent phrases of different durations can produce highly complex geometric effects. In response
to initial trials, a feature was also added to control the global time-base – the speed with which the
Field cursor moves. These “speed bumps” can be used to modify the dynamics of a composed piece
independently of the relation between its elements (fig 5).

Figure 6 – Zoetrope, visualising the effect of a single phrase

As each phrase is executed, a sequence of snapshots is compiled, visualising at a glance the overall
shape of the point trajectories. The whole series of snapshots is displayed above the phrases that
generated them, in a form that we describe as a “zoetrope” (fig 6). Individual snapshots of the 3D
configuration can also be dragged to the side of the screen, saved for reference, and used to initialise
or combine system states. The zoetrope visualisation, although useful as a visual reference to a
dynamic process, also has great visual appeal, leading us to provide zoetrope-like structures within the
stage itself (fig 2).

As will be apparent from the figures in this paper, the visual style of CLA, as with the visual style of
Field, is unlike that of most programming languages. Rather than bright colours, high contrast, and
crisp edges, these systems intentionally avoid association with technical or educational diagrams. The
intention of a diagram, like most computer programs, is to be unambiguous. But the CLA output must
be open to interpretation. Although a given version of a CLA program has deterministic output
(important, because it must always be possible for users to return to the state that produced a
particular effect of interest), the visual and verbal rendering of the phrase should not constrain the

Page 168 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 7

PPIG, London Metropolitan University, 2012 www.ppig.org

potential reading of its output - and the two are necessarily linked, given that the creator and reader, in
this end-user programming context, are often the same person.

6. Observations of use

The CLA has now undergone several iterations, in response to trials by Wayne McGregor and the
members of Random Dance. Initial demonstrations made it clear that users would need extended
tutorial support – this was initially addressed in the form of a live video produced by Nick Rothwell,
walking through the system capabilities. Given the increasing prevalence of video walkthroughs as a
tutorial medium for explaining system features of user-customisable platforms (examples range from
YouTube videos of iPhone settings to live feeds from hack days), this deserves further study as a key
element of end-user programming. In our first meeting after Wayne McGregor’s initial period of
experimentation with CLA, Wayne commented that he had watched the tutorial video so many times,
it felt like Nick’s voice had become lodged inside his own head!

As with many deployments of programming tools in highly novel contexts, some findings are
relatively mundane from a psychology of programming perspective. Just as with a previous
observation that live coding languages must still be usable when the programmer is inebriated
(Blackwell & Collins 2005), we were relatively surprised to learn that a busy international
choreographer does much of his “office work” in airport lounges or using WiFi in a Starbucks. The
practical constraints of these contexts made the twin-screen setup and special 3D controller rather an
obstacle in the choreographic process, by comparison to a compact laptop. It is almost certainly the
case that a great deal of end-user programming research implicitly assumes a user who is sitting at a
desk (or at least in a classroom), whereas field observation would probably identify a surprisingly
large range of physical contexts and postures adopted by end-user programmers.

The use of a non-standard interface device (the 3D mouse) alongside a regular mouse/trackpad
introduced consistency problems of button assignment and command shortcuts between the devices.
These are relatively familiar everyday annoyances for programmers, but more disconcerting for
professional dancers who might be best described as “social” computer users in their everyday lives.
In retrospect, we might also have been more aware from the outset of the embodied interpretations –
more salient to dancers – of gestures such as using the middle finger to select points, or the fact that
the 3D mouse and regular mouse both assigned the same function to “left” buttons, despite the fact
that a dancer (and perhaps any normal person) mirrors actions from right to left. The native Field
environment also incorporated some of the features of MIT-style command chords (use of
shift/ctrl/meta modifiers) that were inappropriate to an end-user audience, however convenient in the
context of professional exploratory programming.

Fig 7 – 3 day workshop

The main period of research observation took place over a three day studio workshop, attended by all
members of the company, together with the authors as instructors/facilitators, also providing technical
support and observation (Fig 7). Some changes were made to the CLA operation at the end of each
day – in particular, refinement of the model used to define the magnitude of the “speed-bumps”,

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 169 of 192

 8

PPIG, London Metropolitan University, 2012 www.ppig.org

changing them from being relative to the previous speed (which involved fractional mental arithmetic
to explain the results of successive speed bumps), to being expressed relative to an absolute reference
value.

Fig 8 – a) Experimental sketching of a new movement sequence, followed by b) dance exploration of
the geometry created.

The structure of the CLA sessions within the workshop was based around relatively long periods of
experimentation with the CLA (from 90 to 120 minutes) (fig 8a), followed by extended periods (more
than 60 minutes) in which the dancers worked to resolve the “problems” that they had set for
themselves in the CLA animations, turning them into dance (fig 8b). The dancers worked in groups of
2 or 3 when interacting with the CLA (a constraint partly imposed by the number of workstations we
were able to install in the studio, although group working was also seen as a valuable part of the
creative process). Each dancer then developed a different interpretation of the kinematic and dynamic
characteristics of the animation they had created. These interpretations could be as diverse as mapping
joint configurations onto particular parts of the body (an arm, foot or head), mapping point motions
onto the space of the room, or interpreting the dynamics of a swept line through jumping or rolling.
Where groups of dancers worked together, this mapping-as-problem-solving became especially
intense, as the dancers negotiated among themselves how the mapping might be achieved, and which
aspects would be assigned for interpretation by which dancer.

On the second and third days of the workshops, those dancers who had become most confident in
CLA operation had spent time overnight, planning new CLA programs that they would create the
following day. The group activity then made a transition to these individuals as leader-operators, with
other dancers observing and making suggestions to refine the animations. Given the status of the CLA
animation as a creative sketch, in which the final “product” was the dance movements created, there
was little desire to return to refinement of the CLA program after the transition had been made to
working out the dance problem. In fact, even where there was a “bug” (as a programmer might call it)
in the animation, dancers explicitly told us that they avoided the temptation to “fix” it, because the
unintended behaviour was more valuable to them as an artistic challenge.

Observation of these sessions resulted in many small discoveries, refinements, and understanding of
design decisions that we wished we had taken differently. The following discussion of these
observations employs analytic concepts from the Cognitive Dimensions of Notations (Green & Petre
1996, Blackwell and Green 2003), with dimension names italicised in accordance with standard
practice, as well as concepts from the Attention Investment model of abstraction use (Blackwell 2002)
and Engelhardt’s Language of Graphics (2002).

Page 170 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 9

PPIG, London Metropolitan University, 2012 www.ppig.org

6.1. Version History

As with most version-controlled software development, our version history applied to the “code” of
the transformation phrases, but not the “data” of the points arranged on the stage. Execution snapshots
preserved data, but only if the code was executed. This distinction was of course invisible to our
users, for whom a carefully constructed arrangement of points was just as valuable as the code that
manipulated them – and thus a source of significant disappointment when it was accidentally deleted.
Clearly, both code and data should be managed within a version history.

The version history itself was not as useful as we would have liked, because of the uniformity of the
rendered nodes, making it difficult to return to interesting points. We added a facility to assign labels
to nodes, but this requires the user to recognise in advance which versions are going to be the most
interesting. This form of premature commitment is unrealistic in the context of an artistic process,
especially considering the abstraction investment involved in stopping to think of a name just as the
creative process is at its most exciting. Ultimately, we had a combination of role-expressiveness and
hidden dependencies. Both the history tree, and “snapshots” of the 3D rendering, have related
functions – to allow explicit reference to states within the creative process. Despite the fact that we
were aware of this requirement, and designed these features to address it, we did not succeed in
integrating them into a usable tool.

6.2. Sub-devices

As would be expected from Cognitive Dimensions analysis, we identified liberal use of sub-devices to
enable offline processing or reduce hard mental operations. Some dancers copied pieces of geometry
from the screen onto paper. Others composed explicit mappings from the screen onto the body of a
dancer. Juxtaposability was a particular challenge – it was almost impossible for dancers to watch the
screen while dancing. Some suggested that future systems might make the animated motion
continuously visible via headset displays, or at least with wall-sized projections around the studio. In
the absence of such equipment, substantial amounts of time during the dancing periods were spent
walking over to the workstation, then watching the screen intently, attending to the specific aspects of
the animation that constituted the current problem focus, and memorising them before returning to the
dance floor. This hard mental operation was mitigated by the rendering of a blurry swept “sheaf” of
lines that overlaid multiple frames over a second or so, thus allowing direction of movement to be
seen at a glance (fig 2).

6.3. Visual feedback

Figure 9 – visually unobtrusive syntactic cues in CLA

Although the visual style of CLA, like that of Field, is distinctively oriented toward the sensibilities of
professional artists rather than engineers, this sometimes introduced unfortunate consequences for
usability. The rendering of the phrase elements included a number of visual cues, generally designed
to be unobtrusive and non-directive (fig 9). We were concerned that it should be possible to execute
the program regardless of the degree of syntactic completeness (allowing provisionality and
progressive evaluation), meaning that incomplete phrases were often present in the display area.
There was a visual cue to indicate that a phrase was complete – the words underneath a complete
phrase were highlighted with a continuous bar (fig 6), while incomplete phrase elements used
highlighted open circles and whisker-hints to draw attention to the location of missing elements (figs

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 171 of 192

 10

PPIG, London Metropolitan University, 2012 www.ppig.org

4 and 9). However, none of the dancers noticed this visual feedback until the second day, meaning
that they were often unsure whether particular elements of the display would or would not have an
effect on the execution behaviour.

6.4. Secondary notation versus verbal reference

Another unanticipated drawback of the visual notation (and one that is not directly reflected by a
Cognitive Dimension) is that the collaborative nature of the studio work makes it necessary for
dancers to discuss elements that they see on the display. In a textual programming language, it is
always possible to simply read out a passage of text if it is necessary to refer to it in speech. With the
visual notation of the CLA, we heard sentences such as “you need to hold that thing and go past that
thing”. To some extent, additional secondary notation would have helped with this problem of verbal
reference – for example, changing the colour of one or more points so that they could be referred to as
a group. However, any such visual detail carries the danger that users might be distracted by making
something “pretty” – they observed that it was not always easy to predict, from the visual properties
of the animation, whether it would be an effective starting point for dance. In particular, some
animations that were visually beautiful offered little opportunity for further improvisation, while those
that were complex and hard to read were “rich” as a source of potential movement cues.

6.5 Explicit representation of dynamics

Despite the fact that CLA is a domain-specific language, designed specifically to meet the needs of
this group of dancers, there were some respects in which we seem not to have achieved the closeness
of mapping that might be expected in a DSL. In reflecting on the three day workshop, many dancers
spoke of the way in which they struggled to produce the particular animation effect that they wanted.
They described this in terms such as “bouncing”, “momentum”, “energy” and “vroosh”. In retrospect,
these are all ways in which we might expect dancers to describe salient aspects of abstract motion
(although they derive in part from a choreographic task used in the workshop, which involved
interpretation of expressive motion terms). To some extent, the “problem-solving” aspect of the
improvisation process depends on removing any obvious mappings – as in the avoidance of direct
body representations. Nevertheless, one dancer who had found CLA least engaging said that it took at
least 10 minutes to create anything he could relate to the body, and 40 minutes to make something
interesting. It is possible that a language paying more attention to dynamics, as well as kinematics,
might provide more expressive power in this respect.

6.6 Lack of syntactic constraint

Our focus in this project on creative arts practices offers a relatively extreme example of exploratory
design activity. This has allowed us to observe some Cognitive Dimensions trade-offs that may not
have occurred in a more conventional software engineering context. For example, syntactic
constraints on drawing area manipulation were made to be absolutely minimal – the syntactic
elements can be dragged anywhere at any time. In principle, this provided a high degree of secondary
notation (with respect to location in the visual plane), and minimum premature commitment. However
this extreme design choice unexpectedly resulted in high viscosity – because any element of a phrase
could be dragged elsewhere at any time, it was then necessary to move the other components of the
phrase to reassemble it. As with classically viscous visual dataflow languages, we watched CLA users
spending a lot of time reassembling phrases in order to move them to different positions on the screen.
However, whereas visual dataflow languages like LabVIEW present a tradeoff between hidden
dependencies and viscosity in the routing of the dataflow connection paths, the CLA exhibited
similarly high viscosity through its lack of syntactic boundary constraints. A more reasonable
approach to visible syntax maintenance can be seen in the Scratch language – although it is possible to
drag syntax tiles out of the expression they belong to (and sometimes to do this accidentally), most
dragging operations affect the whole of a syntactically bounded expression. Many such languages
seem to rely on an implicit virtual “syntactic physics” that simulate gravity, magnetism or adhesion to
provide the operator with subtle interactive cues – ToonTalk provides another case study, in which
manipulation can be error-prone due to lack of physical resistance to significant syntactic changes.

Page 172 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

 11

PPIG, London Metropolitan University, 2012 www.ppig.org

7. Conclusion

The context of the programming tasks in this project offers an intriguing counter to the usual practices
of software engineering, in which a sketch might be made on paper or whiteboard before translating it
into a code “product”. At that stage in a software engineering project, there is certainly little desire
among software engineers to return to preliminary conceptual sketches and revise them after the
product has started to take shape. In CLA, we have created a programming environment whose
purpose is conceptual sketching, and whose output is a transient representation to be discarded, rather
than a final product.

In some ways, this might be compared to student programming exercises, which are also transient,
and not the “final product” of the programming course – that product is a qualified programmer rather
than a program. However, it is also useful to consider this transient form of programming within the
context of live coding, where the program is improvised in front of an audience (Blackwell and
Collins 2005).

Experimental languages of this kind are valuable in two respects. Firstly, they offer an opportunity for
programming to become more inclusive, through creating languages to support users with different
skills and work practices. Secondly, they help us to explore boundary cases that test general principles
of programming language design outside of typical design parameters. The CLA project has, of
course, also made contributions to choreographic practice and arts research (e.g. Blades 2012), and
dance material developed in the workshops described here has become a component in new work for
Wayne McGregor|Random Dance. However this research also extends beyond these immediate
objectives, leading to new design-oriented programming languages, for contexts in both arts and
business, that are now under development.

8. Acknowledgements

CLA was supported by Portland Green Cultural Projects. Luke Church’s research was supported by
Kodak. Nick Rothwell’s work was supported in part by a Digital Futures in Dance residency at Dance
Digital.

9. References

Barnard, P., May, J., Duke, D. & Duce, D. (2000). Systems, Interactions and Macrotheory. ACM
Transactions on Human-Computer Interaction, 7, 222-262.

Blackwell, A.F. (2002). First steps in programming: A rationale for Attention Investment models. In
Proceedings of the IEEE Symposia on Human-Centric Computing Languages and Environments,
pp. 2-10.

Blackwell, A. and Collins, N. (2005). The programming language as a musical instrument.
In Proceedings of PPIG 2005, pp. 120-130.

Blackwell, A.F. and Green, T.R.G. (2003). Notational systems - the Cognitive Dimensions of
Notations framework. In J.M. Carroll (Ed.) HCI Models, Theories and Frameworks: Toward a
multidisciplinary science. San Francisco: Morgan Kaufmann, 103-134.

Blades, H. (2012). Creative computing and the re-configuration of dance ontology. In Proceedings of
Electronic Visualisation in the Arts (EVA 2012), pp. 221-228.

DeLahunta, S., McGregor, W. and Blackwell, A.F. (2004). Transactables. Performance Research
9(2), 67-72.

Downie, M. (2008). Field - a new environment for making digital art. Computers in Entertainment
6(4).

Engelhardt, Y. (2002). The Language of Graphics. A framework for the analysis of syntax and
meaning in maps, charts and diagrams (PhD Thesis). University of Amsterdam

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 173 of 192

 12

PPIG, London Metropolitan University, 2012 www.ppig.org

Green, T.R.G. & Petre, M. (1996). Usability analysis of visual programming environments: a
'cognitive dimensions' approach. Journal of Visual Languages and Computing, 7,131-174.

McCarthy, R., Blackwell, A.F., DeLahunta, S., Wing, A., Hollands, K., Barnard, P., Nimmo-Smith, I
and Marcel, T. (2006). Bodies meet minds: Choreography and cognition. Leonardo 39(5), 475-
478.

Page 174 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

A Field Experiment on Gamification of Code Quality in Agile
Development

Christian R. Prause1, Jan Nonnen2, and Mark Vinkovits1

1 Fraunhofer FIT, Germany
christian.prause@fit.fraunhofer.de

2 University of Bonn, Germany
nonnen@cs.uni-bonn.de

Abstract Internal quality of software reduces development costs in the long run but is often
neglected by developers. CollabReview, a web-based reputation system for improving the quality
of collaboratively written source code, was introduced into an agile development team. The goal
was to improve the quality of developed source code as evidenced by the amount of code entities
furnished with Javadoc comments. A money prize as an extrinsic reward and peer-pressure in form
of a published ranking table were tied to reputation scores. We report on the conduction of a field
experiment, our observations and experiences, and relate the results to answers from concluding
interviews. Although the gamification had less effect than we had hoped, our experiment teaches
valuable lessons about social effects and informs the future design of similar systems.

1 Introduction

We investigate the efficacy of a reputation system as a tool to improve source code quality.
According to the Oxford Dictionary, reputation is what is generally said or believed about
the abilities or qualities of somebody or something. A reputation system is a software that
determines a user’s reputation from his actions. Scores are computed to predict future user
behavior or to create peer-pressure. Reputation systems are a core component in web-based
communities, where they promote well-behaving and trust (Jøsang et al., 2007).

Writing documentation is a form of well-behaving in software projects. A problem is, how-
ever, that “developers don’t like to do documentation, because it has no value for them.” (Selic,
2009). Source code, in particular, combines executable instructions relevant to machines with
human-readable documentation. It is an important a medium of communication between hu-
mans (Dubochet, 2009). Comments, for example, include “background and decision information
that cannot be derived from the code” and are “one of the most overlooked ways of improving
software quality and speeding implementation” (Raskin, 2005). The developers’ dislike for doc-
umenting leads to a lack of internal quality, which has become a pervasive problem in software
projects (Prause, 2011). Software quality is a complex concept without a simple definition or
common way of measuring it. ISO 9126-1 defines quality as Functionality, Reliability, Usability,
Efficiency, Portability and Maintainability. We focus on understandability and documentation
of source code as means of improving Maintainability and internal quality.

CollabReview is a reputation system for collaboratively written texts like source code. While
responsibility is essential for preventing careless development and achieving quality, it is dif-
ficult to assign. CollabReview acquires responsibility information from the documents’ evo-
lution history. By making personalized data about contribution quality available, it enables
self-monitoring and learning processes within a development team (Prause and Apelt, 2008).
Experts believe that reputation systems can improve source code and documentation quality in
agile projects but are difficult to get right (Prause and Durdik, 2012). Prause and Eisenhauer
(2012) compared CollabReview’s scores to actual social reputation, and found correlations of
r = 0.64 (source code) and r = 0.88 (wiki). Dencheva et al. (2011) report suitability for wikis.

This paper presents a field experiment of CollabReview in a software project with the pur-
pose of improving in-line documentation (Section 2). As Section 3 shows, the effects of the

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 175 of 192

CollabReview intervention did not have the expected effects, and with regard to this, the exper-
iment failed. However, we interviewed our developers afterward to investigate what happened
and to learn success factors for future reputation systems for quality improvement (Section 4).
Section 5 discusses threats to validity. Related work is reviewed in Section 6. Section 7 summa-
rizes the insights we gained from the “autopsy”. They are a major contribution and assist the
future design of similar systems. Section 8 looks out to future work and concludes the paper.

2 Experimental setup and methodology

This section describes the research methodology of our field experiment and its setup. Harri-
son and List (2004) define a field experiment as an experiment taking place under “natural”
conditions regarding several dimensions like the subject pool or the environment the subjects
operate in. They note that there is no sharp line between lab and field experiments and that
there are often varying degrees of naturalness. While limiting experimental control, field ex-
periments have the big advantage of a natural context which is essential for studying human
behavior. Therefore the size of the study is small: it is the typical size of an agile team. Note
that any presented students’ names are pseudonyms taken from the Simpsons cartoon series.
The postmortem autopsy of what went wrong based on developer feedback follows in Section 4.

2.1 XP-lab 2011

The eXtreme Programming Lab and Seminar (XP-lab) was a post-graduate teaching activity.
The lab takes students into the daily work of software development, familiarizes them with agile
development methodology, and generates software artifacts that are intended to be actually used
in the department’s work. Its realism made it a favorable environment for our field experiment.
The topic was to improve a static analysis toolkit for Java software. The toolkit’s analysis
components are written in Prolog, while the library, its Application Programming Interface
(API) and IDE integration are written in Java. Our study considered only the Java parts.

The development team consisted of instructors and ten student developers doing agile de-
velopment with pair programming. The students had previously received training on the topics
software engineering in general and agile methodologies in special lectures and seminars. Solid
programming experience was expected. The project ran for full four weeks. Development took
place in a large office space from 9am until 5pm to 6pm every day. 725 revisions were committed
to the Subversion repository, including a few contributions from non-lab participants.

2.2 A pragmatic definition of internal quality

Maintainability means “the capability of the software to be modified” (ISO 9126-1, 2001).
The idea of coding rules is to ease the understanding of source code by reducing distracting
style noise so that it gets easier to read (King et al., 1997; Seibel, 2009; Spinellis, 2011). We
acknowledge that neither maintainability nor understandability are all about rules-compliant
code. For instance, identifier naming is an important part of making code understandable.
However, since only style (but no understandability) checkers are readily available, following
coding rules is a pragmatic decision.

How to measure internal quality was a matter of discussion prior to the lab. Consensus was
that quality was to be defined through the understandability of source code. Yet the full set of
Java code conventions that the Checkstyle1 toolkit can check were not considered sensible by
all discussants. Some rules were considered as too much to not hinder the effective realization
of functionality, too constraining or, like “do not use tab characters for indentation”, even
counter-productive. Also, the organizer’s wanted to discuss some rules with the developers

1 http://checkstyle.sourceforge.net

Page 176 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

while development was on-going. In the end, only rules regarding the use of Javadoc (API
documenting comments) were left. As smallest common denominator, internal quality would be
defined through the correct use of Javadoc comments.

Checkstyle was configured to only check for completeness of Javadoc documentation: every
source code entity missing a Javadoc comment or according tags (like @param, @return or
@throws) was a rule violation. The higher the density of violations (i.e. violations per line of
code) in a file, the lower its quality rating. A file not missing any comments had a quality rating
of +10, while higher violation densities caused lower ratings. With this definition, a file’s quality
rating could be arbitrarily low, so we limited it to −10.

2.3 Control and experimental phases

The arbitrary re-combination of developers in programming pairs and their small number made
it infeasible to split them into a control and an experimental group. So instead, the project was
split into two phases: a control and an experimental phase. First, comparison data would be
collected during the earlier phase without the developers’ knowing. In the second phase, after
about half of the project duration, the intervention would start. The experimental phase lasted
for 8 working days and served to measure the effect of CollabReview. We call the day when the
intervention started “day 0”.

2.4 The CollabReview intervention

CollabReview accesses the project’s revision repository to determine personal reputation scores.
A developer who has contributed to good files has a higher score than a developer who con-
tributed more to rather bad files. Developers are held statistically responsible for the quality
of their source code. Their score is the average quality of files that they contributed to. In the
best case, if a developer has only contributed to files with a quality rating of +10, then his own
score will be +10, too. The average quality is twice weighted: once by the contribution ratio of
the developer for that file (more contribution means more weight) and once by size of the file
(larger files have a bigger influence). For example: 75% of the lines of a file (size 1) were written
by Alice, while 25% were contributed by Bob. Its quality rating is q1 = 8 (good), leaving Alice
and Bob with quality scores

sA =
0.75× 1× 8

0.75× 1
= sB =

0.25× 1× 8

0.25× 1
= 8

But Alice also solely wrote a file twice as big and with a quality rating of only poor q2 = 0:

sA =
0.75× 1× 8 + 1× 2× 0

0.75× 1 + 1× 2
=

6 + 0

2.75
≈ 2.2

If Bob also contributed 50% to a flawless file q3 = 10 with size 1, he would have sB = 9.3 points.
The beginning of the experimental phase was signified by an introductory email sent to all

participants. It explained that developers were taking part in the experiment, how their personal
scores depended on Javadoc in their code, and what Javadoc would be expected. It was noted
that the measurements were not totally accurate but reflected trends.

CollabReview then sent all developers a daily email in the late afternoon. This email con-
tained a ranking list of all developers (including their individual points), and repeated a short
explanation of how developers could improve their quality ratings by writing Javadoc. In addi-
tion to the published ranking list, a 30EUR Amazon voucher was announced as a prize for the
developer who would have the highest reputation score in the end. A short information on the
top scores was given in the standup meeting at the end of each day. Standup meetings are used
in agile development to discuss current issues and to coordinate work between team members.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 177 of 192

There were two partly conflicting goals set for the project: the primary goal was to de-
liver a functional software with a hard deadline, while the secondary goal (supported through
CollabReview) was to obtain high quality source code. These two goals are conflicting to some
degree in the short term. In particular, we find that a developer’s contribution quality and quan-
tity were correlated at intervention start (r = −0.70) and end (r = −0.43), respectively. But
although the lab was graded, neither source code quality as determined by CollabReview nor
the quantity of contributions would affect a student’s lab grade. Consequently, even if improving
quality would cost developers their time, this would not affect their grade in neither a good nor
a bad way. Developers were free to invest (almost) any amount of time into writing Javadoc
comments and they were expected to document public API entities well. The only trade off
between implementing and documenting was that of having less time for other implementation
activities when documenting, just as in any real-world software project.

2.5 Observations during and notes on the conduction

During the daily standup meetings shortly after the CollabReview intervention had begun, the
students expressed some confusion about how their reputation scores were computed. Also, in
the working time further murmur on the scores was observed by the teaching staff. Still not
many explicit questions were asked by the students about the scores.

A bug in the rank computation algorithm led to wrong reputation scores being published
via email. Some users had actually a different rank than the one published in the daily email.
Luckily, however, this mishap did not affect the winner of the prize, who was Millhouse in both
cases. In fact, the mishap later turned out to be fortunate when interpreting the results.

3 Effects of the intervention

This section analyzes the reputation data that was collected during the field experiment.

3.1 Contributed code quantity

Figure 1 shows how the amount of code contributed by individual developers evolved over time;
measured in 100 non-empty lines of source code (HSLOC). The figure starts at day -11, which
was the first day of the project. More developers appear during the early days of the project
when making their first commit to the code base. In general, the figure does not contain any
surprising results: As more and more code is developed, the developers’ contributions increase.

The figure does not count days on weekends. Therefore, day 0, which marks the start of the
intervention, is after a little more than two weeks into the project. The project ended at day
7, one and a half weeks after the intervention start. There is a sudden increase to a high peak
and then a rapid decrease to a normal level for Sanjay. This phenomenon results from copying
a huge amount of code into the code base, which is later removed or edited by other developers.

3.2 Quality reputation scores

Figure 2 is more important with regard to our study. It shows how the developers’ individual
reputation scores for quality evolved over time. Especially in the beginning, these scores jumped
up and down. The reason is that initially the developers have contributed only few code, while
reputation scores are computed from the average quality. When the amount of code authored
by a developer increases, each line will have less influence on the average. The smooth line
shows the average score of all developers with scores weighted by their developers’ quantity, i.e.
a developer’s score has a higher weight when that developer has contributed more code. The
average score is therefore equivalent to the code base’s overall quality. A larger code base also

Page 178 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

Quantity in HSLOC 14

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 day 0 1 2 3 4 5 6 7

Kent Krusty Lenny Ned Bart
Sanjay Seymour Mel Rainier Millhouse

Figure 1: Amount of code contributed by the developers

leads to a stabilizing average score. The simple reason is here, too, that with more code a single
change will have less effect on the average.

But the figure also shows that the intervention (starting at day 0) had only a small influence
on code quality. The intended effect of increasing the code quality is not supported by our data.
In fact, there is actually a small decrease in quality because day 0 coincided with a quality peak.
We therefore conclude that the intervention did not have an adverse effect, too. It just did not
show any significant effect. One could argue that quality scores are confounded by an end-of-
project deadline. It may be that developers would normally have sacrificed quality in favor of
functionality to complete all their tasks before the software is delivered. Our intervention could
then have prevented that from happening. But this interpretation remains speculative.

quality (max=9)

-11 -10 -9 -8 -7 -6 -5 -4 -3 -2 -1 day 0 1 2 3 4 5 6 7

Kent Krusty Lenny Ned Bart
Sanjay Seymour Mel Rainier Millhouse

Figure 2: Average quality of authored code for each developer

3.3 Reputation scores and Subversion commit messages

We wanted to know if there is a correlation between the quality of a developer’s Subversion
commit messages and his quality reputation. The reasoning is that a developer who does write
few documentation inside code will also neglect documentation in commit logs.

We went through all revisions created during the experiment and their according log mes-
sages. 471 revisions were created by the 10 developers who were part of the experiment (another
≈ 300 revisions were committed by other developers working on other sub-projects); some 60
revisions were not counted because they were submitted within seconds of an earlier commit
with an identical log message, hinting that the developer just split his commit into parts. Each
commit message was classified as bad (completely useless, e.g. empty, “commit”, ...), ok (some
effort made but not much information payload, e.g. “implemented the concepts”), or good.
According to this classification, 342 commits were considered as good, 83 as ok, and 46 as bad.

We found a Spearman correlation of rs = 0.55 between a developer’s final quality score
and the amount of non-bad commit messages among all his messages. It may be possible that
not all developers were familiar with the commit message concept from the start of the project.
Therefore we also looked at the messages that were created during the second half of the project
only, when they had had time to learn the concept. Here the correlation is rs = 0.61, which is
statistically significant for N = 10 at p < 0.05. We infer that a developer’s tendency to provide
good commit messages hints at how likely he is to provide Javadoc in his code.

3.4 Summary

We see that the amount of code authored by the individual developers increases during the
project. At the same time, there is some fluctuation in their quality scores which stabilizes
over time as more and more code is available. However, the quality graph does not reveal any
significant change due to our intervention. It seems that the intervention was not appealing
enough to alter developer behavior. In the next section, we investigate what the reasons for
this ineffectiveness could be. We could show that quality reputation scores seem to be related
to a developer’s willingness to provide Subversion commit messages. As this is as expected, it
indicates that our reputation scores are sound values.

4 Developer feedback

The purpose of the final interviews was to learn for the future design of similar interventions
when it became foreseeable that the experiment would fail. We wanted to identify and under-
stand critical aspects. The interview was based on a questionnaire with free text questions to
qualitatively into reasons (see Section 4.1), and Likert items for quantitatively capturing the
importance of certain factors (see Section 4.2). We investigated eight human “feelings” that we
and colleagues deemed important to learn whether our intervention was

– present — How present were the reputation scores in your consciousness?
– fair — How fair were reputation scores suited to your work?
– important — How important were the reputation scores for you?
– understandable — How well did you understand the way reputation scores were computed?
– likable — How much did you like that reputation scores were computed at all?
– interesting — How interesting was it for you that there were reputation scores?
– fitting — How well do you think reputation scores fitted into the lab situation?
– acceptable — How acceptable are reputation scores for you?

Page 180 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

4.1 Qualitative results

Some developers perceived the presence of reputation scores as high due to their competitive
effect, and due to the daily emails sent out to developers. However, some developers noted that
this single email created ups and downs in presence. It could even happen that — because emails
were sent in the evening — developers had forgotten about it until the next day. Another one
ignored the emails because he did not consider his work (external API) documentation relevant!

Fairness was one of the more problematic aspects of our intervention. One developer stated
that his score changed when he added a comment, and so he thinks it was fair. Others, however,
criticized that the algorithm was strange and that they did not know how they could achieve
good ranks. And it was mentioned that by contributing to files without writing comments but
where others contributed them, one could gain reputation, it could create an impression of
arbitrariness. Additionally, fairness was negatively affected by the pair programming because
someone else might commit on one’s account, and although two people are responsible for the
code, only one is credited for it. The reality in the lab was not reflected very well, including the
lab ideology that instead “the naming should be expressive” making description unnecessary.

Regarding importance, one problem was that reputation scores showed up late in the lab. Of
course, the reason for this delay was the research methodology, but it made the scores come in as
a surprise. Again one developer mentioned that for his kind of work, Javadoc was not important.
So he considered the reputation scores as pointless and unimportant. Also reputation scores
were perceived as being in conflict with “too much other stuff”, and especially the priority “to
implement a running application.” But one developer noticed this conflict could be “just a lame
excuse of not adding comments.” Among the aspects that made reputation scores important
were “for improvement of my work” and again the competition with other developers.

Understanding of the reputation scores was rated as the severest problem in the trial, and
at the same time had a relatively high influence on the ranking. Only one developer thought
that “the explanation was clear”, but even he only expressed the hope that it was correct.
Although developers “knew the idea of comments”, it was the score that caused problems with
understanding. More detailed information on the algorithm was missing and “the process of
calculating the score was not clear” to some. One developer just “did not care about it” and so
did not try to understand.

Developers liked the reputation comparably well, although there was some concern that it
was not relevant. Other developers felt “bad to be second not first”, “did not care about it”,
were not “following the score that keenly”, or just had a diffuse dislike for it. Still the idea itself
was not seen as a problem and liked “as a motivation for writing good documented code”.

The perceived importance of reputation scores was negatively impacted by feelings of mean-
inglessness and priority conflicts. But the competition made reputation scores highly interesting.

The reputation concept was considered as fitting comparably poor into the evaluation en-
vironment. Although it was not precluded that it still “might fit”, “applying it to our lab was
not beneficial because of our lab nature.” A major problem was pair programming because of
group effects of pair work and the loss of contributor information in commits. Also Feature
Driven Development was perceived as being in conflict with reputation scores. One developer
mentioned that he noticed low acceptance among his peers which led to few commenting, and
another said that he does not like the tendency in modern life to measure everything. However,
others are “in agreement with what my score is & how it was computed”, or found that it is a
“nice idea as long as it is only for us, not grades/payment/other assessment of work done”.

4.2 Quantitative results

Likert-scaled responses are presented in Table 1 (very low = 1, ..., very high = 5). The overall
reception of our intervention reveals potential for improvement but also shows that it is not

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 181 of 192

p
re

se
n
t

fa
ir

im
p

o
rt

a
n
t

u
n
d
er

-
st

a
n
d
a
b
le

li
k a

b
le

in
te

re
st

in
g

fi
tt

in
g

a
cc

ep
ta

b
le

A
v
er

a
g
e

Bart very low medium medium very low medium very low very low medium 2.0

Kent low low high low low medium medium low 2.5

Krusty high low high low low high medium medium 3.0

Lenny high medium medium low medium medium low medium 2.9

Mel high high low medium medium medium low high 3.1

Millhouse medium medium low medium medium medium medium medium 2.9

Ned (no feedback received)

Reinier low low very low very low very low very low very low very low 1.3

Sanjay medium very low medium very low high low medium very low 2.3

Seymour medium very low very low high medium medium high medium 2.8

Average 2.89 2.33 2.56 2.11 2.67 2.56 2.44 2.56 2.5

rs(mail) 0.53 -0.05 -0.23 0.36 0.58 0.27 0.41 0.13 .35

rs(Qend
l) 0.28 0.04 -0.01 0.28 0.49 0.18 0.38 -0.10 .25

rs(Qstart
l) 0.20 -0.01 -0.04 0.20 0.52 0.06 0.28 -0.15 .08

rs(Qend
t) -0.50 -0.42 0.44 -0.67 -0.03 -0.39 -0.11 -0.41 -.53

rs(Qstart
t) -0.40 -0.14 0.41 -0.13 -0.37 0.01 -0.02 0.06 -.18

Table 1: Likert-scaled opinions about the intervention and correlation with score ranks

rejected outright. Fitting (2.44), fair (2.33) and especially understandable (2.11) are the most
problematic areas, while likable (2.67) and present (2.89) are less problematic.

Unless stated otherwise, all correlation coefficients rs denote Spearman rank correlations.
Most correlations are not significant, which is probably due to the small sample size. That
does not necessarily mean that detected correlations do not exist but the chances are non-
negligible. As chances increase with lower coefficients, only correlations that have at least a
medium strength (around r ≈ 0.3 in the classification of de Vaus (2002)) are discussed below.

The average personal opinions correlate weakly with quality at the end of the evaluation
period. The relationship with ranks published through email (rs(mail) = .35) is a bit stronger.
There is a chance that this increased strength might be attributed to the effect that profiteering
leads to a better reception, or that a better overall reception of reputation leads to more investing
in quality. Yet the difference is not significant and could be coincidence.

There is a strong relationship between published ranks and the perceived presence of reputa-
tion scores (rs(mail) = .53). One explanation could be that those who feel that reputation has
a high presence are more interested in achieving high reputation scores and ranks themselves,
and therefore write higher quality code. But the following reasoning suggests that it is the other
way around; that being higher in the ranks leads to a stronger perceived presence of reputation.
If presence leads to investing in quality, regardless of the actually published scores, then the
correct ranks Qend

l at the end of the trial should show a similarly strong or even stronger cor-
relation rs(Q

end
l) = 0.28 ≯ 0.53. Our data does not support this. Instead, future designs should

take into account that having a low quality rank leads to low perceived presence of reputation.
Cognitive dissonance theory can explain this observation2 (Festinger, 1957).

The perception of fairness seems unrelated to actual reputation ranking. Similarly, we found
no relationship for acceptability. Those who understood well how reputation scores were com-
puted had a slightly better chance to achieve higher ranks (rs(mail) = .36).

Developers who achieve high reputation ranks have a substantial tendency to like the com-
putation of reputation scores (rs(mail) = .58). It may be that profiteers plainly enjoy receiving
the benefit of reputation (we describe above that we do not see such evidence). But it may also
be that developers who care for code quality — and who therefore have high reputation scores
— welcome any tool that supports code quality.

2 Humans want to always maintain a positive self-image. If they make observations, which are not congruent
with positive self-image, then such observations are ignored.

Page 182 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

The factors that are most strongly correlating with high reputation ranks are the liking of
having reputation computed, the presence of reputation, and the fitting of reputation into the XP
environment. The only negatively correlated factor is the perceived importance of reputation.

For work quantity, most correlations are the inverse of the correlations for quality, and
are in many cases stronger. We found a major negative relationship between quantity and
average opinion rs(Q

end
t) = −0.53. A simple explanation is the medium negative relationship

between quality and quantity (see Section 2.4). More than that, mass contributors have a fairness
problem, think that it is unfair (rs(Q

end
t) = −0.42), have problems understanding how scores

are computed (rs(Q
end
t) = −.67), and do not feel that reputation is present (rs(Q

end
t) = −0.50),

acceptable (rs(Q
end
t) = −0.41) or interesting (rs(Q

end
t) = −0.39). But reputation scores often

mattered to them (rs(Q
end
t) = 0.44).

5 Threats to validity

Our field study included only a few developers, which makes correlation results hardly statisti-
cally significant. Statistical significance (5% threshold) for N = 9 is reached at r ≈ 0.6. While
some results are almost significant, most of them need to be treated with care. The reason why
results are not statistically significant is probably due to the sample size, not because of the
strength of the correlation. If the team had been bigger, more of our correlations would have
been significant. Still, many results reveal a moderate strength, and the team size of about ten
developers is the normal size for an agile software project or sub-project.

While it is true that the environment of the field experiment presented here is artificial to
some degree, it is not set up for the experiment specifically but, as part of teaching activities,
tries to resemble a natural setting as closely as possible. For example, while the subject pool
features students, it is graduate students with development experience working in the domain
of their education (Harrison and List, 2004). It is natural that experimental realism comes at
the cost of experimental control.

Therefore some environmental influences were sub-optimal for our study. For instance the
experiment might have been to short. Perhaps more time would have been needed for Col-
labReview to unfold its full effect. Yet we could not influence the length of the project. Another
sub-optimal factor is that developers did pair programming. But these are the normal difficulties
of experiments that are not conducted under fully controlled laboratory conditions. Researchers
have to live with what is there. At the same time, this adds to the realism of field studies. To
ensure that our results can be generalized to other software projects, more and larger studies
in industrial software projects have to be conducted.

6 Related work

The question whether a correlation coefficient of r = 0.5 is weak, moderate or strong is difficult
to answer. The answer is to some extent relative. When humans are involved, most outcomes
have many causes so that no two variables alone are likely to be very strongly related. Here a
correlation of 0.30 might be regarded as relatively strong. For describing correlation strengths
involving human factors, this paper follows the recommendations of de Vaus (2002).

An experiment where CollabReview was successfully deployed to improve contribution to a
work group’s wiki is described in Dencheva et al. (2011). The main differences compared to the
earlier study are the (i) domain (source code vs. wiki), (ii) social team structure (short-time
lab vs. long-term collaboration), (iii) rewards (money vs. display), and (iv) pair development
resulting in a loss of responsibility fidelity (pair vs. solitary contributing). Hoisl et al. (2007)
present a similar study in a wiki using a different reputation system. Singer and Schneider
(2012) gave points for committing frequently to a revision repository, emailed the scores in a
weekly digest, and thereby could successfully alter developer behavior.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 183 of 192

Checkstyle is a well-known tool for finding potential coding style problems in source code
(Smart, 2008). Several authors have used Checkstyle and static analysis for grading and assess-
ment of student programming assignments (e.g. Edwards, 2003; Smith, 2005; Loveland, 2009).
However, we do not know of instances where automated assessments are combined with fine-
grained responsibility information to form reputation scores.

7 Lessons learned and future work

This section summarizes and recaps the lessons we learned from conducting the field experiment.

7.1 Lessons regarding the development environment

The presented experiment was the first field experiment with CollabReview in a programming
environment. This encounter with reality has taught us several lessons. Firstly, CollabReview is
not very well suited for pair programming because there is only one committer recorded in the
revision control system while code is written by two developers. The social dynamics that are in
effect between the changing pairs of developers, and which are not available to the reputation
system, should not be underestimated. Also, the metrics were computed only for a part of the
whole code base, which was assigned to the project. The analyzed code did not include Prolog
and some Java parts. For example, it seems that Ned contributed only very little, which is
probably wrong. This blurs contribution and responsibility mappings and probably leads to
incorrect or at least skewed reputation scores. In turn, this reduces the understanding and
perceptions of fairness in the team.

Extreme programming favors expressive naming of identifiers over comments. Much in line
with this philosophy, project management had ambivalent opinions regarding comments and
Javadoc during our field test. Some students perceived Javadoc as senseless. Management must
clarify that there is no goal conflict, and that indeed naming and comments are important (cf.
Raskin, 2005). Its full support for the employed measurements is necessary.

7.2 Lessons regarding the effectiveness of the reputation system

Classical management states that “you get what you measure”. A metric might not measure
the right things, leading to undesired behavior, but one should get what one measures (Hauser
and Katz, 1998). Consequently, we should have gotten a lot of (potentially senseless) Javadoc
comments. But we did not. The question is why?

Money seemed adequate for such a short, one-time project. Possibly winning the one prize
was too risky or too much out of control for the individual (Hauser and Katz, 1998). Perhaps
there should be more prizes. In previous work, we have been experimenting with other rewards
as well (cf. Dencheva et al., 2011; Prause et al., 2010). For some developers, competition is
an important motivator. For instance, Krusty mentioned competition as important factor and
enjoyed it. According to our data, something with a high presence is needed. And in general, a
better overall reception with regard to the different feelings leads to more investment in scores.

The reputation idea was mostly accepted. But developers expressed that acceptance depends
on how scores are used. Especially developers who already care for quality, welcome reputation
scores. However, there was no indication that it is profiteering which leads to a better reception.

Major contributors have a stronger influence on total code quality because they contribute
more code. It is therefore of high importance to reach them with the intervention. But acceptance
of the intervention among them is especially low. They might feel treated unfair because they
give the software a lot of functionality, and might feel that this contribution is not valued
enough. For a minor contributor (like Millhouse) it is much easier to achieve very high or
very low reputation scores. It must be explained to major contributors that the purpose of the

Page 184 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

intervention is not assessing their performance. Instead, the goal is to improve the quality of
the project, and here they have an even higher responsibility than minor contributors.

Low ranks result in higher perceived importance of reputation scores. This is a danger for
team motivation! Even more so, as while being second is good, it “feels bad to be second not
first”. Additionally, low ranks lead to low perceived presence, so especially poor-scoring develop-
ers need more presence of reputation and must understand that scores measure something that
is important to them. Contrariwise, major contributors have the worst feelings about quality
scores. But it is them who are very important because they influence the code base the most.

Create understanding of how scores are computed! Understanding has one of the highest
correlations with the email rank. This is congruent with literature (cf. Hauser and Katz, 1998).
Perhaps developers would just have needed more time to get acquainted to CollabReview. But
also in the short time, the understanding of reputation could have been improved by providing
more up-front training, and more immediate and elaborate feedback on developer actions. An
alternative is to simplify the algorithm for measuring quality to make it easier to understand.

We are still convinced that reputation gaming will work when the experimental setup is
amended in such a way that the relationship between investing in code quality and a desirable
reward is firmer as, e.g. in the VIE theory by Vroom (1964); that means that

– developers need a better understanding of how to affect their score,
– responsibility assignments are less fuzzy by avoiding pair programming and scores are more

under control of the individual (i.e. “Expectancy”: effort in code ⇒ better score)
– a high score leads to a prize with a higher probability, e.g. by not only rewarding the first

place (i.e. “Instrumentality”: better score ⇒ prize), and
– the not necessarily monetary prize is worthwhile to achieve (i.e. “Valence”, the prize).

8 Conclusion

We have conducted a field experiment with the CollabReview reputation system for source
code in an agile software project. The goal was to affect ongoing development in such way
that developers write more Javadoc. The reputation scores were not meant as a performance
measure of a developer’s productivity but as a compensation for the “endured pain” of doing
what developers do not like to do: to write documentation (Selic, 2009).

The CollabReview reputation system was brought into the project after an initial phase
where comparison data was collected. Developers started receiving a daily digest of their rep-
utation scores, and a prize was announced for the winner. While the intervention probably
had had some effect, no measurable quality improvement occurred. However, the experiment
does not evidence that a reputation system is unsuitable for improving code quality. Instead, it
shows that integration into development is difficult, and must be done right. CollabReview was
previously deployed successfully in a wiki, so it was a surprise that this experiment “failed”.

The major contribution of our work is therefore the lessons that we learned: Measurements
must be implemented carefully to measure the right things, and to not endanger team spirit.
A low rank leads to low perceived presence but high importance, i.e. weak positive but strong
negative effects. Already the second place leads to a bad perception. Furthermore, developers
who care for quality welcome a tool like CollabReview that supports them. Yet there is no
indication that it is the profiteering that leads to a better overall reception. But a better overall
perception leads to more investing in quality. Of all factors, understanding seems to be the most
essential factor for performance improvement. Especially mass contributors had bad feelings
about scores but they mattered to them the most, creating feelings of unfairness. However,
there was few rejection and acceptance mostly depends on how scores are used.

With our work we guide the design of similar systems, and further the understanding of
the social dynamics that reputation systems cause in software projects. We also found that
developers with high reputation scores (resulting from Javadoc) are likely to write commit

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 185 of 192

messages. The reason is perhaps a documentation-affirming character trait. This finding suggests
that reputation scores do not capture an arbitrary value but are a sound measure.

In the future, we want to repeat the field experiment in a more suitable environment without
pair programming, and carefully consider the lessons learned. Ideally, the later experiment has
more participants, and can run for a longer duration. At the same time, we want to write a
daily log of project events to be able to relate events to observations of reputation scores.

Acknowledgments

We are grateful to the teachers of the XP Lab 2011 — Armin B. Cremers, Daniel Speicher, Paul Imhoff — who
kindly allowed us to conduct our studies, and the participants for being our guinea pigs. Furthermore, we like
to thank Markus Eisenhauer, Uwe Kirschenmann, René Reiners, Gabriel Bonerewitz and the PPIG reviewers for
their advice on the experimental setup, designing the interview, their opinions on the obtained results, and the
valuable hints for improvement.

Bibliography

de Vaus, D. A. (2002). Surveys in Social Research. Routledge, fifth edition.
Dencheva, S., Prause, C. R., and Prinz, W. (2011). Dynamic self-moderation in a corporate wiki to improve

participation and contribution quality. ECSCW, pages 1–20. Springer.
Dubochet, G. (2009). Computer code as a medium for human communication: Are programming languages

improving? In 21st Annual Workshop of PPIG, PPIG.
Edwards, S. H. (2003). Teaching software testing: Automatic grading meets test-first coding. In OOPLSA

Companion, pages 318–319. ACM.
Festinger, L. (1957). A Theory of Cognitive Dissonance. Stanford University Press.
Harrison, G. W. and List, J. A. (2004). Field experiments. J. of Econ. Lit., XLII:1009–1055.
Hauser, J. and Katz, G. (1998). Metrics: You are what you measure! EMJ, 16(5):517–528.
Hoisl, B., Aigner, W., and Miksch, S. (2007). Social rewarding in wiki systems — motivating the community. In

Online Communities and Social Computing. Springer.
ISO 9126-1 (2001). ISO 9126-1: Software engineering - product quality: Part 1: Quality model.
Jøsang, A., Ismail, R., and Boyd, C. (2007). A survey of trust and reputation systems for online service provision.

Decision Support Systems, 43(2):618–644.
King, P., Naughton, DeMoney, Kanerva, Walrath, Hommel, et al. (1997). Java code conventions.
Loveland, S. (2009). Using open source tools to prevent write-only code. In Conference on Information Technology:

New Generations. IEEE CS.
Prause, C. R. (2011). Reputation-based self-management of software process artifact quality in consortium

research projects. In ESEC/FSE, pages 380–384. ACM Press.
Prause, C. R. and Apelt, S. (2008). An approach for continuous inspection of source code. In 6th International

Workshop on Software quality, WoSQ, New York, NY, USA. ACM.
Prause, C. R. and Durdik, Z. (2012). Architectural design and documentation: Waste in agile development? In

International Conference on Software and System Process. IEEE CS.
Prause, C. R. and Eisenhauer, M. (2012). First results from an investigation into the validity of developer

reputation derived from wiki articles and source code. In CHASE. ACM.
Prause, C. R., Reiners, R., Dencheva, S., and Zimmermann, A. (2010). Incentives for maintaining high-quality

source code. In Psychology of Programming Interest Group Work-in-Progress.
Raskin, J. (2005). Comments are more important than code. ACM Queue, 3(2):64–62 (sic!).
Seibel, P. (2009). Coders at Work: Reflections on the Craft of Programming. Apress.
Selic, B. (2009). Agile documentation, anyone? IEEE Software, 26(6):11–12.
Singer, L. and Schneider, K. (2012). It was a bit of a race: Gamification of version control. In 2nd International

Workshop on Games and Software Engineering.
Smart, J. F. (2008). Java Power Tools. O’Reilly Media, first edition.
Smith, D. (2005). Gide: An integrated development environment focusing on agile programming methodologies

and student feedback. In WCCCE.
Spinellis, D. (2011). elyts edoc. IEEE Software, 28:104–103.
Vroom, V. H. (1964). Work and Motivation. Wiley.

Page 186 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

PPIG 2012 Doctoral Consortium

Teaching Novices Programming Using a Robot Simulator

Louis Major
School of Computing and Mathematics

Keele University, UK
l.major@keele.ac.uk

This research investigates the effectiveness of using simulated robots as tools to teach
introductory programming. It has been influenced by the results of a Mapping Study and
Systematic Literature Review which indicated that such a study would be valuable. A robot
simulator has been developed after reviewing educational software guidelines. This has
been implemented in a number of programming workshops. A range of participants have
been involved including novice programmers in addition to trainee and in-service high school
teachers. By its conclusion, over 95 participants will have taken part. The case study
methodology has been used and this will help to ensure reliable and rigorous empirical
research is undertaken. This project will contribute to knowledge by addressing the findings
of the SLR, specifically the need to investigate the use of simulated robots as tools to teach
programming.

Novel Interaction Designs for a New Novice Programming Editor

Fraser McKay
School of Computing

University of Kent
fm98@kent.ac.uk

This project concerns the design of interaction and presentation elements in a new
programming editor, designed for learner programmers. Its aim is to avoid both the viscosity
that is often part of visual programs, and the error-proneness of traditional text-based
programming languages like Java. This extended abstract presents some prototype
interactions, and our observations about them thus far. A stand-alone editor using these
interactions has been presented elsewhere. CogTool models have also been used to
compare the new editing style to those found in existing systems. This paper also briefly
describes new usability heuristics that we have proposed, and begun to evaluate, for
systems in this specific domain. Our evaluations of existing systems (including Scratch, Alice,
Greenfoot, and others) have led to the development of these heuristics.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 187 of 192

mailto:l.major@keele.ac.uk
mailto:fm98@kent.ac.uk

An empirical study on program comprehension using eye tracking and think aloud

Teresa Busjahn
Department of Computer Science

Freie Universität Berlin
teresa.busjahn@fu-berlin.de

The main focus of my thesis is on code reading and program comprehension. I use a
combination of eye tracking and retrospective think aloud in order to gain insight into
cognitive processes during code reading and understanding.

Programming, Professionalism and Pedagogy

Melanie Coles
Bournemouth University

mcoles@bournemouth.ac.uk

This research aims to explore professionalism in programming, what it means to be a
programming professional and what skills and attributes this should include. The research
will explore what a variety of stakeholders consider to be the professional attributes of a
programmer, covering both documentary evidence and opinion of stakeholders. The
documentary evidence will be investigated to identify common themes and trends, this will
then be followed up by detailed interviews to gather further data and develop the themes
from a variety of stakeholders. Then the opinion of a broader range of stakeholders on these
themes will be gathered using a survey/questionnaire. The findings of this research will be
used to develop a model of professional programming, possibly developing a model for
different domains of programming. This model can then be evaluated by stakeholders and
applied in a variety of domains to assess its usefulness.

Page 188 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

mailto:teresa.busjahn@fu-berlin.de
mailto:mcoles@bournemouth.ac.uk

The design and implementation of a notional machine for teaching introductory

programming

Michael Berry
School of Computing

University of Kent
mjrb5@kent.ac.uk

Several studies have shown that students find programming hard to grasp, with many
computing courses showing significant drop out and failure rates. This work aims to help with
this problem by contributing a new notional machine that is helpful for the teaching of
introductory programming, and is currently in the start of its second year. An evaluation of
existing notional machines and their corresponding implementations has been performed
thus far, and a prototype is currently being developed in BlueJ that should form the basis of
the implementation of the new notional machine. The intended outcome of this project is to
contribute a new notional machine which students should find helpful for learning object
oriented programming, specially in Java.

Eliciting peer definitions of a 'good' programmer

Gail Ollis
1st year PhD researcher

School of Design, Engineering and Computing
Bournemouth University

gollis@bournemouth.ac.uk

This research, currently in its first year, investigates individual differences between
experienced programmers varying in aptitude. The topic of aptitude calls for a clear definition
of 'good programmer', a concept for which multiple and potentially conflicting criteria exist. In
this research, the chosen criteria will be those identified by experienced software developers
as affecting their productivity when working with existing code. The tasks of fixing,
maintaining or adapting a program represent a large part of software development effort, so
the effect of implementation decisions by the original programmer can be significant. A later
phase of the research will explore the role of personality in those decisions. The first phase,
though, is to establish characteristic behaviours which are commonly considered a help or a
hindrance by peers. Discussion is invited on the proposed methods for eliciting their opinions.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 189 of 192

mailto:mjrb5@kent.ac.uk
mailto:gollis@bournemouth.ac.uk

Supporting developer to apply Trust Management

Mark Vinkovits
User Centred Ubiquitous Computing

Fraunhofer FIT
mark.vinkovits@fit.fraunhofer.de

Software security has become a demanded functionality in the last decade. As more and
more assets are stored digitally and organizations enter e-commerce, security has become
an unavoidable issue. Although the obvious need for proper software security, managers
and developers ignore the proper handling of the problem and apply best effort solutions
based on their available expertise. This work aims to understand the reason for the neglect,
adapt the amount of security to the real needs and support non-security specialists to
integrate software security into their products. The area of interest is Trust Management, as
one of the promising solutions for distributed systems, to which we apply model-driven
security as way to achieve the desired usability.

Dual Eye Tracking for Teaching Debugging

Kshitij Sharma
CRAFT, ´ Ecole Polytechnique F´ed´erale de Lausanne

kshitij.sharma@epfl.ch

We study Dual Eye Tracking and Collaborative Pair Programming with two major goals. The
first goal is to consolidate and deepen our understanding of the mechanisms that make
collaborative interaction productive and to model how gaze reflects to activity that is pursued
by the collaborators and their levels of expertise. The second goal of the project builds on
our previous findings, and consists of developing and testing a gaze-awareness tool that
informs collaborators about the convergence of their gaze. Such an indication should result
in a lower grounding effort since speakers can “see” whether their partners are following

them and better tune the effort that is required to reach shared understanding.

Page 190 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

mailto:mark.vinkovits@fit.fraunhofer.de
mailto:kshitij.sharma@epfl.ch

Getting at Ephemeral Flaws

Tamara Lopez
Centre for Research in Computing, The Open University

t.lopez@open.ac.uk

Software rarely works as intended when it is initially written. Things go wrong, and
developers are commonly understood to form theories and strategies to deal with them.
Much of this knowledge relates to ephemeral flaws rather than reported bugs, and is not
captured in the software record. As a result, these flaws and understanding about them are
neglected in software engineering research. In this paper we describe a study designed to
elicit stories from software developers about problems they encounter in their daily work. We
also offer preliminary thoughts about the utility of retrospective interviewing in getting at
information about ephemeral flaws.

Studying the utility of Natural Language Descriptions as a support for novices in the

early stage of learning programming

Edgar Cambranes
Human-Centred Technology Group

School of Engineering and Informatics.
University of Sussex.

Brighton, United Kingdom.
E.Cambranes-Martinez@sussex.ac.uk

Many novice programmers find the programming process problematic, in part because they
have to use unfamiliar elements to create programs. Some environments developed for
novice programmers, such as Scratch or Alice, have considered, for example, motivation or
error-free syntax as key points to support programmers. However, these environments still
fail to express programs in a way familiar to novice programmers, thus the user cannot
easily verify whether the solution program matches with their intention. This research
proposes to explore the usefulness of providing a second representation (in addition to a
flowchart representation) to support a visual language designed for novice programmers. In
particular, the second representation uses Natural Language to describe the current solution.
The aim of the research is to assess the beneficial effects (if any) of a second representation
on the comprehension, creation and debugging of programs. Specifically, the research will
try to answer to what extent does the second representation affect these different aspects of
the programming process? This paper describes an experiment that has compared the use
of natural language as a secondary representation to a flowchart language with the use of
pseudo-code as a secondary representation to the same flowchart language.

PPIG 2012, London Metropolitan University 21-23 November 2012 Page 191 of 192

mailto:t.lopez@open.ac.uk
mailto:E.Cambranes-Martinez@sussex.ac.uk

The Development of an Intelligent Simulation Framework to Optimize the Production,

Design and Development in the Cameroon Development Corporation (C.D.C) Palm Oil

Industry

Cosmas A. Fonche
Faculty of Life Sciences and Computing

School of Computing
London Metropolitan University

Caf0233@londonmet.ac.uk

This project focuses on the use of simulation to optimize production design and development
within industries. Phase one of the research work is to define a process of imitating the
operations of a real world process or system over time, view and evaluate the systems
drawbacks and bottlenecks and finding the best input variable or solution, from among all
possibilities. The objective of simulation experiments is to understand the behaviour of the
system and to test possible changes. The purpose of this research is to explore the influence
of simulation and develop an intelligent framework to optimize the production design and
development in the Cameroon Development Corporation (C.D.C) Palm Oil Industry.

Investigation Leading to Behaviour-Based Hybrid Intrusion Detection System for

Mobile Devices

Khurram Majeed
School of Computing

London Metropolitan University
k.majeed@londonmet.ac.uk

Smartphones nowadays have become immensely popular because they provide All-In-One
expediency by integrating traditional mobile phones with hand-held computing devices
making them more open and general purpose. However this flexibility leaves the
Smartphones prone to attacks by malicious hackers. These malware not only poses a threat
to mobile system data confidentiality, availability and integrity but can result in unwanted
billing, depletion of battery power and denial-of-service (hereafter DOS) attack by generating
malicious traffic hence seriously crippling the mobile network and service capacity. Current
Smartphones malware detection and prevention techniques are limited to Signature-Based
antivirus scanners (hereafter SIDS). These can efficiently detect malware with a known
signature, but they have serious shortcomings with new and unknown malware creating a
window of opportunity for attackers. A framework for Behaviour-Based Hybrid Intrusion
Detection System is proposed to circumvent these shortcomings. This framework aims to
provide protection against physical misuse using Machine Learning technique and detection
of malicious applications using Knowledge Based Temporal Abstraction method. This
research will be among the first to combine these two methods. Being platform independent
is another novelty of the framework. A prototype has been partially implemented on Google
Android and tested on emulators. Further validation will be performed on Smartphones to
benchmark this framework.

Page 192 of 192 21-23 November 2012 PPIG 2012, London Metropolitan University

mailto:Caf0233@londonmet.ac.uk
mailto:k.majeed@londonmet.ac.uk

	cover
	Message from the Chairs
	Contents2
	Organization
	keynote
	Paper Session 1
	9.PPIG2012-Sylvia da Rosa
	7.ppig-Kshitij Sharma
	Paper Session 2
	14.Computer Anxiety-Sarah Crabbe
	5.PPIG2012_ workshopPaper_revised-Gail Ollis
	Paper Session 3
	3.Ppig_2012-Ahmad Taherkhani
	Schema Detection and Beacon-Based Classification for Algorithm Recognition

	17.Some Reflections on Knowledge Representation in the Semantic Web - John Kirby
	Paper Session 4
	2.PPIG2012-LopezPetreNuseibeh-Final-Tamara Lopez
	15.dataCollection-Rebecca Yates
	Conducting Field Studies in Software Engineering: An Experience Report

	Paper Session 5
	PPIG Discussant-Ben du Boulay
	10.Teaching Novices Programming Using a Robot Simulator - Case Study Protocol - PPIG 2012-Louis Major
	8.Observing_mental_models-Richard Bornat
	16. Bednarik_Orlov_PPIG_03112012-Roman Bednarik
	4.Paper 4-Leonard J. Mselle-won't attend-brazil
	Paper Session 6
	13.PPIG heuristics AFTER REVIEW-Fraser Mckay
	11.Raffaillac.T.Compiler_feedback-Thibault Raffaillac
	12.ppig-2012-paper12-camera-ready-Luiz Afonso
	18. Church-et-al-paper18-revised-Luke Church
	19. Prause, Nonnen, Vinkovits - embedded
	PPIG2012 Doctoral Consortium Abstracts

