Introductory logic — Exercise sheet 2

Model theory of first-order logic

Feel free to write me an e-mail if you have questions about, or corrections to, any of the exercises on this sheet. To indicate the difficulty of the problems, I have marked the (hopefully) most accessible exercises with '-' and the difficult ones (which are optional, if you like) with '+'. The exercises that are unmarked fall somewhere in between.

- (-) 1. Show that the class of all infinite sets is axiomatisable.
- (-) 2. Is the theory of undirected graphs complete? If not, give an example of a first-order sentence which is true in some graphs and false in others
- (-) 3. This exercise asks you to work with elementary definitions of groups; consult e.g. the MathWorld website for the definition.
 - Write down a signature suitable for representing groups as relational structures. Note that this is slightly complicated by the fact that we don't consider function symbols in our signatures.
 - (ii) Write down the group axioms as a first-order theory.
 - (iii) Is this theory complete?
- (-) 4. Let **A** be a τ -structure over a domain *A*. Suppose **B** is a τ -structure over a domain $B \subseteq A$ for which it holds that (1) $c^{\mathbf{B}} = c^{\mathbf{A}}$ for all constant symbols c in τ ; and (2) $R^{\mathbf{B}} = R^{\mathbf{A}} \cap B^{n}$ for any *n*-ary relation symbol *R* in τ . Then we say that **B** is a *substructure* of **A** and that **A** is an *extension* of **B**. For example, $(\mathbb{Q}, <^{\mathbb{Q}})$ is a substructure of $(\mathbb{R}, <^{\mathbb{R}})$.
 - (i) A first-order theory *T* is called *universal* if its axioms all have the form $\forall \vec{x} \cdot \varphi$, where \vec{x} is a (possibly-empty) tuple of variables and φ is quantifier-free. Show that if *T* is universal then every substructure of a *T*-model is a *T*-model.
 - (ii) A first-order theory *T* is called *existential* if its axioms all have the form $\exists \vec{x} \cdot \varphi$, where \vec{x} is a (possibly-empty) tuple of variables and φ is quantifier-free. Show that if *T* is existential then every extension of a *T*-model is a *T*-model.
 - 5. Suppose \mathcal{K} is a first-order definable class which is can be axiomatised by a theory T; that is to say, $\mathcal{K} = Mod(T) = Mod(\varphi)$ for some formula φ which may or may not be in T. Use compactness to show that there is a finite subset $S \subseteq T$ such that $\mathcal{K} = Mod(S)$.

- If K is a class of τ-structures, then the complement of K, written K
 , is the class of all τ-structures not in K.
 - (i) Show that a class \mathcal{K} of τ -structures is finitely axiomatisable iff both \mathcal{K} and its complement $\overline{\mathcal{K}}$ are axiomatisable.
 - (ii) Conclude that the class of all infinite sets is not finitely axiomatisable (equivalently, not first-order definable).
- 7. Assume that φ is true in all infinite models of a theory *T*. Show that there exists a finite number *n* such that φ is true in *all* models of *T* that have at least *n* elements.
- (+) 8. Let $G = (V, E^G)$ be a graph, possibly infinite. If $v, w \in V$, then a *path from v to w* is a finite sequence of vertices v_0, \ldots, v_n such that $v_0 = v, v_n = w$ and for any i < n, there is an edge between v_i and v_{i+1} . We say that *G* is *connected* if there is a path in *G* between any two vertices in *V*.

Now consider the undirected graph $Z = (\mathbb{Z}, E^Z)$ whose vertices are all the integers and where there is an edge between *n* and *m* iff |n - m| = 1. For example, the number 0 is linked to 1 and -1, 1 is linked to 0 and 2, etc. We can see that *Z* is a countably infinite line that stretches in both directions. Clearly, *Z* is connected.

- (i) Use compactness to show that there is an undirected, non-connected graph G which is elementarily equivalent to Z (*hint*: Consider extending the signature by adding a pair of constants, similar to what we did in the proof of the Upward Löwenheim-Skolem theorem).
- (ii) Conclude that the class of connected graphs is not axiomatisable.
- (iii) What can you say about the axiomatisability of the class of non-connected graphs?
- (+) 9. In the lectures, we showed that the theory of dense linear orders without endpoints is ℵ₀-categorical. The aim of this question is to show that this is not true in general for arbitrary cardinals.

Let (A, <) be an ordered set and write \leq for the reflexive relation $(x < y) \lor (x = y)$. An *upper bound* of a non-empty subset $X \subseteq A$ is an element $b \in A$ with $a \leq b$ for all $a \in A$. An element $u \in A$ is a *least upper bound* (or *l.u.b.*) of X if u is an upper bound of X and if b is also an upper bound of X then $b \leq u$. That is, $\forall b \in X . (\forall x . x \leq b) \Rightarrow (u \leq b)$. We say that (A, <) has the *least upper bound property* if every non-empty subset of A has a l.u.b.

 (i) Consider the structure R = (ℝ, <^ℝ), where <^ℝ is the usual ordering of the reals. Let C = (ℂ, <^ℂ) be an ordering of the complex numbers where we let

$$a+i\cdot b<^{\mathbb{C}}x+i\cdot y$$

if either $(a <^R x)$ or ((a = b) and $b <^{\mathbb{R}} y)$ (a lexicographical ordering). Show that $\mathbf{R} \equiv \mathbf{C}$.

- (ii) It is well-known that **R** has the least upper bound property; show that **C** does not.
- (iii) Conclude that **R** and **C** are not isomorphic.
- (iv) What does this say about the categoricity of dense linear orderings without endpoints?