
1

Quantum Computing

Lecture 8

Anuj Dawar

Quantum Automata and Complexity

2

Models of Computation

Shor’s algorithm solves, in polynomial time, a problem for which no

classical, deterministic polynomial time algorithm is known.

What class of problems are solvable by quantum machines in

polynomial time?

More generally, how does quantum parallelism compare with other

forms of parallelism and nondeterminism.

How does the quantum model of computation affect our

understanding of complexity classes?

3

Finite State Systems

aa

b

b
This automaton accepts the set of

strings that contain at least one b.

Its operation can be described by a

pair of matrices.

Ma =

1 0

0 1

 Mb =

0 0

1 1

MbMbMa describes the operation on states performed by reading

the string abb.

4

DFAs and Matrices

Each DFA is specified by a collection of n × n matrices, where n is

the number of states in the DFA, and there is one matrix for each

letter.

Each column of each matrix is a unit vector with 0, 1

entries.

More generally, we can form a matrix Mw for each word w.

Multiplication of matrices corresponds to concatenation of

words.

Mw|i〉 = |j〉 if there is a path labelled w from state i to state j.

5

Nondeterministic Automata

aa

b b

b

This automaton accepts the same

set of strings as the deterministic

one.

The columns of the corresponding

matrices are no longer unit vectors.

Ma =

1 0

0 1

 Mb =

1 0

1 1

6

NFAs and Matrices

Mbb =

1 0

2 1

Mw(i, j) gives the number of paths labeled w from state i to state j.

Mw|i〉 =
∑

j

Mw(i, j)|j〉

7

Probabilistic Automata

We obtain probabilistic automata if we allow fractional values in

Mσ.

with the proviso that each column adds up to 1.

E.g. Ma =

0.5 0.0

0.5 1.0

 Mb =

0.8 0.2

0.2 0.8

MaMb =

0.4 0.1

0.6 0.9

gives, in position (i, j) the prob-

ability that string ba takes you

from state i to state j.

8

Language Accepted

A probabilistic automaton A accepts a language L with certainty if

P (A accepts w) =

1 if w ∈ L

0 if w 6∈ L

A accepts a language L with bounded probability if there is an

ǫ < 1/2 such that:

P (A accepts w) =

> 1 − ǫ if w ∈ L

< ǫ if w 6∈ L

The class of languages accepted by probabilistic automata (under

either definition) is the regular languages.

9

Quantum Automata

Quantum finite automata are obtained by letting the matrices Mσ

have complex entries.

We also require each of the matrices to be unitary.

E.g. Mσ =

−1 0

0 i

Mσ is unitary since the sum of

the squares of the norms in each

column adds up to 1 and the dot

product of any two columns is 0.

NB: If all matrices only have 0 or 1 entries and the matrices are

unitary (i.e., the matrices are permutation matrices), then the

automaton is deterministic and reversible.

10

Acceptance Probabilities

If q is the starting state of the automaton,

Mw|q〉

is the state after reading w. If

αj = 〈j|Mw|q〉

then αj is the probability amplitude that the automaton reaches

state j.

|αj |
2 is the probability that a measurement will result in

state qj .
∑

j∈F |αj |
2 is the probability that the automaton accepts

the string w.

11

Language Accepted

We can define language acceptance exactly or by bounded

probability.

Because of the reversibility requirement, quantum automata are

quite a weak model.

There are regular languages that cannot be accepted by a QFA.

However, QFAs may be much more succinct than their classical

counterparts.

12

Interference

Consider the automaton in a one letter alphabet defined as:

q1 q2

1√
2

1√
2

1√
2

− 1√
2

Ma =

1√
2

1√
2

−1√
2

1√
2

Maa =

0 1

−1 0

While there are two distinct paths la-

belled aa from q1 back to itself, and each

has non-zero probability, the net proba-

bility of ending up in q1 is 0.

The automaton accepts a string of odd length with probability 0.5

and a string of even length with probability 1 if its length is not a

multiple of 4 and probability 0 otherwise.

13

Turing Machines

A Turing machine, in addition to the finite set of states in the

automaton has an infinite read-write tape.

A machine is determined by an alphabet Σ, a finite set of states Q

and a transition function δ which gives, for each state and symbol:

a next state, a replacement symbol and a direction in which to

move the tape head.

A machine has infinitely many possible configurations (reserving

the word “state” for a member of Q).

Each configuration c is determined by a state, the contents of the

tape (a finite string) and the position of the head.

14

Configurations and Computations

If c0 is the configuration in the starting state, with w on the tape

and the tape head at the left end of the string, w is accepted if the

computation

c0 → c1 → · · · → cf

eventually reaches an accepting state.

If the length of the computation is bounded by a polynomial in the

length of w, the language accepted by the machine is in P.

The action of the Turing machine can equivalently be described as

a linear operator M on an infinite-dimensional space.

The set of configurations form a basis for the space.

15

Nondeterministic Turing Machines

In a nondeterministic machine, δ determines, for each state and

symbol, a set of next moves.

This gives rise to a tree of configurations:

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

c10

A configuration may occur in several

places in the tree.

The initial string w is accepted by the ma-

chine if there is some path through the

tree leading to an accepting state.

If the height of the tree is bounded by a polynomial in the length of

w, then the language is in NP

16

Probabilistic Machines

With a probabilistic machine, δ defines, for each current state and

symbol, a probability distribution over the possible next moves.

The action of the machine can be defined as an infinite matrix,

where the rows and columns are configurations, and each column

adds up to 1.

However, how much information can be encoded in a single entry?

We require the entries α to be feasibly computable. That is, there is

a feasibly computable f such that:

|f(n) − α| < 2−n

17

BPP

BPP is the collection of languages L for which there is a

probabilistic machine M , running in polynomial time with:

P (M accepts w) =

> 2

3
if w ∈ L

< 1

3
if w 6∈ L

The class of languages is unchanged if we replace 2

3
and 1

3
by 1 − ǫ

and ǫ, for any ǫ < 1

2
, or indeed the set of all feasibly computable

probabilities with {0, 1

2
, 1}.

The only inclusion relations we know are P⊆NP and P⊆BPP.

Primality testing, long known to be in NP and in BPP was shown

in 2002 to be in P.

18

Quantum Turing Machines

With a Quantum Turing machine, δ associates with each state and

symbol, and each possible next move, a complex probability

amplitude (which we require to be a feasible complex number).

c0

c1

c2

c3

c4

c5

c6

c7

c8

c9

α0

α1

α2

The machine can be seen as progressing

through a series of stages, each of which

is a superposition of configurations.

Note that the probability of c7 occurring

at time 2 may be less than the sum of the

probabilities along the two paths.

We also require that the linear transfor-

mation defined by the machine is unitary.

19

BQP

BQP is the collection of languages L recognised by a quantum

Turing machine, running in polynomial time, under the bounded

probability rule.

The class BQP is not changed if we restrict the set of possible

amplitudes to {0,± 3

5
,± 4

5
, 1}.

BPP ⊆ BQP

Shor’s algorithm shows that the factorisation problem is in BQP.

It is not known to be in BPP.

20

Complexity Classes

P

NP

NP− C

BPP

BQP

PSPACE
factorisation

Inclusion relations among the complexity classes as we know them.

