
1

Quantum Computing

Lecture 7

Anuj Dawar

Quantum Factoring

2

Quantum Factoring

A polynomial time quantum algorithm for factoring numbers was

published by Peter Shor in 1994.

polynomial time here means that the number of gates is

bounded by a polynomial in the number of bits n of the

number being factored.

The best known classical algorithms are exponential (in n1/3).

Fast factoring would undermine public-key cryptographic systems

such as RSA.

3

Period Finding

Suppose we are given a function f : N → {0, . . . , N − 1} which we

know is periodic, i.e.

f(x + r) = f(x) for some fixed r and all x.

Can we find the least value of r?

If we can find the period of a function efficiently, we can factor

integers quickly.

4

Order Finding

Suppose we are given an integer N and an a with a < N and

gcd(a, N) = 1.

Consider the function fa : N → {0, . . . , N − 1} given by

fa(x) ≡ ax (mod N)

Then, fa is periodic, and if we can find the period r, we can factor

N .

5

Factoring

Suppose (for simplicity) N = pq, where p and q are prime. And, for

some a < N , we know the period r of the function fa.

Then, ar+1 ≡ a (mod N), so ar ≡ 1 (mod N).

If r is even and ar/2 + 1 6≡ 0 (mod N), then take x2 = ar.

x2 − 1 ≡ 0 (mod N)

(x − 1)(x + 1) ≡ 0 (mod N)

But,

x − 1 6≡ 0 (mod N) (by minimality of r)

x + 1 6≡ 0 (mod N) (by assumption)

6

Factoring–contd.

So, (x − 1)(x + 1) = kpq for some k.

Now, finding gcd(N, x − 1) and gcd(N, x + 1) will find p and q.

If we randomly choose a < N

(and check that gcd(a, N) = 1—if not, we’ve already found

a factor of N)

then, there is a probability > 1
2 that

• the period of fa is even; and

• ar/2 + 1 6≡ 0 (mod N).

7

Using a Fourier Transform

A fast period-finding algorithm allows us to factor numbers quickly.

The idea is to use a Fourier Transform to find the period of a

function f .

Note, classically, we can use the fast Fourier transform algorithm

for this purpose, but it can be shown that this would require time

N log N , which is exponential in the number of bits of N .

8

Discrete Fourier Transform

The discrete Fourier transform of a sequence of complex numbers

x0, . . . , xM−1

is another sequence of numbers

y0, . . . , yM−1

where

yk =
1√
M

M−1
∑

j=0

xje
2πijk/M

or

yk =
1√
M

M−1
∑

j=0

xjω
jk.

where ω = e2πi/M .

9

DFT is Unitary

The discrete Fourier transform is a unitary operation on CM .

Writing ω for e2πi/M ,

ω, ω2, . . . , ωM−1, ωM = 1

are the Mth roots of 1.

D =
1√
M

1 1 1 · · · 1

1 ω ω2 · · · ω−1

1 ω2 ω4 · · · ω−2

1 ω3 ω6 · · · ω−3

...
...

...
. . .

...

1 ωM−1 ω2M−2 · · · ω

10

Inverse DFT

The inverse of the discrete Fourier Transform is given by:

D−1 =
1√
M

1 1 1 · · · 1

1 ω−1 ω−2 · · · ω

1 ω−2 ω−4 · · · ω2

1 ω−3 ω−6 · · · ω3

...
...

...
. . .

...

1 ω1−M ω2−2M · · · ωM−1

Exercise: Verify that D is unitary. Verify that D−1 as given above

is the inverse of D.

11

Quantum Fourier Transform

Computing the discrete Fourier transform classically takes time

polynomial in M .

Shor showed that D can be implemented using a number of one and

two-qubit gates that is only polynomial in the number of qubits

O((log M)2).

Note: This does not give a fast way to compute the DFT on a

quantum computer.

There is no way to extract all the complex components from the

transformed state.

12

Fourier Transform on Binary Strings

Suppose M = 2n, and let |x〉 be a computational basis state in CM

with binary representation x1 · · ·xn.

Let

ηj = e2πi(0·xjxj+1···xn).

Then

D|x〉 = (|0〉 + ηn|1〉)(|0〉 + ηn−1|1〉) · · · (|0〉 + η1|1〉).

Exercise: Verify.

13

Quantum Fourier Transform Circuit

We can use this form to implement the quantum Fourier transform

using Hadamard gates and conditional phase-shift gates.

H

H

H

H

P

P

P

Q

Q R

In the input, the least significant bit is at the top, in the output, it

is at the bottom.

14

Conditional Phase Shifts

Here

P =

1 0

0 i

 Q =

1 0

0 eiπ/4

 R =

1 0

0 eiπ/8

Two-qubit conditional phase shift gates are actually symmetric

between the two bits, despite the asymmetry in the drawn circuit.

It seems that for large n, an n-bit quantum Fourier transform

circuit would require conditional phase shifts of arbitrary precision.

It can be shown that this can be avoided with some (but not

significant) loss in the probability of success for the factoring

algorithm.

15

Preparing the State

We are given an implementation of the function f as a unitary

operator Uf

|x〉
|0〉

|x〉
|f(x)〉Uf

Where, now, each of the two in-

put wires represents n distinct

qubits

Writing |Ψ〉 for the state

H⊗n|0n〉 =
1

2n/2

2n−1
∑

x=0

|x〉.

We have,

Uf |Ψ〉|0n〉 =
1

2n/2

2n−1
∑

x=0

|x〉|f(x)〉.

16

First Measurement

We measure the second n qubits of the state Uf |Ψ〉|0n〉 and get a

value f0. The state after measurement is:

(1√
m

m−1
∑

k=0

|x0 + kr〉
)

|f0〉.

where:

x0 is the least value such that f(x0) = f0

r is the period of the function f

m = ⌊ 2n

r ⌋.

17

Applying the QFT

We apply the n-qubit quantum Fourier transform to the first n bits

of the transformed state.

D
(

1√
m

m−1
∑

k=0

|x0 + kr〉
)

= 1
2n/2

2n−1
∑

y=0

1√
m

m−1
∑

k=0

ω(x0+kr)y|y〉

=
2n−1
∑

y=0

ωx0y 1

2n/2
√

m

(

m−1
∑

k=0

ωkry
)

|y〉.

where ω = e2πi/2n

.

18

Second Measurement

The probability of observing a given state |y〉 is:

1

2nm

∣

∣

∣

∣

∣

m−1
∑

k=0

ωkry

∣

∣

∣

∣

∣

2

.

This probability function has peaks when ry/2n is close to an

integer.

Indeed, if ry/2n is an integer, then the probability of measuring y

is 1.

Given an integer multiple of 2n/r, it is not difficult to find r.

19

Exponentiation

To complete the factoring algorithm, we need to check that we can

also implement the unitary transform Uf for the particular function

fa(x) = ax mod N.

with a number of quantum gates that is polynomial in log N .

This is achieved through repeated squaring.

20

Some Points to Note

The two measurement steps can be combined at the end, with the

Fourier transform applied before the measurement of f(x).

The probability of successfully finding the period in any run of the

algorithm is only about 0.4.

However, this means a small number of repetitions will suffice to

find the period with high probability.

Putting a lower bound on the conditional phase shift we are allowed

to perform affects the probability of success, but not the rest of the

algorithm.

