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Search Problems

One of the two most important algorithms in quantum computing

is Grover’s search algorithm—first presented by Lov Grover in 1996.

This provides a means of searching for a particular value in an

unstructured search space.

Compare

• searching for a name in a telephone directory

• searching for a phone number in a telephone directory

Given a black box which can take any of N inputs, and for each of

them gives a yes/no answer, Grover’s algorithm allows us to find

the unique value for which the answer is yes in O(
√

N) steps (with

high probability).
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Deutsch-Jozsa Algorithm revisitedreplacemen

|0〉
1√
2
(|0〉 − |1〉)

Uf
HH

When the lower input to Uf is |0〉 − |1〉, we can regard this as

unchanged, and instead see Uf as shifting the phase of the upper

qubit by (−1)f(x).
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Oracle

Suppose we have f : N → {0, 1}, and that N = 2n, so we can think

of f as operating on n bits.

We assume that we are provided a black box or oracle Uf for

computing f , in the following sense:

|x〉







|b〉

Uf

|b ⊕ f(x)〉
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Grover’s Algorithm

Suppose further that there is exactly one n-bit value a such that

f(a) = 1

and for all other values x,

f(x) = 0.

Grover’s algorithm gives us a way of using the black box Uf to

determine the value a with O(
√

N) = O(2n/2) calls to Uf .
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Grover’s Algorithm Schematic
replacements
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|0〉−|1〉

The operator G = (W ⊗ I)Uf is known as the Grover Iterate (we

will see soon what W is).

The input to the last bit is 1√
2
(|0〉 − |1〉).
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The Action of Uf

As the “output qubit” is |0〉 − |1〉, it remains unaffected by the

action of Uf , which we can think of instead as a conditional phase

change on the n input qubits.

|a〉 7→ −|a〉
|x〉 7→ |x〉 for any x 6= a

We will ignore the output bit completely and instead talk of the

n-bit operator V above.

Note: V = I − 2|a〉〈a|.

We now analyse the Grover iterate WV .
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Components of W

We write H⊗n for the fol-

lowing operation:

H

H

H

H

n inputs







And X⊗n for the following

operation:

X

X

X

X

n inputs







Each of these can, of course, be implemented by a series of n

1-qubit operations.
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More Components of W

We write cZ⊗n for the n-bit controlled-Z gate:

Z

n inputs







cZ⊗n =











1 0 · · · 0

0 1 · · · 0
...

...
. . .

...

0 0 · · · −1











cZ⊗n can be implemented using O(n) cZ and Toffoli gates, using

some workspace qubits (Exercise).
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Defining W

Now, we can define W by:

W = (−1)H⊗n(X⊗ncZ⊗nX⊗n)H⊗n.

= (−1)H⊗n(I − 2|0n〉〈0n|)H⊗n

Write |Ψ〉 for the state

H⊗n|0n〉 =
1√
N

N−1∑

i=0

|i〉.

So, W = (−1)(I − 2|Ψ〉〈Ψ|), i.e.

W = 2|Ψ〉〈Ψ| − I.
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The Grover Iterate

Since G = WV , we have

G = (2|Ψ〉〈Ψ| − I)(I − 2|a〉〈a|).

Consider the actions of W and V on the two states |Ψ〉 and |a〉.

W |Ψ〉 = |Ψ〉 W |a〉 = 2√
N
|Ψ〉 − |a〉.

V |Ψ〉 = |Ψ〉 − 2√
N
|a〉 V |a〉 = −|a〉

Thus, as we start the algorithm in state |Ψ〉, the result of repeated

applications of V and W will always give a real linear combination

of |a〉 and |Ψ〉.
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Geometric View

We can picture the action of W and V in the two-dimensional real

plane spanned by the vectors |a〉 and |Ψ〉.

θ

2θ

|a〉

|Ψ〉

V |Ψ〉

WV |Ψ〉
V is a reflection

about the line per-

pendicular to |a〉.
W is a reflection

about |Ψ〉.
The composition of

two reflections of the

plane is always a ro-

tation.
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The Rotation

It is clear from the picture that WV (the Grover iterate) is a

rotation through an angle 2θ in the direction from |Ψ〉 to |a〉, where

the angle between |Ψ〉 and |a〉 is π
2 − θ.

|Ψ〉 and |a〉 are nearly orthogonal, so θ is small (if N is large).

sin θ = cos(
π

2
− θ) = 〈a|Ψ〉 =

1√
N

=
1

2n/2
.

So,

θ ∼ 1√
N

=
1

2n/2

for large enough values of N .
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Number of Iterations

After t ∼ π/2
2θ ∼ π

4

√
N iterations of the Grover iterate G = WV ,

the state of the system

Gt|Ψ〉
is within an angle θ of |a〉.

A measurement at this stage yields the state |a〉 with probability

|〈GtΨ|a〉|2 ≥ (cos θ)2 = 1 − (sin θ)2 =
N − 1

N
.

Note: Further iterations beyond t will reduce the probability of

finding |a〉.
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Multiple Solutions

Grover’s algorithm works even if the solution |a〉 is not unique.

Suppose there is a set of solutions S ⊆ {0, . . . , N − 1} and let

M = |S| be the number of solutions.

The Grover iterate is then a rotation in the space spanned by the

two vectors

|Ψ〉 =
1√
N

N−1∑

i=0

|i〉 |S〉 =
1√
M

∑

j∈S

|j〉

As the angle between these is smaller, the number of iterations

drops, but so does the probability of success.
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Lower Bound

For classical algorithms, searching an unstructured space of

solutions (such as given by a black box for f), it is easy to show a

Ω(N) lower bound on the number of calls to the black box required

to identify the unique solution.

Grover’s algorithm demonstrates that a quantum algorithm can

beat any classical algorithm for the problem.

It is possible to show a Ω(
√

N) lower bound for the number of calls

to Uf by any quantum algorithm that identifies a unique solution.

Grover’s algorithm does not allow quantum computers to solve

NP-complete problems in polynomial time.


