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Deutsch-Jozsa Problem

Given a function f : {0, 1} → {0, 1}, determine whether f is

constant or balanced.

Classically, this requires two calls to the function f .

But, if we are given the quantum black box:

|a〉
|b〉

|a〉
Uf |b⊕ f(a)〉

One use of the box suffices



3

Deutsch-Jozsa Algorithmreplacemen

|0〉
1
√

2
(|0〉 − |1〉)

Uf
HH

Uf with input |x〉 and |0〉 − |1〉 is just a phase shift.

It changes phase by (−1)f(x).

When |x〉 = H|0〉, this gives (−1)f(0)|0〉 + (−1)f(1)|1〉.

Final result is [(−1)f(0) + (−1)f(1)]|0〉 + [(−1)f(0) − (−1)f(1)]|1〉
which is |0〉 if f is constant and |1〉 if f is balanced.
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Some Applications

We look at some applications of the encoding of information in

quantum states.

• Quantum Cryptography, or more accurately Quantum Key

Distribution.

• Superdense Coding.

• Quantum Teleportation

These do not rely on quantum computation as such, but the

properties of information encoded in quantum states: superposition

and entanglement.
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Quantum Key Distribution

A protocol for quantum key distribution was described by Bennett

and Brassard in 1984 (and is known as BB84).

Alice Bob

Eve

qubit channel

classical channel

The protocol does not pro-

vide the means of transmit-

ting an arbitrary message.

At the end of the protocol, there is a random sequence of bits that

is shared between Alice and Bob but unknown to any third party.
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Assumptions

The BB84 protocol relies on the following assumptions:

• Alice has a source of random (classical) bits.

• Alice can produce qubits in states |0〉 and |1〉.

• Alice can apply a Hadamard operator H to the qubits.

• Bob can measure incoming qubits

– either in the basis |0〉, |1〉;
– or in the basis 1

√

2
(|0〉 + |1〉), 1

√

2
(|0〉 − |1〉).

These conditions are satisfied, for instance, by a system based on

polarised photons.
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The Protocol

Alice sends Bob a stream of qubits.

For each qubit, before sending it, she

• randomly chooses a bit |0〉 or |1〉;

• randomly either applies H to the qubit or not; and

• sends it to Bob.

So, Bob receives a random sequence of qubits, each of which is in

one of the four states:

|0〉, |1〉, H|0〉, H|1〉



8

The Protocol–contd.

• For each qubit, Bob randomly chooses either the basis |0〉, |1〉
or the basis H|0〉, H|1〉 and measures the qubit in the chosen

basis.

• Bob announces (over the classical channel) which basis he used

for each measurement.

• Alice tells Bob which measurements were made in the correct

basis.

• The qubits which were measured in the wrong basis are

discarded, while the rest form a shared key.
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Attacks

Why not announce the bases for all qubits before transmission,

thus avoiding the loss of half the bits?

This allows Eve to intercept, measure and re-transmit the

bits.

Why not wait until Bob has received all the qubits, then have Alice

announce the basis for each one before Bob measures them?

• Requires Bob to store the qubits—currently technically

difficult.

• If Bob can store the qubits, then Eve can too and then she can

retransmit after measurement.

If we could fix the basis before hand, this could be used to transmit

a fixed (rather than random) message.



10

Attack 2

What happens if Eve intercepts the qubits, measures each one

randomly in either the basis |0〉, |1〉 or the basis H|0〉, H|1〉 and

then retransmits it?

For half of the bits that are shared between Alice and Bob, Eve will

have measured them in the wrong basis.

Moreover, these bits will have changed state, and so for approx. 1
4

of the shared bits, the value measured by Bob will be different to

the one encoded by Alice.

Alice and Bob can choose a random sample of their shared bits and

publically check their values against each other and detect the

presence of an eavesdropper.



11

Attack 3

Could Eve intercept the qubits, make a copy without measuring

them and re-transmit to Bob and then wait for the basis to be

announced?

No Cloning Theorem:

There is no unitary operation U which for an arbitrary

state ψ gives

U |ψ0〉 = |ψψ〉.

Exercise: Prove the no-cloning theorem.
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Key Distribution

Quantum key distribution relies on nothing more than

• linear superposition of states; and

• change of basis.

In particular, it does not rely on entanglement.

We next look at some applications of entanglement.
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Bell States

Entanglement based protocols generally rely on using the following

four states of a two-qubit system, known as the Bell states.

1√
2
(|00〉 + |11〉), 1√

2
(|01〉 + |10〉)

1√
2
(|00〉 − |11〉), 1√

2
(|01〉 − |10〉)

These form an orthonormal basis for C4, known as the Bell basis.

Note that, in each of the states, measuring either qubit in the

computational basis yields |0〉 or |1〉 with equal probability, but

after the measurement, the other bit is determined.
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Generating Bell States

We can generate the Bell states from the computational basis

|00〉, |01〉, |10〉, |11〉 using the following circuit:

H

|00〉
1
√

2
(|00〉 + |10〉)

1
√

2
(|00〉 + |11〉)
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Superdense Coding

In general, it is impossible to extract more than one classical bit of

information from a single qubit.

However, if Alice and Bob is each in possession of one qubit of a

pair in a known Bell state

1√
2
(|00〉 + |11〉)

Then Alice can perform an operation solely on her own qubit, and

then send it to Bob to convey two bits of information.



16

Superdense Coding 2

Generating Bell states from 1
√

2
(|00〉+ |11〉) with only operations on

the first qubit.

(X ⊗ I)
1√
2
(|00〉 + |11〉) =

1√
2
(|01〉 + |10〉)

(Z ⊗ I)
1√
2
(|00〉 + |11〉) =

1√
2
(|00〉 − |11〉)

((XZ) ⊗ I)
1√
2
(|00〉 + |11〉) =

1√
2
(|01〉 − |10〉)
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Superdense Coding 3

Once he has both qubits, Bob can convert back to the

computational basis using the circuit.

H

After this, a measurement in the computational basis yields the

two bits that Alice intended to convey.
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Quantum Teleportation

The superdense coding protocol allows Alice to send Bob two

classical bits by transmitting a single qubit, provided they already

share an entangled pair.

Conversely, the quantum teleportation protocol allows Alice to send

Bob a qubit, by sending just two classical bits along a classical

channel, provided they already share an entangled pair.

Contrast this with the no-cloning theorem, which tells us that we

cannot make a copy of a qubit.



19

Quantum Teleportation 2

Alice has a state |φ〉 that she wishes to transmit to Bob. The two

already share a pair of qubits in state 1
√

2
(|00〉 + |11〉).

H

M

|φ〉

Entangled Pair
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Quantum Teleportation 3

Alice conveys to Bob the result of her measurement. Say the qubit

in Bob’s possession is in state |θ〉, then:

• If Alice measures |00〉, then |φ〉 = |θ〉.

• If Alice measures |01〉, then |φ〉 = X |θ〉.

• If Alice measures |10〉, then |φ〉 = Z|θ〉.

• If Alice measures |11〉, then |φ〉 = XZ|θ〉.

Thus, Bob performs the appropriate operation and now has a qubit

whose state is exactly |φ〉.


