Quantum Computing
Lecture 2

Anuj Dawar

Review of Linear Algebra

Vectors

Formally, the state of a qubit is a unit vector in \mathbb{C}^2 —the 2-dimensional complex *vector space*.

The vector
$$\begin{bmatrix} \alpha \\ \beta \end{bmatrix}$$
 can be written as

$$\alpha|0\rangle + \beta|1\rangle$$

where,
$$|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
 and $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$.

 $|\phi\rangle$ — a *ket*, Dirac notation for vectors.

Linear Algebra

The state space of a quantum system is described in terms of a vector space.

Vector spaces are the object of study in *Linear Algebra*.

In this lecture we review definitions from linear algebra that we need in the rest of the course.

We are mainly interested in vector spaces over the *complex number* $field - \mathbb{C}$.

We use the *Dirac notation*— $|v\rangle$, $|\phi\rangle$ (read as *ket*) for vectors.

Vector Spaces

A vector space over \mathbb{C} is a set \mathbf{V} with

- a commutative, associative addition operation + that has
 - an identity $\mathbf{0}$: $|v\rangle + \mathbf{0} = |v\rangle$
 - inverses: $|v\rangle + (-|v\rangle) = \mathbf{0}$
- an operation of multiplication by a scalar $\alpha \in \mathbb{C}$ such that:
 - $-\alpha(\beta|v\rangle) = (\alpha\beta)|v\rangle$
 - $-(\alpha+\beta)|v\rangle = \alpha|v\rangle + \beta|v\rangle$ and $\alpha(|u\rangle + |v\rangle) = \alpha|u\rangle + \alpha|v\rangle$
 - $-1|v\rangle = |v\rangle.$

 \mathbb{C}^n

 \mathbb{C}^n is the vector space of n-tuples of complex numbers: \vdots .

$$egin{array}{c|c} lpha_1 \ dots \ lpha_n \end{array}$$

with addition
$$\begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} + \begin{bmatrix} \beta_1 \\ \vdots \\ \beta_n \end{bmatrix} = \begin{bmatrix} \alpha_1 + \beta_1 \\ \vdots \\ \alpha_n + \beta_n \end{bmatrix}$$

and scalar multiplication
$$z \begin{bmatrix} \alpha_1 \\ \vdots \\ \alpha_n \end{bmatrix} = \begin{bmatrix} z\alpha_1 \\ \vdots \\ z\alpha_n \end{bmatrix}$$

Basis

A *basis* of a vector space \mathbf{V} is a *minimal* collection of vectors $|v_1\rangle, \ldots, |v_n\rangle$ such that every vector $|v\rangle \in \mathbf{V}$ can be expressed as a linear combination of these:

$$|v\rangle = \alpha_1 |v_1\rangle + \dots + \alpha_n |v_n\rangle.$$

n—the size of the basis—is uniquely determined by \mathbf{V} and is called the *dimension* of \mathbf{V} .

Given a basis, every vector $|v\rangle$ can be represented as an n-tuple of scalars.

Bases for \mathbb{C}^n

The standard basis for
$$\mathbb{C}^n$$
 is $\begin{vmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 1 & 0 \end{vmatrix}$

(written $|0\rangle, \ldots, |n-1\rangle$).

But other bases are possible: $\begin{vmatrix} 3 \\ 2 \end{vmatrix}$, $\begin{vmatrix} 4 \\ -i \end{vmatrix}$ is a basis for \mathbb{C}^2 .

We'll be interested in *orthonormal* bases. That is bases of vectors of unit length that are mutually orthogonal. Examples are $|0\rangle, |1\rangle$ and $\frac{1}{\sqrt{2}}(|0\rangle + |1\rangle), \frac{1}{\sqrt{2}}(|0\rangle - |1\rangle).$

Linear Operators

A linear operator A from one vector space V to another W is a function such that:

$$A(\alpha|u\rangle + \beta|v\rangle) = \alpha(A|u\rangle) + \beta(A|v\rangle)$$

If **V** is of dimension n and **W** is of dimension m, then the operator A can be represented as an $m \times n$ -matrix.

The matrix representation depends on the choice of bases for **V** and **W**.

Matrices

Given a choice of bases $|v_1\rangle, \ldots, |v_n\rangle$ and $|w_1\rangle, \ldots, |w_m\rangle$, let

$$A|v_j\rangle = \sum_{i=1}^m \alpha_{ij}|w_i\rangle$$

Then, the matrix representation of A is given by the entries α_{ij} .

Multiplying this matrix by the representation of a vector $|v\rangle$ in the basis $|v_1\rangle, \ldots, |v_n\rangle$ gives the representation of $A|v\rangle$ in the basis $|w_1\rangle, \ldots, |w_m\rangle$.

Examples

A 45° rotation of the real plane that takes $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ to $\begin{bmatrix} \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix}$ and

$$\begin{bmatrix} 0 \\ 1 \end{bmatrix} \text{ to } \begin{bmatrix} -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} \end{bmatrix} \text{ is represented, in the standard basis by the }$$
 matrix

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$

The operator $\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$ does not correspond to a transformation of the real plane.

Inner Products

An inner product on V is an operation that associates to each pair $|u\rangle, |v\rangle$ of vectors a *complex number*

$$\langle u|v\rangle$$
.

The operation satisfies

- $\langle u|\alpha v + \beta w\rangle = \alpha \langle u|v\rangle + \beta \langle u|w\rangle$
- $\langle u|v\rangle = \langle v|u\rangle^*$ where the * denotes the complex conjugate.
- $\langle v|v\rangle \geq 0$ (note: $\langle v|v\rangle$ is a real number) and $\langle v|v\rangle = 0$ iff $|v\rangle = \mathbf{0}$.

Inner Product on \mathbb{C}^n

The standard inner product on \mathbb{C}^n is obtained by taking, for

$$|u\rangle = \sum_{i} u_{i} |i\rangle$$
 and $|v\rangle = \sum_{i} v_{i} |i\rangle$

$$\langle u|v\rangle = \sum_{i} u_i^* v_i$$

Note: $\langle u|$ is a *bra*, which together with $|v\rangle$ forms the *bra-ket* $\langle u|v\rangle$.

Norms

The *norm* of a vector $|v\rangle$ (written $||v\rangle||$) is the *non-negative*, *real* number:

$$|||v\rangle|| = \sqrt{\langle v|v\rangle}.$$

A *unit vector* is a vector with norm 1.

Two vectors $|u\rangle$ and $|v\rangle$ are *orthogonal* if $\langle u|v\rangle = 0$.

An *orthonormal* basis for an inner product space V is a basis made up of *pairwise orthogonal*, *unit vectors*.

the term *Hilbert space* is also used for an inner product space

Outer Product

With a pair of vectors $|u\rangle \in \mathbf{U}$, $|v\rangle \in \mathbf{V}$ we associate a linear operator $|u\rangle\langle v|: \mathbf{V} \to \mathbf{U}$, known as the *outer product* of $|u\rangle$ and $|v\rangle$.

$$(|u\rangle\langle v|)|v'\rangle = \langle v|v'\rangle|u\rangle$$

 $|v\rangle\langle v|$ is the *projection* on the one-dimensional space generated by $|v\rangle$.

Any linear operator can be expressed as a linear combination of outer products:

$$A = \sum_{ij} A_{ij} |i\rangle\langle j|.$$

Eigenvalues

An *eigenvector* of a linear operator $A: \mathbf{V} \to \mathbf{V}$ is a non-zero vector $|v\rangle$ such that

$$A|v\rangle = \lambda |v\rangle$$

for some complex number λ

 λ is the *eigenvalue* corresponding to the eigenvector v.

The eigenvalues of A are obtained as solutions of the characteristic equation:

$$\det(A - \lambda I) = 0$$

Each operator has at least one eigenvalue.

Diagonal Representation

A linear operator (over an inner product space) A is said to be diagonalisable if

$$A = \sum_{i} \lambda_{i} |v_{i}\rangle\langle v_{i}|$$

where the $|v_i\rangle$ are an orthonormal set of eigenvectors of A with corresponding eigenvalues λ_i .

Equivalently, A can be written as a matrix

$$\left[egin{array}{cccc} \lambda_1 & & & & \ & \ddots & & & \ & & \lambda_n \end{array}
ight]$$

in the basis $|v_1\rangle, \ldots, |v_n\rangle$ of its eigenvectors.

Adjoints

Associated with any linear operator A is its $adjoint A^{\dagger}$ which satisfies

$$\langle v|Aw\rangle = \langle A^{\dagger}v|w\rangle$$

In terms of matrices, $A^{\dagger} = (A^*)^T$

where * denotes complex conjugation and T denotes transposition.

$$\left[\begin{array}{ccc} 1+i & 1-i \\ -1 & 1 \end{array}\right]^{\dagger} = \left[\begin{array}{ccc} 1-i & -1 \\ 1+i & 1 \end{array}\right]$$

Normal and Hermitian Operators

An operator A is said to be normal if

$$AA^{\dagger} = A^{\dagger}A$$

Fact: An operator is diagonalisable if, and only if, it is normal.

A is said to be *Hermitian* if $A = A^{\dagger}$

A normal operator is Hermitian if, and only if, it has real eigenvalues.

Unitary Operators

A linear operator A is unitary if

$$AA^{\dagger} = A^{\dagger}A = I$$

Unitary operators are normal and therefore diagonalisable.

Unitary operators are norm-preserving and invertible.

$$\langle Au|Av\rangle = \langle u|v\rangle$$

All eigenvalues of a unitary operator have modulus 1.

Tensor Products

If **U** is a vector space of dimension m and **V** one of dimension n then $\mathbf{U} \otimes \mathbf{V}$ is a space of dimension mn.

Writing $|uv\rangle$ for the vectors in $\mathbf{U}\otimes\mathbf{V}$:

- $\bullet |(u+u')v\rangle = |uv\rangle + |u'v\rangle$
- $|u(v+v')\rangle = |uv\rangle + |uv'\rangle$
- $z|uv\rangle = |(zu)v\rangle = |u(zv)\rangle$

Given linear operators $A: \mathbf{U} \to \mathbf{U}$ and $B: \mathbf{V} \to \mathbf{V}$, we can define an operator $A \otimes B$ on $\mathbf{U} \otimes \mathbf{V}$ by

$$(A \otimes B)|uv\rangle = |(Au), (Bv)\rangle$$

Tensor Products

In matrix terms,

$$A \otimes B = \begin{bmatrix} A_{11}B & A_{12}B & \cdots & A_{1m}B \\ A_{21}B & A_{22}B & \cdots & A_{2m}B \\ \vdots & \vdots & \vdots & \vdots \\ A_{m1}B & A_{m2}B & \cdots & A_{mm}B \end{bmatrix}$$