Object Oriented Programming
Dr Robert Harle

IA CST, PPS (CS) and NST (CS)
Lent 2012/13

The OOP Course

* Last term you studied functional programming (ML)

* This term you are looking at imperative programming
(Java primarily).

" You adlready have a few weeks of Java experience

" This course is hopefully going to let you separate
the fundamental software design principles from
Java's quirks and specifics

= Four Parts
" From Functional to Imperative
" Object-Oriented Concepts
" The Java Platform
= Design Patfterns and OOP design examples

Java Practicals

* This course is meant to complement your
practicals in Java

= Some material appears only here
= Some material appears only in the practicals
* Some material appears in both: deliberately”!

* Some material may be repeated unintentionally. If so | will claim it was deliberate.

Books and Resources |

= OOP Concepts

* Look for books for those learning to first program in an OOP
language (Java, C++, Python)

"/ Java: How to Program by Deitel & Deitel (also C++)
"+ Thinking in Java by Eckels

o Java in a Nutshell (O' Reilly) if you already know another OOP
language

= Java specification book: hitp://java.sun.com/docs/bbooks/jls/
= Lofs of good resources on the web

= Design Patterns
= Design Patterns by Gamma et al.
= Lofs of good resources on the web

Books and Resources |l

= Also check the course web page
» Updated notes (with annotations where possible)
= Code from the lectures
= Sample tripos questions

(213
http://www.cl.cam.ac.uk/teaching/1222/00Prog/

Section: From Functional to Imperative Programming

Explicit Start Points

Meagic Skt mebrod

Arcowy of
r - ‘Z / S{‘h'r\ﬁ S

Java: public static void main(String argsu)

g

. e AT of
C/C++: int main(int argc, char **argv) m;::;]

'TP’V 0{— arguwzmb
python: def main(): [
main code here

Immutable to Mutable Data

ML Asstign
-valxgﬂ;"
>valx=5:int .
Cx=T3——— Compaison
> val it = false : bool
- val x=9;
>valx=9:int

Java
Assjﬂ

int x=5; ¢-
X=T,9—_ AssigN

int x=9; <—— o\ not COMP:]-Q

Types and Variables

= We write code like:

int x = 512;
inty = 200;
int z = x+y;

* The high-level language has a series of primitive
(built-in) types that we use to signity what's in the
memory

* The compiler then knows what to do with them
= E.g. AnYint” is a primitive type in C, C++, Java and many
languages. It's usually a 32-bit signed integer

* A variable is a hame used in the code fo refer to @
specific instance of a type

" X,y,z are variables above
* They are all of type int

“Primitive” types are the built in ones.

= They are building blocks for more complicated types
that we will be looking at soon.

boolean - 1 bit (true, false) N-1 Wl
char - 16 bits N (’2) —7(2 al
byte - 8 bits as a signed integer (-128 to 127)
short - 16 bits as a signed integer

int - 32 bits as a signed integer

long - 64 bits as a signed integer

float - 32 bits as a floating point number

double - 64 bits as a floating point number

See Workbook 1

byte[] arraydemo ﬁ/new byte[6];
byte arraydemo?2[] = new byte[6];

.NH' z j[l zE]Cj/
't () ﬂ"C]/' «— Y2 <= wk L)

Ox1AC594
Ox1AC595
Ox1AC596
Ox1AC597
Ox1AC598
Ox1AC599
Ox1AC5A0
Ox1AC5A1
Ox1AC5A2
Ox1AC5A3
Ox1AC5A4
Ox1AC5A5

Functions to Procedures

Maths: m(x,y) = xy

ML.: fun m(x,y) = x*y;
Java: public int m(int x, int y) = x*y;
inty =7;
public int m(x) {
y=y+1; Soe effect
return x*y;

Inferpreter to Virtual Machine

= Java was born in an era of internet connectivity. SUN
wanted to disfribute programs to infernet machines

= But many architectures were attached to the internet
— how do you write one program for them all?

= And how do you keep the size of the program smalll
(for quick download)?

* Could use an interpreter (= Javascript). Buft:
= High level languages not very space-efficient

" The source code would implicitly be there for anyone
fo see, which hinders commercial viability.

= Went for a clever hybrid interpreter/compiler

Java Byfecode |

= SUN envisaged a hypothetical Java Virtual Machine
(JVM). Java is compiled info machine code (called
bytecode) for that (imaginary) machine. The bytecode
IS then distributed.

* To use the bytecode, the user must have a JVM that has
been specially compiled for their architecture.

* The JVM fakes in bytecode and spits out the correct
machine code for the local computer. i.e. is a bytecode
interpreter

Java Bytecode |

Developer

Source Code ——p Java Compiler ——p Bytecode

—_— ;_—
Distribute
JVM for JVM for JVM for
Xx86/Linux Xx86/win ARM
Machine Machine Machine
code code code
Unix User Win User Android User

Java Bytecode |l

+ Bytecode is compiled so not easy o reverse
engineer

+ The JVM ships with fons of libraries which makes
the bytecode you distribute small

+ The foughest part of the compile (from
human-readable to computer readable) is done by
the compiler, leaving the computer-readable
bytecode to be translated by the JVM (= easier job
— faster job)

- Still a performance hit compared to fully compiled
("native”) code

Lecture 2:
Memory Manipulation

.

oY r

7
C/Sr 7S/

1

A

7/
74/

—
L')

| %4

7

\

&,

7/

7
//_///l /

7

Yy

A

il

C AN

NN

L)

Ge

Mo

Py
f

pus ‘ ’ Pop

Stenclke
Po'mkf
Locel von ables
ﬁrywm"s i e
to .
S’f/‘ack
frame 3
(, QN eve rﬂ

fanc ki on C“”)

The Call Stack: Example

int twice(int d) return 2*d;
int triple(int d) return 3*d;

int a=50;
int b = twice(a);)
int ¢ = triple(a); fone

youll S
fn

oOoulh, WN -

Nested Functions

A ce
int twice(int d) return 2*d; J,
int quadruple(int d) return twice(twice(d));
int b = quadruple(a); \4

b wWNBRE

Recursive Functions

int pow (int x, inty) {
if (y==0) return 1;

int p =_pow(x,y-1);
retur@
}

int s=pow(2,7);

NOoupbh WNB

QE

o
QO? \
\

\
\J’r‘
q
G 17
[0]

Tail-Recursive Functions |

int pow (int x, inty, intt) {
if (y==0) return t;
return pow(x,y-1, t*x);

oOoulh, WN -

} ye
int s = pow(2,7,1); v=

Tail-Recursive Functions Il

int pow (int x, inty, intt) {
if (y==0) return t;
return pow(x,y-1, t*x);

}
int s = pow(2,7,1);

oOoulh, WN -

Control Flow: for and while

for(init; boolean _expression; step)
for (inti=0; i<8; i++) ... \

int j=0; for(; j<8; j++) ...

for(int k=7;k>=0; j--) ...

A%

while(boolean _expression)

int i=0; while (i<8) { i++; ...}

int j=7; while (j>=0) { j--; ...}

The Heaqp
nt[] x = new int[3]; enzahon
public void resize(int size) { Stack

int tmp=x; M“’:’)

x=new int[size];

for (int=0; i<3; i++)
x[1]=tmpli];

}

resize(5);
\LO\

relerenc o
fle OV ran

T

/o

~
r

References

= Pointers are useful but dangerous

* References can be thought of as
restricted pointers
= Still just a memory address
* But the compiler limits what we can do fo it

= C, C++: pointers and references
* Java: references only
" ML: references only

References vs Pointers

Pointers References

Represents a memory Yes NES
address

Can be arbitrarily assigned Yes

Can be assigned to Yes
established object

Can be tested for validity

References Example (Java)

N,@_\’M oo = 2 ferenl

int[] = null:
refl >+few int[]{1,2,3,4};

Int[] ref2

refl[3]=7;
ref2[1]=6;

refl:

(0aleS an

—

{1,2,3,4}

{1,6,3,7}

Argument Passing

* Pass-by-value. Copy the object info a new
value in tThe stack

) ety

void test(int x) {...}
int y=3;
test(y);

* Pass-by-reference. Create a reference to the
object and pass that.

void test(int &x) {...}
5 inty=3;
Cr test(y);

Passing Procedure Arguments In Javao

public static void updatg(int I) int[] array) { .
i++; &— — Eest 1 = |
array[O]++; 44— QW'\" leok_ array -

}

public static void main(String[] args) { /
he o

inttest i =1; <4—— Prhatia_

int[] test_array = {1}; &— v&¢ il

update(test i, test array); / |

System.out.printin(test i);

System.out.printin(test_array[0]); g * !
}

§ X3z

Passing Procedure Arguments In C++

| paSS ‘.Oj rfertnce
void update(int i, i
I+ +; /
iref++; ‘
) ' ;%

int main(int argc, char** argv) { ' {— -
int a=1;
int b=1;
update(a,b);
printf("%d %d\n",a,b);
} —

o = |

L=y,

public static void myfunction2(int x, int[] a) { P
x=1;
x=X+1; 2 "/}/Z
a = new int[]{1}; _
a[0]=a[0]+1; A
} 1 \\/\r
public static void main(String[] argument e a\, 1
int num=1;

int numarray[] = {1};

myfunction2(num, numarray);

System.out.printin(num+" "+numarray[0]); { §
} \
C(J\J
11
12

cow>
N

Lecture 3:
OOP and Classes

N

N
— e
A\ 0
—> ?5 C ?2 b\
\ R VA AN
A SN Sy AN
\ / \ “’-
\ N &
\\ 1 INtan

Custom Types

datatype 'a seq = NIl
| Cons of 'a * (unit -> 'a seq);

fun hd (Cons(x,)) = x;

* In OOP we go further
* We include both state and procedures in our type
definition
* The idea is that each type groups together related

state and procedures, providing a complete
implementation of a single concept

" We call such types classes
See Workbook 3

Classes, Instances and Objects

* Classes can be seen as templates for representing
various concepts

* We create instances of classes in a similar way.

e.d.
MyCoolClass m = new MyCoolClass();
MyCoolClass n = new MyCoolClass();

makes two instances of class MyCoolClass.
= An instance of a class is called an object

Loose Terminology (againl)

State Behaviour
Fields Functions
Instance Variables Methods
Properties Procedures
Variables :
Members Aetions

,l\'(—\',ifgwl'eS

ldentitying Classes

* We want our class to be a grouping of
conceptually-related state and behaviour

= One popular way to group is using grammar
* Noun — Object
" Verb — Method

“A simulation of the Earth's orbit around
the Sun”

UML: Representing a Class Graphically

MyFancyClass

/ - age : int <€ State
“-” means

private access + SetAge(age: int) : void

l

“4+” means
public access

ha Behaviour

The has-a Association

<Ei;§l Student
—>

" Arrow going left to right says “a College has zero or more
stfudents”

=)

College <

—

" Arrow going right to left says “a Student has exactly |
College”

" What it means in real terms is that the College class will
contain a variable that somehow links to a set of Student
objects, and a Student will have a variable that
references a College object.

" Note that we are only linking classes: we don't start
drawing arrows to primitive types.

Anatomy of an OOP Program (Java)

Class name

* Access modifier
public class MyFancyClas ,
Class state (properties

public int someNumber-/ that an object has such as
colour or size)

public String someText;

public void someMethod() { «— — Class behaviour (actions
an object can do)

}

'‘Magic' start point

public static void main(g tring[] args) { for the program
MyFancyClass c = new (named main by

Myp&nhcyClass(); convention)
} \
Create an object of

Create a reference to a _
MyFancyClass object type MyFancyClass in
and call it ¢ memory

Anatomy of an OOP Program (C++)

Class name

* Access modifier
class MyFancyClass {
_ Class state
pUb“C: /
int someNumber;
public String someText;

Class behaviour
void someMethod() { /

'‘Magic' start point

}: for the program
void main(iht argc, char **argv) { Create an object of
MyFancyClass c; <& type MyFancyClass and
call it cc
MyFancyClass *cp = new MyFancyClass()
,/' \ Create an object of
} Create a pointer to a type MyFancyClass and

MyFancyClass object and call it cp return a reference to it

OOP Concepts

= OOP provides the programmer with @
number of important concepfs:

= Modularity

" Code Re-Use
" Encapsulation
" Inheritance

" Polymorphism

" Let's look at these more closely...

You've long been taught to break down
complex problems infto more tfractable
sub-problems.

Each class represents a sub-unit of code that (if
written well) can be developed, tested and
updated independently from the rest of the
code.

Indeed, two classes that achieve the same
thing (but perhaps do it in different ways) can
be swapped in the code

Properly developed classes can be used in
other programs without modification.

Encapsulation |

class Student {
Int age;

s

void main() {
Student s = new Student();
s.age = 21;

Student s2 = new Student();
s2.age=-1;

Student s3 = new Student();
s3.age=10055;

Encapsulation |l

class Student {
private int age; A-cgss /'/{oal»i/}e,f

{_boolean)SetAge(int a) {
T if(@>=0 && a<130) { =—— Bocns
age=a; Mb,ﬁ
return true;

}

return false;:

}

int GetAge() {return age;}
}

void main() {
Student s = new Student();
s.SetAge(21);

}

Encapsulation I

class Location { class Location {

private float x;

private float y; private Vector2D v;

float getX() {return v.getX();}

float getX() {return x;}
float getY() {return v.getY();}

float getY() {returny;}

void setX(float nx) {v.setX(nx);}

void setX(float nx) {x=nx;}
void setY(float ny) {v.setY(ny);}

void setY(float ny) {y=ny;}

P’
\’JLVJ énc&v'pgm(al‘e)

.\ .| p | . { !
l) Som,\lv(C,L\g_ck or con%qSLencq CleckK
7| Venddss . ~J

\ .

1) | Chonge wnderlying representfalons

R voJ '

lli) CL\O\I\jL Vovioble. hanas .
R \ . [

l\/) Conbw\| P La\o?l{k./l

’ J

N\
\’) a\wwc\ qe_ gaaé{ ,p—./p(jfm»n/n MU p re Q/7' o

/

Access Modifiers

Immutabllity

* Everything in ML was immutable (ignoring the
reference stuff). Immutabllity has a number of
advantages:

= Fasier to construct, test and use
" Can be used in concurrent contexts
= Allows lazy instantiation

= \WWe can use our access modifiers to create
iImmutable classes

Complex Example

Complex
- ml: float
- mR : float

+ Complex(i:float, r:float)
+ Im() : float

+ Re() : float

+ Add(Complex v) : void

/N
S
N
¢
_&
)
A\ 4
)
I
%
\
Q
e
S—
. e S =
LI g E
”l-\\ (V¥ QWI

i

Lecture 4.
Inheritance and Polymorphism

Inheritance |

class Student {
public int age;
public String name;
public int grade;

}

class Lecturer {
public int age;
public String name;
public int salary;

}

There is a lot of duplication here

Conceptually there is a hierarchy that
we're not redlly representing

Both Lecturers and Students are people
(no, really).

We can view each as a kind of
specialisation of a general person

" They have dll the properties of a
person

" But they also have some extra stuff
specific to them

(I should not have used public variables here, but | did it to keep things simple)

Inheritance |

class Person { * We create a base class (Person)
Eugll_lc |Sntt_a9e; | and add a new notion: classes
y ublic String Name, can inherit properties from it

* Both state and functionality
class Student extends Person {
public int grade; " We say:
) — " Person is the superclass of
class Lecture@ds Persoﬁ Lecturer and Student
) public int safary; * |ecturer and Student subclass
Person

Representing Inheritance Graphically

Person Also _known as an “is-a
relation
name
Moré age As in “Student is-a Person”
Aob*'“}r
w
3 ' 2
o ‘)
v 0
C
@ o
© Student Lecturer A
name nam
age age
exam_score salary

Inherited fields

Widening Conversions

Person * Student is-a Person
* Hence we can use a Student
ZF object anywhere we want a
Person object
>tudent = Can perform widening
conversions (Up the tree)
nk o= = 512
long y= (long/>, . : :
Student s = new Student() ’ public void print(Person p) {...}
Person p = (Person) s; Student s = new Student();
/ / print(s);
“Casting” B

Implicit cast

Narrowing Conversions

Person = Narrowing conversions move
down the tree (more specific)
ZF * Need to take care...
. - 1009,
Student l/\{' x = (0097

Student s = new Student();

Person p = new Perspn();
Person p = (Person) #, §;

Student s = (Student) p; Students s2 = (Student) p;
/ V4 /

FAILS. Not enough info OK because underlying object

In the real object to represent Is a Student

A Student

Fields and Inheritance

class Person { Student inherits this as a

public String mName; <& public variable and so
protected int mAge;

canh access it
private double mHeig?t;\
} Student inherits this as a

protected variable and so
can access it

class Student extends Person {

public void do_something()
mName="Bob"; +~
mAge=70;v

mHeight=1.70;y

Student inherits this but
as a private variable and

. so cannot access it
wiBgh directly

llasm l 2 JM

e

}
}

Fields and Inheritance: Shadowing

class A { publicint x; }
g

class B extends A { A
public int x; ‘ o
} “T—

class C extends B {
public int x;

public void action() { [/(5 4J

/| Ways to set the x in C

I

x = 10; y/‘

this.x = 10; TA 1

/l Ways to set the x in B]/C ol

super.x = 10; C \ J I

((B)this).x = 10; z

// Ways to set the x in A & T/ ~ J/ i vV

((A)this.x = 10; (R &4 1= 14\
b _ |

}

Methods and Inheritance: Overriding

= We might want to require that every Person can dance. Buf
the way a Lecturer dances is not likely to be the same as the
way a Student dances...

class Person .
{ Person defines a

public void dance() { ‘default’
jiggle_a_bit(); implementation of
} dance()

}

class Student extends Person {

public void dance() { Student overrides

1
} |
Lecturer just
class Lecturer extends Person { inherits the default
} - implementation and

jiggles

Polymorphic Methods

Student s = new Student(); = Assuming Person has a
Person p = (Person)s; default dance() method,
p.dance(); what should happen here??

" General problem: when we refer to an object via a
parent type and both types implement a particular
method: which method should it run?

Polymorphic Concepfs |

= Static polymorphism
" Decide af compile-time

» Since we don't know what the frue type of the
object will be, we just run the parent method

* Type errors give compile errors

Student s = new Student();: ™ Compiler says “p is of type

Person p = (Person)s; Person”
p.dance(); " So p.dance() should do the

default dance() action in
Person

Polymorphic Concepfs |l

* Dynamic polymorphism
* Run the method in the child

* Must be done at run-time since that's when we
know the child's type

= Type errors cause run-time faults (crashes!)

Student s = new Student(); * Compiler looks in memory
Person p = (Person)s; and finds that the object is
dance(); really a Student

" So p.dance() runs the
dance() action in Student

The Canonical Example |

= A drawing program that can draw
circles, squares, ovals and stars

" |t would presumably keep a list of all
the drawing objects

Circle " Option |
+ draw() » Keep a list of Circle objects, a list of
Sguare objects,...
jg:sre * [terate over each list drawing each
object in turn
Oval = What has fo change if we want to
+ draw() add a new shape?
Star
+ draw()

The Canonical Example |

Shape = Option 2
= Keep asingle list of Shape references

= Figure out what each object redlly is,
A narrow the reference and then draw()

Circle

+ draw()

for every Shape s in myShapelList
If (s is really a Circle)
Circle c = (Circle)s;

iquare c.draw();
+ draw() else if (s is really a Square)
— Square sq = (Square)s;
sg.draw();
+ draw() I
else if...

Star = What if we want to add a new shape?

+ draw()

The Canonical Example I

Shape " Option 3 (Polymorphic)
- x_position: int " Keep asingle list of Shape
o~ | references
% * Let the compiler figure out what to
. do with each Shape reference
/7 Circle
)3 + draw()
exten For every Shape s in myShapelList
Square s.draw();
+ draw()
Oval 1

+ draw()

= What if we want 1o add a new
Star shape?

+ draw()

Implementations

= Java

= All methods are dynamic polymorphic.
"= Python

= All methods are dynamic polymorphic.
= C++

= Only functions marked virfual are dynamic
polymorphic

= Polymorphism in OOP is an extremely important
concept that you need to make sure you understand...

Wk Potswnof?ln%sm does &{' a(‘)q‘)l bo

1
| — J

| S\'Al‘\'c_ M,e;l‘L\OJS

7. i‘DrivaJ-e. rmethod ¢

’_5. \/a‘-‘q\o\eﬁ (fslf\o\o/\ow $'\)

l yay é'wedc&

OE(GQ"

/\
(4R}
Poenn (é\$5
= I
N\AC[Q\SS QYM\A-S O[_’zjfcl’

Lecture 5:
Static Data, Abstract Classes and Interfaces

Class-Level Data and Functionality |

" A static field is created only once in the program's execution,
despite being declared as part of a class

public class Shopltem { One Oljc.these Created
o private float mVATRate; «— EVery time a new
e private static float sVATRate; Shopltem is

- Instantiated. Nothing
} T keeps them all in
sync.

Only one of these created
ever. Every Shopltem object
references it.

Class-Level Data and Functionality |I

0.2 =

) = Auto synchronised
ACross instances

:> -
" Space efficient

Cot
hon shak C Steb CDM{. N (0]) Nt
661",\/["@“36 '&\
" Also static methods: ke
MTrwo.“ frnchons
public class Whatever { L
public static void main(String[] args) { P :
e shh ¢
}

}

Why use Static Methods?

= Easier to debug (only depends on static state)
= Self documenting
* Groups related methods in a Class without requiring an object

* The compiler can produce more efficient code since no
specific object is involved

public class Math { public class Math {
public float sqrt(float x) {...} public static float sqgrt(float x) {...}
public double sin(float x) {...} public static float sin(float x) {...}
public double cos(float x) {...} public static float cos(float x) {...}
} }
VS
Math mathobject = new Math(); Math.sqrt(9.0);

mathobject.sqrt(9.0);

Abstract Methods

= Sometimes we want to force a class fo implement a
method but there isn't a convenient default behaviour

= An abstract method is used in a base class o do this
* |t has no implementation whatsoever

class abstract Person {
public abstract void dance();

K_‘

public void dance() {
body pop();
}
}

class Lecturer extends Person {
public void dance() {
jiggle_a_bit();
}
}

Abstract Classes

= Note that | had to declare the class abstract too.
This is because it has a method without an

Implementation so we can't directly instantiate a
Person.

class Person {
public:
virtual void dance()=0;
Java } C++

public abstract class Person {
public abstract void dance();
}

= All state and non-absftract methods are inherited as
normal by children of our abstract class

* |Interestingly, Java allows a class to be declared
abstract even if it contains no abstract methods!

Representing Abstract Classes

Person

+ dance()

T

I

Iltalics indicate the
class or method is
abstract

§ dence()3

Student

Lecturer

+ dancel()

+ dancel()

Harder Problems

* Given a class Fish and a class DrawableEntity, how do
we make a BlobFish class that is a drawable fish?

I DrawableEntity I
|
le | DrawableEntity |9| BlobFish |@| Fish
| | | | | |
| Fish |
' ? ! X Conceptually wrong
BlobFish

X Dependency
between two
independent

concepts

Multiple Inheritance

Fish

DrawableEntity

+ swim()

+ draw()

N\

N\

BlobFish

+ swim()
+ draw()

" |f we multiple inherit, we
capture the concept we want

= BlobFish inherits from both and
is-a Fish and is-a

DrawableEntity
" CH++:
class Fish {...}

class DrawableEntity {...}

class BlobFish : public Fish,
public DrawableEntity {...}

= But...

Multiple Inheritance Problems

Fish DrawableEntity * What happens here? Which of
the move() methods is
+ move() + move() inherited?
A A = Have to add some grammar
tfo make it explicit
" CH++:

BlobFish *bf = new BlobFish();
bf->Fish::move();
bf->DrawableEntity::move();

BlobFish

" Yuk.
77?777

e AN - on Y
/ - - Oy & ™
/ = .
— ClecMTcen
(\Q Plamber \ _ 7.8
fixlighlo
Lyleok) Y
— Zs
S —

P b Bt an

Fixing with Absfraction

Fish orawabieentiy | @ Actually, this problem

+ move(|| +mover goes away if one or
J— RYshract . .
JAN JAN more of the conflicting

methods is abstract

BlobFish

+ move()

Tradesuron Exw»P(L ot lALUqu,s

i L{inRrmce 2
| <Mk fece 5> T odes man Elec hF
| Plomblntifece EixLig hisy
\‘ {_\,.;y\\chS(3 y A yAY
L ' T € x-\{f\o‘lg 7:
l} Rw«(‘:\ewfﬁxﬁ {f 7(//
\ O oo~ CLd |
|)
/
//
i\AML H\C;&/\ \L - /I

Java’'s Take on it: Interfaces

* Classes can have at most one parent. Period.

* But special ‘classes that are totally albsfract can
do multiple inheritance — call these interfaces
Interface Drivable { '\

<<interface>> <<interface>> public void turn();
Drivable Identifiable) public W();/ abshach |
+ turn() + getldentifier()
|+ brake() . Interface Identifiable { J
_’f public void getldentifier();
} {3 |ﬂ I‘efp\c,g
i class Bicyclerivable {
public void turT
public void brake() {... }
Bicycle Car } oxlends Veliole
IEur;rIL(;() itbur;r:((g() class Carjimplements Drivable, Identifiable {
+ getldentifier() public void turn() {...}

public void brake() {... }
public void getldentifier() {...}

}

'\’)faw(\ \ H'CDP‘:}()

/—_j y i
inter fo 2 IMferfoce Anives

Sk le — on% AS%?SA bN Ce

'\"U\"’\UA" Con t ove“fiakl-

JOS% — cont extend

Lecture 6:

Construction, Destruction and Error
Handling

Constructors

MyObject m = new MyObject();
\

JQAPS on Lo \ Cahsl-vvuc(»f

= {
= You will hdvgﬁrﬁb’riced that the RHS looks rather like @
function call, and that's exactly what it is.

" It's a method that gets called when the object is
consfructed, and it goes by the name of a constructor
(if's not rocket science). It maps to the datatype
constructors you saw in ML.

= We use constructors to initialise the state of the class in a
convenient way

= A consfructor has the same name as the class
= A constructor has no return type

Constructor Examples

Java

public class Person {
private String mName;

hos
/I Congkructor f? ;;p&n
public Person(String nam

MName=name;

}

public static void main(
String[] args) {
Person p =
new Person(“Bob”);
}

&) 1

C++

class Person {
private:
std::string mName;

public:
\»Person(std::string &name){
mName=name;

}
};

int main (int argc,
char ** argv) {
Person p (“Bob”);

}

Default Constructor

ra‘a\?(_ féf;on() f
public class Person { i
private String mName;
public static void main(String[] args) {
Person p = new Person();

}
}

" If you specify no consfructor at all, Java
fills iIn an empty one for you

" Here it creates Person() for us

" The default consfructor takes no
arguments (since it wouldn't know what

to do with them!)

Multiple Constructors

|
public class Student { You can SpeCIfy as mcny

private String mName; constructors as you like.
private int mScore;

N Jentis y " Each consfructor must
public Student(String s :

mName=s: hcve a different |

mScore=0; signature (argument list)
}

WlOKA’;”

public Student(String s, int sc) { MQP\“OA ° 3
mName=s;
mScore=sc;

}

public static void main(String[] args) {
Student s1 = new Student("Bob");
Student s2 = new Student("Bob",55);

}

Constructor Chaining

* When you construct an object of a type with
parent classes, we call the constructors of all of
the parents in sequence

Student s = new Student();

Animal

i

Person

T

Student 3. Call Student()

1. Call Animal()

2. Call Person()

Chaining without Default Constructors

= What if your classes have explicit consftructors that take
arguments? You need to explicitly chain

= Use super in Java:

Sereon public Person (String name) {
*/ mName=name;
-mName : String

+Person(String name) }

N\

Student
+Student()

public Student () {
super(“Bob”);

}

* Most OO languages have a notion of a destructor too
" Gets run when the object is destroyed

= Allows us to release any resources (open files, etc) or
memory tThat we might have created especially for the

object
class FileReader { int main(int argc, char ** argv) {
public:
// Construct a FileReader Object
// Constructor FileReader *f = new FileReader();
FileReader() {
f = fopen(“myfile”,”r"); // Use object here
C++ }
// Destructor // Destruct the object
~FileReader() { delete f;
fclose(f); ‘ (
} }
private :
FILE *file;

}

Cleaning Up

= A typical program creates lots of objects, not all of which need to
stick around all the time

= Approach 1:

= Allow the programmer to specify when objects should be
deleted from memory

* Lots of control, but what if they forget to delete an object?
= A "memory leak”

= Approach 2:
" Delete the objects automatically (Garbage collection)

= But how do you know when an object will never be used again
and can be deleted??

Cleaning Up (Java) |

" Java reference counts. i.e. it keeps frack of how many
references point fo a given object. If there are none,

the programmer can't access that object ever again so
It can be deleted

Person object

Person object
Deletabl
pret o [4ref =0 | Deletable

— rl = null;
r2 = null;
rl — ri

r2 r2

Cleaning Up (Java) i

= Actual deletion occurs through a garbage collector

= A separate process that periodically scans the
objects in memory for any with a reference count of
zero, which it then deletes.

* Running the garbage collector is obviously noft free. If
your program creates a lot of short-term objects, you
will soon notice the collector running

* Gives noticeable pauses o your application while
It runs.

= But minimises memory leaks (it does not prevent
them...)

One problem with GC is we have no idea when an
object will actually be deleted. The GC may even
decide to defer the deletfion unftil a future run.

This causes issues for desfructors — it might be ages
before a resource is closed and available again!

Therefore Java doesn't have destructors

It does have finalizers that gets run when the GC
deletes an object

= BUT there's no guarantee an object will ever get
garbage collected in Java...

* Garbage Collection = Desfruction

Error Handling

* The fraditional imperative way to handle errors is to
return a value that indicates success/failure/error

public int divide(double a, double b) {
if (b==0.0) return -1; // error
double result = a/b;
return 0; // success

}

if (divide(x,y)<0) System.out.printin(“Failure!!”);
" Problems:
= Couldignore the return value

= Have to keep checking what the return values are
meant to signify, etc.

* The actual result often can't be returned in the same
way

Exceptions |

= An exception is an object that can be thrown or raised

by a method when an error occurs and caught or
handled by the calling code

public double divide(double a, double b)
throws DivideByZeroException {
if (b==0) throw DivideByZeroException();
else return a/b

}

try {
double z = divide(x,y);

}

catch(DivideByZeroException d) {
// Handle error here

}

Excepftions I

= Advantages:

Class name can be descriptive (no need to look up error
codes)

Doesn't interrupt the natural flow of the code by requiring
constant tests

The exception object itself can contain state that gives
lots of detail on the error that caused the exception

Can't be ignored, only handled

Lecture /.
Copying and Cloning

Cloning |

= Sometimes we redlly do want to copy an object

Person object Person object Person object
(name = (name = (name =
MBOb") ' MBOb") MBOb")
| | |
'S r e ference r r_copy
* Java calls this cloning ‘
= We need special support for it -copy= [,

|
— N\ %.\ E
\ =
\ MJI- —
/ N |\—
5| X R
o.w 7M. B /v Fir &
(SaN) / i\
BV A
| ~ \ N
/ﬁE J N~
<) N D] ~
> | 3 nTl
o= /’
N 7 Vv]
0N—
St N X SV \%
_ N T = | < e b
S ‘ NP N i :
K PIIER ~
Y) nm T
¥,
e
%) \AJ
W T —
= =9
n <
b4
\m 9
N
A i
w G ~ A ¢\
L Im\q I-I‘- N ."m-/ ﬂ-z
O <
C ..ﬁ >
< iy J
S > =
. 2 -2 ~
) L AN~ C
\—~

Cloning |I

= Every class in Java ultimately inherifs from the
Object class

" This class contfains a clone() method so we just
call this to clone an object, right?

= This can go horribly wrong if our object contains
reference types (objects, arrays, etc)

Shallow and Deep Copies

public class MyClass {

}

private MyOtherClass moc;

MyClass
object

* Kelerence

MyOtherClass

object

0)
S
o

MyClass
object

c lone_
MyClass
object

\ MyOtherClass /

object

&)ﬁ M.Moﬂ m‘u\‘b
D referen el =

N wp%@)\

= oEchH ol :ﬁf:

MyClass
object

MyClass
object

Y

Y

MyOtherClass
object

object

MyOtherClass

Java Cloning

= So do you want shallow or deep?

" The default implementation of clone() performs a shallow
copy -

= Butf Java developers were worried that this might not be
appropriate: they decided they wanted to know for sure
that we'd thought about whether this was appropriate

= Java has a Cloneable interface

= |[f you call clone on anything that doesn't extend this
inferface, it fails

QQC:\\\DZ, o Clone

B EMP(W’1 Clorgable

2 . f/\a\a. c\one ?M\olic. EDP‘w'Om\—_]

3, Stk wovur C\OV\Q_ .,\hH'\ SU_PU, c,loV\Q,()

4. (Rarsively [Jogp) clove ang objech i1

your class

Clone Example |

public class Velocity {
public float vx; . :
public float vy; j@\“\ bt simple
public Velocity(float x, float y) {
VX=X;
VY=Y,
}
&

public class Vehicle { prinu b ve
private int age; — eferente ty pe
private Velocity vel; <=—
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
}
b

Clone Example |l

[

o T—=
public class Vehicl@ements Clw
private int age;

private Velocity vel;
public Vehicle(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);
} 2 Fos Cloe

Object cIone()p{/

”0'«3 wf’fj]
returnsuper.clone(); [She
} 'Q e0)

No Fuprod e Txcephion

};

Clone Example |l

public glass Velocity\mplement CIoneabT{

Object clone() {

return(super.clone():

};} 3

S[/\Q(lo\-d Lr\."' Uk :

public class Vehicle implements Cloneable {
private int age;
ppyate Velocity v;
public Student(int a, float vx, float vy) {
age=a;
vel = new Velocity(vx,vy);

} SLA.””'\-)

public Object clone() { /
Vehicle cloned = (Vehicle) super.clone();
cloned.vel = (Velocity)vel.clone(); < 4 (”l&ﬁ
return cloned,

}
}

§u\a|>er. C\DI/\Q (\ wd\rol/_gsg /P@jSOV\

/

, \ -
Studeat clomd = (Shadeat) super. clore)

@L\}cc‘— .
A A e |
| e | [Sokent S
‘IU.SO"\ {\ \J,Lop\lj
7 Stwolen =
S/ b

Shoadent /&

Marker Interfaces

If you look at what's in the Cloneable interface, you'll find it's
empty!l What's going on?

Well, the clone() method is already inherited from Object so it
doesn't need to specify it

This is an example of a Marker Interface

= A marker intferface is an empty interface that is used o
label classes

= This approach is found occasionally in the Java libraries

Lecture 8:
Collections and Generics

Java Class Library

= Java the platform contains around 4,000
classes/interfaces

= Data Structures

= Networking, Files

» Graphical User Interfaces

= Security and Encryption

" Image Processing

" Multimedia authoring/playback
= And more...

= All neatly(ish) arranged into packages (see API docs)

<<interface>>
Iterable

~

<<jnterface>>
Collection

Important chunk of the class library
A collection is some sort of grouping of
things (objects)

Usually when we have some grouping we
want to go through it (“iterate over it")

The Collections framework has two main
intferfaces: lterable and Collections. They
define a set of operations that all classes in
the Collections framework support

add(Object o), clear(), isEmpty(), etc.

Major Collections Interfaces |

" <<interface>> Set
* Like a mathematical setin DM 1
* A collection of elements with no duplicates
* Various concrete classes like TreeSet (which keeps the set elements sorted)

Sored

» <<interface>> List H->
* An ordered collection of elements that may contain duplicates
* Arraylist, Vector, LinkedList, etfc.

" <nterface>> Queue

* An ordered collection of elements that may contain duplicates and supports
removal of elements from the head of the queue

* PriorityQueue, LinkedLIst, etc. C

Pré(l%x Trea —';SOA{A

N L octesd B
Ho'\sll\ ‘; (\guf'&s N rAnAO"“\ Dfab-f)

Major Collections Intertaces I

" interface>> Map
* Like relationsin DM 1, or dictionaries in ML
* Maps key objects to value objects
* Keys must be unique
* Values can be duplicated and (sometimes) null.

O0P ‘Q9r Co“eor’{ov;%

@;e& ke @9/ o “Obd;ecf)

-:D wo(k 'Qy-r al(eIS,Q_

.
Tge |

" for loop

for (int i=0: i<list.size(); i++) {

LinkedList list = new LinkedList();
Object next = list.get(i); \\

}

* foreach loop (Java 5.0+)

LinkedList list = new LinkedList();
for (Object o : list) { \

}

lTerators

= What if our loop changes the structure?

for (int 1=0; i<list.size(); i++) {
If (i==3) list.remove(i);

}
* Java introduced the lterator class

lterator it = list.iterator(); ”

while(it.hasNext()) {Object o = it.next();}

for (; it.hasNext();) {Object o = it.next();}

= Safe to modify structure

while(it.hasNext()) {
it.remove();

}

Collections and Types |

/| Make a TreeSet object * The original Collections
TreeSet ts = new TreeSet(); framework just dealt with
// Add integers to it collections of Objects
ts.add(new Integer(3)); = Everything in Java “is-a”

Object so that way our
collections framework will
apply to any class

Object o = it.next(); = But this leads fo:

Integer i = (Integer)o; = Constant casting of the
} result (ugly)

" The need to know what
the return type is

= Accidental mixing of types
in the collection

// Loop through
iterator it = ts.iterator();
while(it.hasNext()) {

Collections and Types |

/[Make a TreeSet object
TreeSet ts = new TreeSet();

// Add integers to it
ts.add(new Integer(3));
ts.add(new Person(“Bob”));

// Loop through
iterator it = ts.iterator();

while(it.hasNext()) { ooing to fail for the
Object o = it.next(); _gum= (5t it will compile:
Integer i = (Integer)o; the error will be at

} runtime)

Java Generics

" To help solve this sort of problem, Java intfroduced
Generics in JDK 1.5

= Basically, this allows us to tell the compiler what is
supposed to go in the Collection

= So it can generate an error at compile-time, not run-time

/| Make a TreeSet of Integers
TreeSet<Integer> ts = new TreeSet<Integer>();

// Add integers to it

ts.add(new Integer(3)); Won't '
ts.add(new Person(“Bob”)): < o0 - SVEN LOMBEE

’

// Loop through
lterator<integer> it = ts.iterator();
while(it.hasNext()) {

Integer i = it.next(); o —m No need to cast :-)

} :

Generics Declaration and Use

public class Coordinate <T> {) y
private T mX; - Puarame ke s ’Bpe
private T mY;

public Coordinate(T x, Ty) {
MX=Xx; mY=y; -
}
public_T getX() { return mX; }
public T getY() { return mY; }
) —

Coordinate<Double> ¢ =
New Coordinate<Double>(1.0,1.0);

Double d = c.getX();

/‘

Genencs [Mblw\bnl’z\[n'm‘! v pe Brasnre
l,(nlteo“,&zl <[mLCqéf> [= new Imfoeau_kﬁ(ln&%g
l Type erawnr /QQMQJ\«L—EJS | = hkﬂ&rﬁ)

\]/ v

wedList [= oo ,_;V\Lu,w“,fslt()/‘

Generics and SubTyping

Animal // Object casting
Person p = new Person(); H

4 Animal o = (Animal) p;

// List casting

Person List<Person> plist = new LinkedList<Person>(); /
List<Animal> alist = (List<Animal>)plist;

So a list of Persons is a list of Animals, yes?

4 add (e G"“”‘FF‘?”% CCod't mbb/”e—
’ 'Ca,f\[l' C,/\Cm/{

.

3t he alloed o

p\gm\MC

yre

Lecture 9:
Comparing Objects

Comparing Primifives

> Greater Than

>= Greater than or equal to
== Equal to

I= Not equal to

< Less than

<= Less than or equal to

* Clearly compare the value of a primifive
* But what does (refl==ref2) doee = -
* Test whether they point to the same object?

* Test whether the objects they point to have the
same statee

Option 1: a==b, al=b

" These compare the references directly

Person pl = new Person(“Bob”);
Person p2 = new Person(“Bob”);

False (references differ)
(pl==p2); /

(pl!=p2);, - True (references differ)

(pl==pl); <
True

L?lemfh compannd] Mmary abeesses

Option 2: The equals() Method

* QObject defines an equals() method. By default, this method
just does the same as ==.

" Returns boolean, so can only test equality
= Qverride it if you want it to do something different

= Most (alle) of the core Java classes have properly
implemented equals() methods

public EqualsTest {
public int x = 8;

public boolean equals(Object o) {
EqualsTest e = (EqualsTest)o;
return (this.x==e.x);

}

public static void main(String args[]) {
EqualsTest t1 = new EqualsTest();
EqualsTest t2 = new EqualsTest();
System.out.printin(tl==t2);
System.out.printin(tl.equals(t2));

Option 3: Comparable<T> Interface |

int compareTo(T obj);

» Part of the Collections Framework

= Doesn't just tell us true or false, but smaller, same, or
larger: useful for sorting.

= Returns aninteger, r: Gty
= <0 This object is less than obj p a\
= ==0 This object is equal to obj & N~ "
S . A
= >0 This object is greater than obj 0\;)\“’\

Option 3: Comparable<T> Interface |I

public class Point implements Comparable<Point> {
private final int mX;
private final int mY;
public Point (int, int y) { mX=x; mY=y; }

/] sort by y, then x
public int compareTo(Point p) {
if (MY>p.mY) return 1;
else if (mY<p.mY) return -1; "
else { Ny
if (mX>p.mX) return 1; i~ 5
else if (mX<p.mX) return -1; cep
else return O. |

L

}
}
}

// This will be sorted automatically by y, then x o 52
Set<Point> list = new TreeSet<Point>();

Option 4: Comparator<T> Interface

int compareff(T obj1, T obj2)

e

e

" Also part of the Collections framework and

allows us to specify a particular comparator for
a particular job

= E.g. a Person might have a compareTo|)
method that sorts by surname. We might wish
to create a class AgeComparator that sorts

Person objects by age. We could then feed
that to a Collections object.

Lecture 10:
Design Patterns

Design Patterns

= A Design Pattern is a general reusable solution to a
commonly occurring problem in software design

* Coined by Erich Gamma in his 1991 Ph.D. thesis

= Qriginally 23 patterns, now many more. Useful 1o
look at because they lllustrate some of the power of
OOP (and also some of the pitfalls)

= We will only consider a subset

The Open-Closed Principle

Classes should be open for extension but
closed for modification K
.6(\-5‘4) ((n\«@n‘\’v

Jef&o{' M—E’j M b ahh @\Ac\wﬂa\ b
" l.e. we would I|I<es1% be oble to modn‘y the

behaviour without touching its source code

* This rule-of-thumb leads to more reliable large
software and will help us to evaluate the
various design patterns

Decorator

Abstract problem: How can we add
state or methods at runtimee

Example problem: How can we
efficiently support gitt-wrapped books
IN an online bookstoree

o
O
O —
w (
nm m | (SN
R Mg
S= m .rn\
K=
A0 2
N o) W
- M\ W‘ <
) g =l]
S - 5Nl -£
N “IC > ¥
m P A e
T 5 1y
\ A Q)
0.@ pet Dv —
3 S
O —
= ‘S
/ <
. .
. £ —
S \ v 88
\\v hvl.u < -lKa
S LI,
\ .
2 W o P
S — ') : Y [o1B
S ¥ | r T
D | o s N Y
Sl syl R 3 = =%
il S b= “ ©
Vs WWU -~ I 5
| . > = W
T~ _ ¥) s
< T
U \
s
i |
)

. , |
< —_
J A . V(
o M % M A :
&C A | - 2 rhw .\/
— Y O -
v 7L = &
q = a.
Qrv N 0 Q
£ g N, 3 /
> S ~
d o8& oaid
o S S
g 9 $ 9 e
r — N ° o)
e 1§ 3 e S
lk < N\‘ﬂ-ﬂ M) |/ﬂ
0N / [U -
Q N < 3
) - X P o
ﬂ QU
S
5 Yo
P
Y
N/
-~
Q N
P — (
. f '\ L b P
J —< o N J
m ‘ n NO\ . .n
\Aau b s nwl
< ol S, Sl 7S
@) T <
‘i + =
<
o)
A

< N 9
cﬂ.
AR A I e Y, O
2L S N2 5 ¥V .
Ml N S Vv
- €S- ﬂ\ﬂ a \ 'S
< 3 .m LM .qu o =
DI ¥ :
r4 L] .\ ¢ y -
. — () \ —
pd
I.H. A O
Rl kgl)
CARE AR A Y
ﬁ L\ —fm pm P ‘w
K P ,M.n. an
- X R~ <
\V .V N\ “ OAIu <
- 8L 9 »
A — r
. W
N < .- 5
— / <
S |-
l / -
Q
Y
fl-l
_2
]
D i
L&)
U
Q
/0
-
BEEIIN 1R o)
3 ‘\\ <KX Mm
— V) 0 kd n
o) Q B ¢
C O > A% i l”
Q = = §o
Iy L
- | _ -
(@)
r(C
s
v

Decorator in General

" The decorator pattern
adds state and/or
Componen€ functionality to an object
+operation() dynamically

? eX lsz A;sa <

ConcreteComponent Decorator

+rpnlenls

+operation() +operation(d-{---

? 'cuntents.nperatinn{} :B]

StateDecorator FunctionDecorator

#'E'Kt rﬂst ﬂtE +GPE ra-t 1un {]ﬂ- -------- - A
+operation() +extraBehaviour() :: ﬁ;;}:ﬁ:i ;ﬁg:‘; '.' :
W}Q A skale ad A As

YR

Abstract problem: How can we let an
object alter its behaviour when its
Infernal state changese

Example problem: Representing
academics as they progress through
the rank

& r
D Y \
2L <
N
£ DY O
Y - i 9
= ~ h <
{ =N o
.,,W Y s |l
oy /”_ \ ~ A
= g N2
s 3
WD — ‘¥ (
(% < <
[< _ P
.a_ .. §
*Wu S)
(Vs
N
N
A
\
Z \ &
% = Q
S S S Y
Dp. \ / m
M| - C QA
um \
5 D
- < 3
8
J
<
C M . <
O o3
] <
S ~
— (\A:
Q
N\
Vv &

9)
N
L
(72
!\M Ji
fa)
\ Q.
\
\A
N
]
N~
~
<
\\ \l,r)w LM
& = :
r_) fl.
] - M \
3 3
K\ \
) J
< N,
R
— _
v
G\
o
S
) <
J =
~ 1= N
/.\ N M < 0.4
) |~ R
L — L L
& S LS
G Sl |lL p)
- C g
; <
< \ u
— I
@ -~ =
C 3 3
<Y X/
S

State In Generdl

"= The state pattern allows

an object to cleanly alter
Contextr> i ifs behaviour when
,_?‘ internal state changes

Statel| |State2

Strategy

Abstract problem: How can we select an
algorithm implementation at runtime?e

Example problem: We have many possible
change-making implementations. How do
we cleanly change between themge

—
l‘ —— Ad
¥
Ilw\
Y N i M
—_— 7
~N /(. i
™ -~ o N <
- = " s) /
w 3P :)
"l ¢ >
AU l_\ .M- % ﬁlrJ\ Al
1 o HAW S N < S
(y w. < W “.
M - L< - M Py
S R =1V) S~_
= [=13 3J
T = % T T
) o (8§ S < >
- — 2 3 N
Q <i
g (- S
5 S s = -
“\\) 0
X v
— S S, Q uw
0
7]
< 0
© -s
) Ty
N 0\
£ PN
— J1
——— n
\ ﬂl A .lAWI | D
M = r@ N < | —X
N oY TR
Slls
g S PAINL
M U q / o —
= W T . N N -
— < < S ° > >
2 Atp .
) | 1

Vo)

™\
)

(Dshret |

g 72

<

P
”

\ o~ § N
(ol %a < .
ﬁl P
= - AIW.
< g d
) SO -3 k7
—_r _ N . ~
ﬁ S \/ .] N
G- % 1 ~
¥ T —
S / x| |z =
$D + —
.J\ = I\\
(3 o 2
r S g
A oY
\J! <5 87 =K
= M
N —)
s I =
- o e nm o
I c .
- < M 1% ' o
N M.d S | |M _ $
2l £ ¢ | S | ==
- v
< Sy
_— S A\
@, " <
\V ~ 1T

/0

\

>
s “\
) 3
5=
$ e
- @ A
A T T
<) || .
Y s S
D Q Mul m
o< P)
- y S
J 1= SIS
N L 2L ®
v Vs s W .
A L b -
v . ol N 9
[; U -~ < —
< |S 9 =
Y v 119) K¢
\
il . . .
35
i Y Ve IR ,
I/ J/ .W [« . <
- - W
S) - <
NEN) .
‘ -+ o ¢
\VJ " <
N 3
\ - W\ _ m (et
7) m
R M
§ \J Y o 3 3
% K g 2
_E 3 7 2
/) b4 ¢) S
S -0 £ — | s
) \ m %\u =
[Y e r

Strategy in General

* The strategy pattern allows us to cleanly inferchange
between algorithm implementations

l\)a Sl =

Strate
Context > L /

+algorithm()

A

ConcreteStrategyA ConcreteStrategyB

]
+algorithm() +algorithm()

Abstract problem: How can we freat a
group of objects as a single objecte

Example problem: Representing a DVD
box-set as well as the individual films
without duplicating info and with a 10%
discount

SN
(\A
X,
e ‘C
N\
< Lnllu
= U &
3o
A - A
'ku [N S
|
N\ S m AU”I.
>) N\.w C
< 2 = o
3y 20y
: -Iw : < 3 g
L L d
nd M 3 and
e H _
\ g /r Q —ﬂ
m —/ <
B D EEEE.
/ O\ N
\
\
)
pﬂ \
0 \
s *
] A
J = .
|V
A= -
3 IEREEE
a ic A r
.V n/l / ot
< Yy el = o
o / = «
- ~— [M IF'
M \
)

Composite in General

. " The composite pattern
Component |<— lets us treat objects and

groups of objects

T 0 uniformly

+operation()

+operation() #children \
+operation (9 AN [)\) ,>
4 |

DudD¥oxee +

L]
for (Component ¢ : children)
c.operation();

Dv D b\\'//b Dv D Boxset

Al

13\/i>

Pud

Abstract problem: How can we ensure
only one instance of an object is created
by developers using our codee

Example problem: You have a class that
encapsulates accessing a database over
a network. When instantiated, the object
will create a connection and send the
query. Unfortunately you are only allowed
one connection at a time.

Singleton in General

* The singleton pattern
ensures a class has only one

Singleton instance and provides
-instance: static global access to it
etInstance(): static
#Syngleton() M

if (instance==null) instance=new Singleton(); <§>///
return instance;

[ovt
tushzn b abon

pm[?eaﬁe/(

Abstract problem: How do we have
iIncomplete objects in memorye

Example problem: In a sales program, we
might have a Customer object that holds all
the customer info. Often we just need the
name and address. How do we avoid
loading Iin all the details info memory?

Q 9 \.\l/”/
N \ 2.. — N
i v A A.“.u =
i 1N i
} Ol SIS
r g |8 MJ Cl |87
L\ M” w -—
D Y4
~ O
7 C
— >
X B
') h) <
< N 2
Qo w A
m -~ A\
\)/I .~ llnm\v A“ ‘Fli uﬂb
.\” \/. Vs s g L M D_QWJ mj
] of ~ o~ D I -
% J D)
o 2 | Z
- S s B A&l >
p— \-W L| k l.r
= A — Q)
D)
f\. [)) /
LF
/l TN\
3 e~
< M M v
S ~
m e g Z
— sIZ |2 &«
— 1< DN =5
—— QU
S — 3 am\u 3o
@) I
)

L=
9 >
3 3
o ? 4'{
N (%) P
P- ﬂ\a ~
Y Qd —
S I 3
g 0 : 5
MY N
- a ’H 1
< ¥
0 d .
£ NY 13
_K ~—
£ Y
STy LN L9
c /> gl ®
S
C QY o
- iy MM I\hm
—t m P
.) =
2 5 3
D) aw. \ 2
v M 3
S b Q <
. < QGJ qnu >V 0
L S
@ ['.m %
- .0 S - |
u — W U
< 5 s
L — 5 N
. - > . 2
2 3 <z [el
% m A
< —— \‘/
£<4
)
S Al)
.M \
— Q
2 > . £
S - 2 ARERAY,
a_

Proxy in General

" The proxy pattern allows

Subject us to have surrogates or
voperation() placeholders for actual
,_*i; objects
ActualSubject & ProxySubject
1 +subject: ActualSubject
s ndhasc +operation() Q

return subje:t.nperatiun[}gh1

Observer

Abstract problem: When an object
changes state, how can any
dependent objects know?e

Example problem: How can we write
phone apps that react to accelerator
eventse

o
ppe
<
\
\
A—
S
“ & IA N
[} \9 e
ST o §D
= Q <
T \ M
5 S | O S
< < 5 % o %
- m r..c V] r-ail N
Q) P S < S
: \V, & (9, X
> Vi < < S7) g
- /) © 2 ._,l
«
\N\ L /I\/
N) ~
S =~ Py —~
A N 3 \ O |
ON SN = s S
S ; ST ? O
D - 3 IS
3 3 \ 2
A} w L L
S g 3 < <
e 9 m” LR A '.N. \‘I'I (o)
— nw A\ r» 1= S~— L \...
- b= N\ —t IM
ﬁ: :M . A N n.ﬂ Ry < /H
a oo > 2 o
Ak *H rﬂ <\ N [V o
> S A il N,
\m Mw L .|.v. I s < < —
/) < .w. | A |
J <. ﬂ.‘ ! d

Observer in General

* The observer pattern allows an object to have multiple
dependents and propagates updates to the dependents
automatically.

Subject |&i2
SREACH 1} Observer
#observers —

s
+attach({0Observer) ;
+dEtECh[ﬂh5EFUer}q1# #subject
+getState() el +update(9
+notify(}ﬂ _'— 8

State=subject.getState();

L]
L]
LY

- observers.add(observer)
for (Observer o : observers)

o0.update();

<

a__ A)
S 3 & -
P~ s RN 2
-~/ \ [Y | % O I
\ | £ Y R 9 <

\ Pu .mn \10 / nn/ w V) n“wr —

[1L s < = o
=k y § 3 3
N = = | -
S NIEEKN / H ¢ 3
S RS S~ REL ‘ PAINEE. AN

| BLE=Y QEN AR EE- IR, A AN

\ IR INESNEE NN mu, N

SR ~./ s

\\ ol P le Y ay .M\

N
g \ <) - S .
o s/ \ S N.‘
o / NS T >
s 1 N VRS
J .2]
g =
m S /\
N £ /N
. e >0 /e \ - s

< 4 N \ / _ R L)

Sl els | N \ <l |-)

Q| DT~ [s | 5 8 N =

Q) | =L T~ S 9 N) D
L D S/ h
W / ’ \\) L
Ul & . \ < 7T
Jﬁv J Y% <
9 o\ \)
— \) \ - < _— .NW
N S / AO
¢ | =L/ \ AR i
< < L \ \ Y r\..WM x J
— TN\ \ D)
] -2 AL ; / = S
o /| T\ / -~
- / i) T~
a AV'-] < _ ‘\\ %V
] . =% N\
— > S 1 1
S l ¢,

N 7
NInd ~YO < -
c) Py a . (Y | |
1k JJM\MNN KS i VAp (. ownsl)
\
, \ T
CA S \ AN .>C;*€/\(I_
~’I' .f C o)
\ri acnNCe T eeS D

