Lecture 5: nominal ADTs

ADT = algebraic data Jype

Algebraic Datatypes

Nominal sets support a syntax-free notion of a-equivalence.

Q: What can we do with it?

Lecture 5

Nominal Algebraic Datatypes

Nominal sets support a syntax-free notion of a-equivalence.
Q: What can we do with it?
A: Inductively defined data types in Nom that combine the usual
operations
» disjoint union X1 + -+ X,
(for data with different constructor forms)
» cartesian product X7 X+« X X,
(for constructor of several arguments)

with

» name-abstraction [A]X
(for constructors that involve binding).

Lecture 5

Nominal Algebraic Datatypes

Nominal sets support a syntax-free notion of a-equivalence.

Q: What can we do with it?

‘Inductlvely defined data types‘m Nom that combine the usual

operations T~
T~ @o‘@onc ally

» disjoint union X1 + -+ X, mug as
(for data with different constructor forms) W\Hﬂﬁ?\ﬂ r\!ﬁeba%ﬂ

» cartesian product X7 X - -+ X X, ’Jéj jgnd‘UﬁS
(for constructor of several arguments)

with

» name-abstraction [A]X
(for constructors that involve binding).

Lecture 5 2/12

Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ (and X —¢ (—)) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

TD TX
I for all | F

D X

Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ (and X —¢ (—)) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

E.g. N as an initial algebra

for T(—) =14 (—) : Set — Set.
Concretely, take T(X) = {*x} U X for some *x & X.

initial algebra some algebra
*N n TIN TX *x X

1 for all | F

0 n+1 IN X X0 Fx

E.g. N as an initial algebra

for T(—) =14 (—) : Set — Set.
Concretely, take T(X) = {*x} U X for some *x & X.
initial algebra some algebra

*IN n TIN---=- ~TX *x X

exists unique

0 n+1 N--—=—--"- =X X0 Fx

ﬁ() = X0
F(n+1) = F(En)
(special case of primitive recursion)

iterative definition:

Initial algebras

» [A](—) has excellent exactness properties. It can
be combined with X, 4+ (and X —¢ (—)) to give
functors T : Nom — Nom that have initial algebras
I:TD-D

» For a wide class of such functors (nominal algebraic
functors) the initial algebra D coincides with
ASTs/a-equivalence.

E.g. A is the initial algebra for

T(—) 2 A+ (= x—)+[A](—)

Nominal algebraic signatures

Example: A-calculus

name-sort Var for variables, data-sort Term for terms,
and operations

V:Var — Term
A:Term,Term — Term
L:Var.Term — Term

Nominal algebraic signatures

» Sorts S u= N NAME-SONt (here just one, for simplicty)
| D data-sorts

| 1 unit

| S,S8 pairs

| N.S name-binding

» Typed operations op: S—D

Signature X is specified by the stuff in red.

Nominal algebraic signatures

Example: A-calculus

name-sort Var for variables, data-sort Term for terms,
and operations

V:Var — Term
A:Term,Term — Term
L:Var.Term — Term
Move Oxampes of cpermbhions involving bindyrs :
bk r=tnt ~> lot: ‘Qf‘tm) (VU;(FT@,E’V\) - Term

Lt we fx=Ein E s Labeec : Vor ((\/af.@fm),@,rrn)—)"l@m
{ x t ot

Lecture 5 6/12

Nominal algebraic signatures

Example: 7r-calculus

name-sort Chan for channel names, data-sorts Proc, Pre and Sum
for processes, prefixed processes and summations, and operations

S:
Comp :
Nu:
!': Proc — Proc

P:

0:

Plus

In

Tau:

Match

Lecture 5

Sum — Proc
Proc,Proc — Proc

Chan.Proc — Proc

Pre — Sum
1 — Sum

: Sum, Sum — Sum
Out :
: Chan, (Chan.Proc) — Pre

Chan,Chan,Proc — Pre

Proc — Pre

: Chan,Chan,Pre — Pre

/12

Nominal algebraic signatures

Closely related notions:

» binding signatures of Fiore, Plotkin & Turi (LICS
1999)

» nominal algebras of Honsell, Miculan & Scagnetto
(ICALP 2001)

N.B. all these notions of signature restrict attention to iterated, but unary
name-binding—there are other kinds of lexically scoped binder (e.g. see Pottier's
Caml language, or Urban’s Nominal 2 package for Isabell /HOL.)

Lecture 5 6/12

Y.(8) = raw terms over X of sort S

ac A t € X(S) op:S—D
a € X(N) opt € X(D) () € (1)

ti €EX(S1) t €X(S) aceA teX(s)
t1,t2€2(81,82) a.tEZ(N.S)

Each Z(S) is a nominal set once equipped with the
obvious Perm A-action—any finite set of atoms
containing all those occurring in ¢ supports t € X(8).

Alpha-equivalence
=, C X(S) X X(9)

a e A t=,t
a=,a opt =, opt’ O =0
th=st] th=,t,

t11t2 —u t{lté

(a1 a) 0 t1 = (az a) c tz a# (al, tl, a, tz)
al.tl = az.tz

Alpha-equivalence
=, C X(S) X X(9)

Fact: =, is equivariant (t; =, t, = 7w+t =, - 1)
and each quotient

Z,(8) = {[tla | t € Z(5)}

is a nominal set with

e[t = [m-th
supp [t]e - fnt
fn(a.t) = fut—{a}

fn(tl,tz) = fi’l t1 Ufn tz

Theorem. Given a nominal algebraic signature X

(for simplicity, assume X has a single data-sort D as well as a single
name-sort N)

X, (D) is an initial algebra for the

associated functor Ty : Nom — Nom.

(NSB p139.)

Lecture 5 9/12

Theorem. Given a nominal algebraic signature X

(for simplicity, assume X has a single data-sort D as well as a single
name-sort N)

X, (D) is an initial algebra for the

associated functor Ty : Nom — Nom.

Te(=) = [S1(=) 4+ - +[Su] (=)
where X has operations op; : S; = D (i = 1..n)
and [S](—) : Nom — Nom is defined by:

[N) (=) A

[D](—) (—)

[1](—) 1
) [S1] (=) X [S2)(—)
) [A]([S](—))

[[Sl ’ SZ]] (_

N.s](—

Theorem. Given a nominal algebraic signature X

(for simplicity, assume X has a single data-sort D as well as a single
name-sort N)

X, (D) is an initial algebra for the

associated functor Ty : Nom — Nom.

E.g. for the A-calculus signature with operations
V:Var — Term

A:Term,Term — Term

L:Var.Term — Term

we have

Te(=) =A+ (= x—)+[A](-)

Lecture 5 9/12

Theorem. Given a nominal algebraic signature X

(for simplicity, assume X has a single data-sort D as well as a single
name-sort N)

X, (D) is an initial algebra for the

associated enriched functor Ty : Nom — Nom.

Ty not only acts on equivariant (=emptily supported)
functions, but also on finitely supported functions:

(X—>fSY) — (T2X—>fsT2Y)
F — Tz F

E.g. the enriched functor [A](—) : Nom — Nom sends
f e XY to[Alf € [A]X - [A]Y where

[Alf ({a)x) = (a)(fx) ifa#f

w-Structural recursion

For A-terms:

Theorem. { fi € A-gX

Givenany X € Nom and ¢ fo € X X X =g X
f3 € [A]X —fs X

st. 4 f(erex) =fa(fer, fez)

H!fEA—qu{ fuzflu
f(Aa.e) =f3(u,fe) if a# (f1, f2, f3)

Lecture 5 10/12

x-Structural recursion

For A-terms:

Theorem. fi € A-gxX

Givenany X € Nom and ¢ fo € X X X - X st
fi € AXX-g X

(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
EI!fEA—>st{ _ fa=fia_
s.t. fA(el e2) =f2(f61,f32)
f(Aa.e) =f3(a, fe) ifa# (f1, fof3)

E.g. capture-avoiding substitution (—)[e’/a’] : A — A is the f for

fia = ifa=a'thene elsea
fa(er,e2) = erex
fs(a,e) = Aae

for which (FCB) holds, since a # Aa.e

Lecture 5 11/12

w-Structural recursion

For A-terms:

Theorem. fi € A-gxX

Givenany X € Nom and ¢ fo € X X X - X st
fi € AXX-g X

(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
NFEA X { ~ fa=fia
s.t. f:\(el ez) :fz(f el,fez)
f(Aa.e) =f3(a, fe) ifa# (f1, fof3)

E.g. size function A — N is the f for

f1 a £ 0
fa(ny,na) = ny+n
fs(a,n) = n+1

for which (FCB) holds, since a # (n + 1)

Lecture 5 11/12

x-Structural recursion

For A-terms:

Theorem. fi € A-gxX

Givenany X € Nom and ¢ fo € X X X - X st
fi € AXX-g X

(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
NFEA X { ~ fa=fia
s.t. ji(el ez) = fz (f 61,f32)
f(Aa.e) =f3(a, fe) ifa# (f1, fof3)

Non-example: trying to list the bound variables of a A-term

f] a = nil
f2(1,62) = 61 @4,
fs(a,€) = a:ut

for which (FCB) does not hold, since a € supp(a::£).

Lecture 5 11/12

x-Structural recursion

For A-terms:

Theorem. fi € A-gX

Givenany X € Nom and ¢ fo € X X X-gX st
fi € AXX-gX

(Va) a# (fi, fa, f3) = (Vx) a# f3(a,x) (FCB)
NfeA-xX (fa=fia
s.t. { f;(el 62) =f2(f€1,f€2)
f(Aae) = fs(a,fe) ifa#(f,f2f3)

Similar results hold for any nominal algebraic signature—see J ACM
53(2006)459-506.

Implemented in Urban & Berghofer's Nominal package for
Isabelle/HOL (classical higher-order logic).

Seems to capture informal usage well, but (FCB) can be tricky. ..

Lecture 5 11/12

Counting bound variables

Foreache € A, |cbve= fep, € N

where we want f € A —¢ X with
X = (A - IN) -4 N to satisfy

fap = pa
flerex)p = (fep) + (fexp)
f(Aae)p = fe(pla—1])

and where pg € A - Nis A(a € A) - 0.

12/12

Counting bound variables

Foreache € A, |cbve= fep, € N

where we want f € A —¢ X with
X = (A - IN) -4 N to satisfy

fap = pa
f(eiez) p (feip) + (fe2p)
f(Aae)p = fe(pla—1])

and where pg € A - Nis A(a € A) - 0.

Looks like we should take

fs(a,2) = A(p € A~ N) - x(pla > 1]),

but this does not satisfy (FCB). Solution: take X to be a certain
nominal subset of (A —¢IN) =g IN. (See NSB p145.)

Lecture 5 12/12

	Lecture 5: nominal ADTs

