Lecture 3: category of nominal sets

Category of nominal sets, Nom

- ▶ objects $X \in Nom$ are nominal sets
- ▶ morphisms $f \in \text{Nom}(X, Y)$ are functions $f \in Y^X$ that are equivariant:

$$(\forall \pi \in \operatorname{Perm} \mathbb{A}, x \in X) \ \pi \cdot (f \, x) = f(\pi \cdot x)$$

for all $\pi \in \operatorname{Perm} \mathbb{A}$, $x \in X$.

(Clearly these are closed under composition and include identity functions—so we do get a category.)

E.g. Nom(A, A) = ?

Category of nominal sets, Nom

- ▶ objects $X \in Nom$ are nominal sets
- ▶ morphisms $f \in \text{Nom}(X, Y)$ are functions $f \in Y^X$ that are equivariant:

$$(\forall \pi \in \operatorname{Perm} \mathbb{A}, x \in X) \ \pi \cdot (f \, x) = f(\pi \cdot x)$$

for all $\pi \in \operatorname{Perm} A$, $x \in X$.

(Clearly these are closed under composition and include identity functions—so we do get a category.)

E.g. $Nom(A, A) = \{id_A\}$ because...

Lemma 1. If $f \in \mathbf{Nom}(X,Y)$ and $x \in X$, then $supp(f x) \subseteq supp x$

For example, if $f \in \text{Nom}(\mathbb{A}, \mathbb{A})$, then for any $a \in \mathbb{A}$

$${fa} = supp(fa) \subseteq supp a = {a}$$

so that f a = a. Hence $f = id_{\mathbb{A}}$.

Lemma 1. If $f \in \text{Nom}(X,Y)$ and $x \in X$, then $supp(fx) \subseteq supp x$

Proof. Suppose A supports x in X.

So for any $\pi \in \operatorname{Perm} A$, if $(\forall a \in A) \ \pi \ a = a$, then $\pi \cdot x = x$ and hence $\pi \cdot (f x) = f(\pi \cdot x) = f x$.

Hence A also supports f x in Y.

Taking A = supp x, we get that supp x supports f x, so supp (f x) is contained in supp x. \square

Finite products: $X_1 \times \cdots \times X_n$ is given by cartesian product of sets with **Perm** \mathbb{A} -action

$$\pi \cdot (x_1, \ldots, x_n) \triangleq (\pi \cdot x_1, \ldots, \pi \cdot x_n)$$

which satisfies

$$supp(x,...,x_n) = (supp x_1) \cup \cdots \cup (supp x_n)$$
(Exercise)

Exponentials: given $X, Y \in \mathbf{Nom}$, we get a **Perm** \mathbb{A} -action on the set Y^X of functions:

$$\pi \cdot f \stackrel{\triangle}{=} \lambda(x \in X) \rightarrow \pi \cdot (f(\pi^{-1} \cdot x))$$

Not every $f \in Y^X$ need have finite support wrt this action: let $X \to_{fs} Y$ be the subset of ones that do.

Exponentials: given $X, Y \in \mathbf{Nom}$, we get a **Perm** \mathbb{A} -action on the set Y^X of functions:

$$\pi \cdot f \triangleq \lambda(x \in X) \rightarrow \pi \cdot (f(\pi^{-1} \cdot x))$$

Not every $f \in Y^X$ need have finite support wrt this action: let $X \to_{fs} Y$ be the subset of ones that do.

E.g. given $a \in \mathbb{A}$, $K_a \triangleq \lambda(x \in \mathbb{A}) \rightarrow a$ is in $\mathbb{A} \rightarrow_{fs} \mathbb{A}$, because it is supported by $\{a\}$, since

$$(\pi \cdot K_a) x = \pi \cdot (K_a(\pi^{-1} \cdot x)) = \pi \cdot a = \pi a$$

and hence $\pi \cdot K_a = K_{\pi a}$.

Exponential of $X, Y \in \mathbf{Nom}$ is $X \to_{\mathsf{fs}} Y$ plus equivariant function $\operatorname{app} : (X \to_{\mathsf{fs}} Y) \times X \to Y$ $\operatorname{app} (f, x) = f x$

Given $f \in \text{Nom}(Z \times X, Y)$, the unique $\hat{f} \in \text{Nom}(Z, X \rightarrow_{\text{fs}} Y)$ making

$$Z \times X$$

$$\hat{f} \times id_X \downarrow \qquad \qquad f$$

$$(X \to_{fs} Y) \times X \xrightarrow{app} Y$$

commute is given by currying: $\hat{f}z = \lambda(x \in X) \rightarrow f(z,x)$.

(Exercise)

Nom is a model of Church's higher order logic

[Nom is categorically equivalent to a well-known Boolean topos, called the Schanuel topos.]

Nom is a model of Church's higher order logic

Coproducts are given by disjoint union.

Natural number object: $\mathbb{N} = \{0, 1, 2, ...\}$ with trivial **Perm** \mathbb{A} -action: $\pi \cdot n \triangleq n$ (so $supp n = \emptyset$).

Nom is a model of Church's higher order logic

Subobject classifier: $\Omega = \{\text{true, false}\} \cong 1+1$ with trivial Perm A-action: $\pi \cdot b \triangleq b$ (so $supp b = \emptyset$).

Power objects: $X \to_{fs} \Omega \cong P_{fs} X$, the set of subsets $S \subseteq X$ that are finitely supported w.r.t. the **Perm** A-action

$$\pi \cdot S \triangleq \{\pi \cdot x \mid x \in S\}$$

Nom ⊭ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation, $\varepsilon x. \varphi(x)$ satisfying

$$(\forall x : X) \varphi(x) \Rightarrow \varphi(\varepsilon x. \varphi(x))$$

Theorem 1. There is no equivariant function $c: \{S \in \mathbf{P}_{\mathrm{fs}} \, \mathbb{A} \mid S \neq \emptyset\} \to \mathbb{A}$ satisfying $c(S) \in S$ for all non-empty $S \in \mathbf{P}_{\mathrm{fs}} \, \mathbb{A}$.

Proof. Suppose there were such a c. Putting $a \triangleq c \mathbb{A}$ and picking some $b \in \mathbb{A} - \{a\}$, we get a contradiction to $a \neq b$:

$$a = c \mathbb{A} = c((a \ b) \cdot \mathbb{A}) = (a \ b) \cdot c \mathbb{A} = (a \ b) \cdot a = b$$

Nom ⊭ choice

Nom models classical higher-order logic, but not Hilbert's ε -operation, $\varepsilon x \cdot \varphi(x)$ satisfying

$$(\forall x : X) \varphi(x) \Rightarrow \varphi(\varepsilon x. \varphi(x))$$

In fact **Nom** does not model even very weak forms of choice, such as Dependent Choice.

The nominal set of names

Recall that A is a nominal set once equipped with the action

$$\pi \cdot a = \pi(a)$$

which satisfies $supp a = \{a\}$.

Although $\mathbb{A} \in \mathbf{Set}$ is a countable, \mathbb{A} is not isomorphic to \mathbb{N} in \mathbf{Nom} . For any $f \in \mathbb{N} \to_{\mathbf{fs}} \mathbb{A}$ has to satisfy

$$\{fn\} = supp(app(f,n)) \subseteq$$

 $supp(f,n) = supp f \cup supp n = supp f$

for all $n \in \mathbb{N}$, and so f cannot be surjective.