Lecture 2: support

Name permutations

• A = fixed countably infinite set of atomic names (a,b,...)

Name permutations

- \mathbb{A} = fixed countably infinite set of atomic names (a, b, ...)
- **Perm** \mathbb{A} = group of finite permutations of \mathbb{A} (π , π' ,...)
 - ▶ each π is a bijection $\mathbb{A} \cong \mathbb{A}$ (injective and surjective function)
 - group: multiplication is composition of functions π' ο π; identity is identity function ι; inverses are inverse functions π⁻¹.
 - π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.

Quiz: if $\mathbb{A} = \{0, 1, 2, 3, \ldots\}$, are these maps in **Perm** \mathbb{A} ?

- $0 \mapsto 1 \mapsto 0, k \mapsto k$ (for all $k \ge 2$)
- $2k \mapsto 2k + 1 \mapsto 2k$ (for all $k \ge 0$)
- $\blacktriangleright 0 \mapsto 1 \mapsto 2 \mapsto 3 \mapsto \cdots$

Name permutations

- \mathbb{A} = fixed countably infinite set of atomic names (a, b, ...)
- **Perm** \mathbb{A} = group of finite permutations of \mathbb{A} (π , π' ,...)
 - ▶ each π is a bijection $\mathbb{A} \cong \mathbb{A}$ (injective and surjective function)
 - group: multiplication is composition of functions π' ο π; identity is identity function ι; inverses are inverse functions π⁻¹.
 - π finite means: $\{a \in \mathbb{A} \mid \pi(a) \neq a\}$ is finite.

Quiz: if $\mathbb{A} = \{0, 1, 2, 3, \ldots\}$, are these maps in **Perm** \mathbb{A} ?

- $0 \mapsto 1 \mapsto 0, k \mapsto k$ (for all $k \ge 2$) is in **Perm** A
- ▶ $2k \mapsto 2k + 1 \mapsto 2k$ (for all $k \ge 0$) is not finite
- ▶ $0 \mapsto 1 \mapsto 2 \mapsto 3 \mapsto \cdots$ is not a bijection

Transposition

 $(a \ b) \in \operatorname{Perm} \mathbb{A}$ is the function mapping a to b, b to a and fixing all other names.

Theorem: every $\pi \in \operatorname{Perm} \mathbb{A}$ is equal to $(a_1 \ b_1) \circ \cdots \circ (a_n \ b_n)$ for some $a_i \& b_i$ (with $\pi \ a_i \neq a_i \neq b_i \neq \pi \ b_i$).

Proof...

Actions

An **Perm** \mathbb{A} -action on a set X is a function

 $(-) \cdot (-) : \operatorname{Perm} \mathbb{A} \times X \to X$

satisfying for all $\pi, \pi' \in \operatorname{Perm} \mathbb{A}$ and $x \in X$

$$\pi' \cdot (\pi \cdot x) = (\pi' \circ \pi) \cdot x$$
$$\iota \cdot x = x$$

Actions

An **Perm** \mathbb{A} -action on a set X is a function

 $(-) \cdot (-) : \operatorname{Perm} \mathbb{A} \times X \to X$

satisfying for all $\pi, \pi' \in \operatorname{Perm} \mathbb{A}$ and $x \in X$

$$\pi' \cdot (\pi \cdot x) = (\pi' \circ \pi) \cdot x$$
$$\iota \cdot x = x$$

Simple example: action of **Perm** A on A given by function application, $\pi \cdot a = \pi a$.

$$\pi' \cdot (\pi \cdot a) = \pi'(\pi a) = (\pi' \circ \pi) a$$
$$\iota \cdot a = \iota a = a$$

Running example

Action of **Perm** \mathbb{A} on set of ASTs for λ -terms

 $Tr \triangleq \{t ::= V a \mid A(t,t) \mid L(a,t)\}$

$$\pi \cdot \mathbb{V} a = \mathbb{V}(\pi a)$$

$$\pi \cdot \mathbb{A}(t, t') = \mathbb{A}(\pi \cdot t, \pi \cdot t')$$

$$\pi \cdot \mathbb{L}(a, t) = \mathbb{L}(\pi a, \pi \cdot t)$$

This respects α -equivalence $=_{\alpha}$ [lecture 1]

$$t =_{\alpha} t' \Rightarrow \pi \cdot t =_{\alpha} \pi \cdot t'$$
 (Exercise)

and so induces an action on set of λ -terms $\Lambda \triangleq \{[t]_{\alpha} \mid t \in Tr\}$:

$$\pi \cdot [t]_{lpha} = [\pi \cdot t]_{lpha}$$

Lecture 2

Nominal sets

are sets X with with a Perm \mathbb{A} -action satisfying

Finite support property: for each $x \in X$, there is a finite subset $A \subseteq \mathbb{A}$ that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathbb{A}$

 $((\forall a \in A) \ \pi \ a = a) \ \Rightarrow \ \pi \cdot x = x$

Nominal sets

are sets X with with a Perm \mathbb{A} -action satisfying

Finite support property: for each $x \in X$, there is a finite subset $A \subseteq \mathbb{A}$ that supports x, in the sense that for all $\pi \in \operatorname{Perm} \mathbb{A}$

$$((\forall a \in A) \ \pi \ a = a) \ \Rightarrow \ \pi \cdot x = x$$

E.g. A is a nominal set—each $a \in A$ is supported by any finite A containing a.

Tr and Λ are nominal sets—any finite A containing all the variables occurring (free, binding, or bound) in $t \in Tr$ supports t and (hence) $[t]_{\alpha}$.

Discrete nominal set

determined by a set S has permutation action

$$\pi \cdot x \triangleq x \qquad (x \in S)$$

Each $x \in S$ is supported by \emptyset .

Trivial, but useful: 'ordinary' sets are included in nominal sets.

Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$

What is a support for the following sets of names?

• $S_1 \triangleq \{a\}$

•
$$S_2 \triangleq \mathbb{A} - \{a\}$$

► $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, supposing $\mathbb{A} = \{a_0, a_1, a_2, \ldots\}$

Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$

What is a support for the following sets of names?

- S₁ ≜ {a} Answer: easy to see that {a} is smallest support.
 S₂ ≜ A - {a}
- ► $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, supposing $\mathbb{A} = \{a_0, a_1, a_2, \ldots\}$

Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$

What is a support for the following sets of names?

S₁ ≜ {a} Answer: easy to see that {a} is smallest support.
S₂ ≜ A - {a} Answer: {a} is smallest support. (Why?)
S₃ ≜ {a₀, a₂, a₄,...}, supposing A = {a₀, a₁, a₂,...}

Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$

What is a support for the following sets of names?

S₁ ≜ {a} Answer: easy to see that {a} is smallest support.
S₂ ≜ A - {a} Answer: {a} is smallest support. (Why?)
S₃ ≜ {a₀, a₂, a₄,...}, supposing A = {a₀, a₁, a₂,...} Answer: {a₀, a₂, a₄,...} is a support

Perm A acts of sets of names $S \subseteq A$ pointwise: $\pi \cdot S \triangleq \{\pi \ a \mid a \in S\}.$

What is a support for the following sets of names?

 \triangleright $S_1 \triangleq \{a\}$ Answer: easy to see that $\{a\}$ is smallest support. \triangleright $S_2 \triangleq \mathbb{A} - \{a\}$ Answer: $\{a\}$ is smallest support. (Why?) • $S_3 \triangleq \{a_0, a_2, a_4, \ldots\}$, supposing $\mathbb{A} = \{a_0, a_1, a_2, \ldots\}$ Answer: $\{a_0, a_2, a_4, \ldots\}$ is a support, and so is $\{a_1, a_3, a_5, \ldots\}$ —but there is no finite support. S_3 does not exist in the 'world of nominal sets' (in that world A is infinite, but not enumerable—see later).

Lemma. In any nominal set X, every $x \in X$ possesses a smallest (wrt \subseteq) finite support, written supp x.

Proof. Suffices to show that if finite subsets A_1 and A_2 support x, then so does $A_1 \cap A_2$.

Lemma. In any nominal set X, every $x \in X$ possesses a smallest (wrt \subseteq) finite support, written supp x.

Proof. Suppose finite subsets A_1 and A_2 support x.

For any $a, a' \in \mathbb{A} - (A_1 \cap A_2)$ with $a \neq a'$, claim that $(a a') \cdot x = x$.

Since every π fixing the elements of $A_1 \cap A_2$ can be expressed as a composition of transpositions $(a \ a')$ with $a, a' \in \mathbb{A} - (A_1 \cap A_2)$ and $a \neq a'$, we have $\pi \cdot x = x$. \Box

Lemma. In any nominal set X, every $x \in X$ possesses a smallest (wrt \subseteq) finite support, written supp x.

Proof. Suppose finite subsets A_1 and A_2 support x.

For any $a, a' \in \mathbb{A} - (A_1 \cap A_2)$ with $a \neq a'$, claim that $(a a') \cdot x = x$.

Pick any $a'' \in \mathbb{A} - (A_1 \cup A_2 \cup \{a, a'\})$ (infinite, hence non-empty). Note that

 $(a, a'' \notin A_1) \lor (a, a'' \notin A_2)$

so $(a \ a'') \cdot x = x$. Similarly $(a' \ a'') \cdot x = x$. But $(a \ a') = (a \ a'') \circ (a' \ a'') \circ (a \ a'')$. So $(a \ a') \cdot x = x$. \Box claim

Free variables via support

Recall that $\Lambda = \{ [t]_{\alpha} \mid t \in Tr \}$ has a **Perm** A-action satisfying $\pi \cdot [t]_{\alpha} = [\pi \cdot t]_{\alpha}$

Fact: for any $[t]_{\alpha} \in \Lambda$, $supp([t]_{\alpha})$ is the finite set fv t of free variables of any representative AST t.

$$f\mathbf{v}(\forall a) = \{a\}$$

$$f\mathbf{v}(A(t,t')) = (f\mathbf{v} t) \cup (f\mathbf{v} t')$$

$$f\mathbf{v}(L(a,t)) = (f\mathbf{v} t) - \{a\}$$