
Nominal Sets
and their applications

Andrew Pitts

MPhil ACS, CST Part III 2012/13
half module (8hrs)

Lecture 1 1/18

Housekeeping

◮ Reading material, lecture slides and exercise sheet
will be posted on the course web page.

◮ Assessment will be via take-home test; details tba.

◮ If you want to discuss the course material or the
exercises, just send me an email, or see me at the
end of a lecture.

◮ This course is mathematical in nature. Background
knowledge is not uniform across class members and
I will try to adapt to that fact. Please speak out if I
use a term you do not know.

Lecture 1 2/18

Content

Digested version of parts of three papers:

◮ AM Pitts, Alpha-Structural Recursion and Induction, JACM
53(2006)459–506.

◮ AM Pitts, Structural Recursion with Locally Scoped Names,
JFP 21(2011)235–286.

◮ C Urban, AM Pitts and MJ Gabbay, Nominal Unification, TCS
323(2004) 473-497.

There is also a forthcoming book which goes into far
greater detail:

◮ [NSB] AM Pitts, Nominal Sets: names and symmetry in

computer science (CUP Tracts in TCS, vol. 57, 2013).
Draft copies of NSB available from AMP—send request by
email.

Lecture 1 3/18

Lecture 1: introduction

Lecture 1 4/18

Names in computer science

I’ll use the term ‘atomic name’

‘A pure name is nothing but a bit-pattern that is an identifier, and is
only useful for comparing for identity with other such bit-patterns —
which includes looking up in tables to find other information. The
intended contrast is with names which yield information by
examination of the names themselves, whether by reading the text
of the name or otherwise. . . . like most good things in computer
science, pure names help by putting in an extra stage of indirection;
but they are not much good for anything else.’

RM Needham, Names (ACM, 1989) p 90

Lecture 1 5/18

Names in computer science

Are these OCaml expressions contextually equivalent?

let a = ref() in

let b = ref() in

fun x �
if x == a then b
else a

let c = ref() in

let d = ref() in

fun y �
if y == d then d
else c

x

public

a

private

b y

public

c

private

d

Lecture 1 5/18

Names in computer science

Are these OCaml expressions contextually equivalent?

F ,

let a = ref() in

let b = ref() in

fun x �
if x == a then b
else a

G ,

let c = ref() in

let d = ref() in

fun y �
if y == d then d
else c

No!

For T , fun f � let x = ref() in f(f x) == f x,

T F has value false, whereas T G has value true,

so F 6∼=ctx G.
Lecture 1 5/18

Nominal sets
◮ Mathematical theory of names: scope, binding,

freshness.

◮ Simple math to do with properties invariant under
permuting names.

◮ Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

◮ Applications: theorem-proving tools for PL
semantics; metaprogramming (within functional and
logic programming); verification of systems that are
finite-modulo-symmetry.

Lecture 1 6/18

Nominal sets
◮ Mathematical theory of names: scope, binding,

freshness.

◮ Simple math to do with properties invariant under
permuting names.

◮ Originally introduced by Gabbay & AMP circa 2000,
but the math goes back to 1930’s set theory & logic
(Fraenkel & Mostowski).

◮ Applications: theorem-proving tools for PL
semantics; metaprogramming (within functional and
logic programming)

Motivating example: structurally recursive function definitions
in the presence of name-binders.

Lecture 1 6/18

For semantics, concrete syntax

letrec f x = if x > 100 then x − 10

else f (f (x + 11)) in f (x + 100)

is unimportant compared to abstract syntax (ASTs)

letrec

f x if

>

x 100

−

x 10

@

f @

f +

x 11

@

f +

x 101

since we aim for compositional semantics of
programming language constructs.
Lecture 1 7/18

ASTs enable two fundamental (and inter-linked) tools in
programming language semantics:

◮ Definition of functions on syntax
by recursion on its structure.

◮ Proof of properties of syntax
by induction on its structure.

Lecture 1 8/18

Structural recursion

Recursive definitions of functions whose values at a
structure are given functions of their values at immediate

substructures.

◮ Gödel System T (1958):

structure = numbers
structural recursion = primitive recursion for N.

◮ Burstall, Martin-Löf et al (1970s) generalised this to
ASTs.

Lecture 1 9/18

Running example

Set of ASTs for λ-terms

OCaml:

type vr = int;;

type tr = V of vr | A of tr * tr | L of vr * tr;;

Haskell:

type Vr = Int

data Tr = V Vr | A Tr Tr | L Vr Tr

Lecture 1 10/18

Running example

Set of ASTs for λ-terms

Tr , {t ::= V a | A(t, t) | L(a, t)}

where a ∈ A, fixed infinite set of names of variables.

Operations for constructing these ASTs:

V : A � Tr
A : Tr × Tr � Tr
L : A × Tr � Tr

Lecture 1 10/18

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

Lecture 1 11/18

Structural recursion for Tr

E.g. the finite set var t of variables occurring in t ∈ Tr:

var(V a) = {a}
var(A(t, t′)) = (var t)∪ (var t′)
var(L(a, t)) = (var t)∪ {a}

is defined by structural recursion using

◮ X = Pf(A) (finite sets of variables)

◮ f1 a = {a}

◮ f2(S, S′) = S ∪ S′

◮ f3(a, S) = S ∪ {a}.

Lecture 1 12/18

Structural recursion for Tr

E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

For example

(a b) · L(a, A(V b, V c)) = L(b, A(V a, V c))

Lecture 1 13/18

Structural recursion for Tr

E.g. swapping: (a b) · t = result of transposing all
occurrences of a and b in t

(a b) · V c = if c = a then V b else

if c = b then V a else V c
(a b) · A(t, t′) = A((a b) · t, (a b) · t′)
(a b) · L(c, t) = if c = a then L(b, (a b) · t)

else if c = b then L(a, (a b) · t)
else L(c, (a b) · t)

is defined by structural recursion using. . .

Lecture 1 13/18

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

Lecture 1 14/18

Structural recursion for Tr

Theorem.

Given f1 ∈ A � X
f2 ∈ X × X � X
f3 ∈ A × X � X

exists unique f̂ ∈ Tr � X satisfying

f̂ (V a) = f1 a

f̂ (A(t, t′)) = f2(f̂ t, f̂ t′)
f̂(L(a, t)) = f3(a, f̂ t)

Doesn
’t tak

e binding into
acc

ount!

Lecture 1 14/18

Alpha-equivalence

Smallest binary relation =α on Tr closed under the rules:

a ∈ A

V a =α V a

t1 =α t′1 t2 =α t′2
A(t1, t2) =α A(t′1, t′2)

(a b) · t =α (a′ b) · t′ b /∈ {a, a′} ∪ var(t t′)

L(a, t) =α L(a′, t′)

E.g. A(L(a, A(V a, V b)), V c) =α A(L(c, A(V c, V b)), V c)
6=α A(L(b, A(V b, V b)), V c)

Fact: =α is transitive (and reflexive & symmetric). (Exercise)

Lecture 1 15/18

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

Lecture 1 16/18

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. . .

Lecture 1 16/18

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

“We identify expressions up to alpha-equivalence”. . .
. . . and then forget about it, referring to
alpha-equivalence classes [t]α only via representatives t.

Lecture 1 16/18

ASTs mod alpha equivalence

Dealing with issues to do with binders and alpha
equivalence is

◮ pervasive (very many languages involve binding
operations)

◮ difficult to formalise/mechanise without losing sight
of common informal practice:

E.g. notation for λ-terms:

Λ , {[t]α | t ∈ Tr}
a means [V a]α (= {V a})

e e′ means [A(t, t′)]α, where e = [t]α and e′ = [t′]α
λa.e means [L(a, t)]α where e = [t]α

Lecture 1 16/18

Informal structural recursion

E.g. capture-avoiding substitution:
f = (−)[e1/a1] : Λ � Λ

f a = if a = a1 then e1 else a

f (e e′) = (f e) (f e′)

f(λa. e) = if a 6∈ fv(a1, e1) then λa. (f e)
else don’t care!

Not an instance of structural recursion for Tr.

Why is f well-defined and total?

Lecture 1 17/18

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D:
J−K : Λ � ((A � D)� D)

JaKρ = ρ a

Je e′Kρ = app(JeKρ , Je′Kρ)

Jλa. eKρ = fun(λ(d ∈ D). JeK(ρ[a � d]))

where

{

app ∈ D × D �cts D
fun ∈ (D �cts D) �cts D

are continuous functions satisfying. . .

Lecture 1 17/18

Informal structural recursion

E.g. denotation of λ-term in a suitable domain D:
J−K : Λ � ((A � D)� D)

JaKρ = ρ a

Je e′Kρ = app(JeKρ , Je′Kρ)

Jλa. eKρ = fun(λ(d ∈ D). JeK(ρ[a � d]))

why is this very standard
definition independent of the
choice of bound variable a?

Lecture 1 17/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Lecture 1 18/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

Lecture 1 18/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Lecture 1 18/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Lecture 1 18/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Lecture 1 18/18

Is there a recursion principle for Λ that legitimises these
‘definitions’ of (−)[e1/a1] : Λ � Λ and J−K : Λ � D

(and many other e.g.s)?

Yes! — α-structural recursion.

What about other languages with binders?

Yes! — available for any nominal signature.

Great. What’s the catch?

Need to learn a bit of possibly unfamiliar math, to do
with permutations and support.

Lecture 1 18/18

	Lecture 1: introduction

