3

Syntax of LFP

- Any relation symbol of arity k is a predicate expression of arity k;
- If R is a relation symbol of arity k, **x** is a tuple of variables of length k and ϕ is a formula of LFP in which the symbol R only occurs positively, then

 $\mathbf{lfp}_{R,\mathbf{x}}\phi$

is a predicate expression of LFP of arity k.

All occurrences of R and variables in **x** in $\mathbf{lfp}_{R,\mathbf{x}}\phi$ are *bound*

Syntax of LFP

Topics in Logic and Complexity Part 9

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

- If t_1 and t_2 are terms, then $t_1 = t_2$ is a formula of LFP.
- If P is a predicate expression of LFP of arity k and t is a tuple of terms of length k, then P(t) is a formula of LFP.
- If ϕ and ψ are formulas of LFP, then so are $\phi \land \psi$, and $\neg \phi$.
- If ϕ is a formula of LFP and x is a variable then, $\exists x \phi$ is a formula of LFP.

Semantics of LFP

Let $\mathbb{A} = (A, \mathcal{I})$ be a structure with universe A, and an interpretation \mathcal{I} of a fixed vocabulary σ .

Let ϕ be a formula of LFP, and i an interpretation in A of all the free variables (*first or second* order) of ϕ .

To each individual variable x, i associates an element of A, and to each k-ary relation symbol R in ϕ that is not in σ , i associates a relation $i(R) \subseteq A^k$.

i is extended to terms t in the usual way.

For constants c, $i(c) = \mathcal{I}(c)$. $i(f(t_1, \dots, t_n)) = \mathcal{I}(f)(i(t_1), \dots, i(t_n))$

7

Semantics of LFP

- If R is a relation symbol in σ , then $\iota(R) = \mathcal{I}(R)$.
- If *P* is a predicate expression of the form $\mathbf{lfp}_{R,\mathbf{x}}\phi$, then $\iota(P)$ is the relation that is the least fixed point of the monotone operator *F* on A^k defined by:

$F(X) = \{ \mathbf{a} \in A^k \mid \mathbb{A} \models \phi[\imath \langle X/R, \mathbf{x}/\mathbf{a} \rangle],\$

where $i\langle X/R, \mathbf{x}/\mathbf{a} \rangle$ denotes the interpretation i' which is just like i except that i'(R) = X, and $i'(\mathbf{x}) = \mathbf{a}$.

Transitive Closure

The formula (with free variables u and v)

 $\theta \equiv \mathbf{lfp}_{T,xy}[(x = y \lor \exists z (E(x,z) \land T(z,y)))](u,v)$

defines the *reflexive and transitive closure* of the relation E.

Thus $\forall u \forall v \theta$ defines *connectedness*.

The expressive power of LFP properly extends that of first-order logic.

- If ϕ is of the form $t_1 = t_2$, then $\mathbb{A} \models \phi[i]$ if, $i(t_1) = i(t_2)$.
- If ϕ is of the form $R(t_1, \ldots, t_k)$, then $\mathbb{A} \models \phi[i]$ if,

 $(i(t_1),\ldots,i(t_k)) \in i(R).$

- If ϕ is of the form $\psi_1 \wedge \psi_2$, then $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \models \psi_1[i]$ and $\mathbb{A} \models \psi_2[i]$.
- If ϕ is of the form $\neg \psi$ then, $\mathbb{A} \models \phi[i]$ if, $\mathbb{A} \not\models \psi[i]$.
- If ϕ is of the form $\exists x\psi$, then $\mathbb{A} \models \phi[i]$ if there is an $a \in A$ such that $\mathbb{A} \models \psi[i\langle x/a \rangle]$.

Greatest Fixed Points

If ϕ is a formula in which the relation symbol R occurs *positively*, then the *greatest fixed point* of the monotone operator F_{ϕ} defined by ϕ can be defined by the formula:

$\neg [\mathbf{lfp}_{R,\mathbf{x}} \neg \phi(R/\neg R)](\mathbf{x})$

where $\phi(R/\neg R)$ denotes the result of replacing all occurrences of R in ϕ by $\neg R$.

Exercise: Verify!.

11

Simultaneous Inductions

We are given two formulas $\phi_1(S, T, \mathbf{x})$ and $\phi_2(S, T, \mathbf{y})$, S is k-ary, T is *l*-ary.

The pair (ϕ_1, ϕ_2) can be seen as defining a map:

 $F: \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l) \to \mathsf{Pow}(A^k) \times \mathsf{Pow}(A^l)$

If both formulas are positive in both S and T, then there is a least fixed point.

(P_1, P_2)

defined by *simultaneous induction* on \mathbb{A} .

Proof

Assume $k \leq l$.

We define P, of arity l + 2 such that:

 $(c, d, a_1, \dots, a_l) \in P$ if, and only if, either c = d and $(a_1, \dots, a_k) \in P_1$ or $c \neq d$ and $(a_1, \dots, a_l) \in P_2$

For new variables x_1 and x_2 and a new l + 2-ary symbol R, define ϕ'_1 and ϕ'_2 by replacing all occurrences of $S(t_1, \ldots, t_k)$ by:

 $x_1 = x_2 \wedge \exists y_{k+1}, \dots, \exists y_l R(x_1, x_2, t_1, \dots, t_k, y_{k+1}, \dots, y_l),$

and replacing all occurrences of $T(t_1, \ldots, t_l)$ by:

 $x_1 \neq x_2 \land R(x_1, x_2, t_1, \dots, t_l).$

Simultaneous Inductions

Theorem

For any pair of formulas $\phi_1(S,T)$ and $\phi_2(S,T)$ of LFP, in which the symbols S and T appear only positively, there are formulas ϕ_S and ϕ_T of LFP which, on any structure \mathbb{A} containing at least two elements, define the two relations that are defined on \mathbb{A} by ϕ_1 and ϕ_2 by simultaneous induction.

Proof

Define ϕ as

$$(x_1 = x_2 \land \phi_1') \lor (x_1 \neq x_2 \land \phi_2').$$

Then,

 $(\mathbf{lfp}_{R,x_1x_2\mathbf{y}}\phi)(x,x,\mathbf{y})$

defines P, so

$$\phi_S \equiv \exists x \exists y_{k+1}, \dots, \exists y_l (\mathbf{lfp}_{R, x_1 x_2 \mathbf{y}} \phi)(x, x, \mathbf{y});$$

and

 $\phi_T \equiv \exists x_1 \exists x_2 (x_1 \neq x_2 \land \mathbf{lfp}_{R, x_1 x_2 \mathbf{y}} \phi)(x_1, x_2, \mathbf{y}).$

15

Inflationary Fixed Points

We can associtate with any formula $\phi(R, \mathbf{x})$ (even one that is not monotone in R an inflationary operator

 $IF_{\phi}(P) = P \cup F_{\phi}(P),$

On any *finite* structure \mathbb{A} the sequence

 $IF^{0} = \emptyset$ $IF^{n+1} = IF_{\phi}(IF^{n})$

converges to a limit IF^{∞} .

If F_{ϕ} is monotone, then this fixed point is, in fact, the least fixed point of F_{ϕ} .

IFP

If ϕ defines a monotone operator, the relation defined by

$\mathbf{ifp}_{R,\mathbf{x}}\phi$

is the least fixed point of ϕ .

Thus, the *expressive power* of IFP is at least as great as that of LFP.

In fact, it is no greater:

Theorem (Gurevich-Shelah) For every formula of ϕ of LFP, there is a predicate expression ψ of LFP such that, on any finite structure \mathbb{A} , ψ defines the same relation as $\mathbf{ifp}_{R,\mathbf{x}}\phi$.

IFP

We define the logic IFP with a syntax similar to LFP except, instead of the \mathbf{lfp} rule, we have

If R is a relation symbol of arity k, **x** is a tuple of variables of length k and ϕ is any formula of IFP, then

$\mathbf{ifp}_{R,\mathbf{x}}\phi$

is a predicate expression of IFP of arity k.

Semantics: we say that the predicate expression $\mathbf{ifp}_{R,\mathbf{x}}\phi$ denotes the relation that is the limit reached by the iteration of the inflationary operator IF_{ϕ} .

Ranks

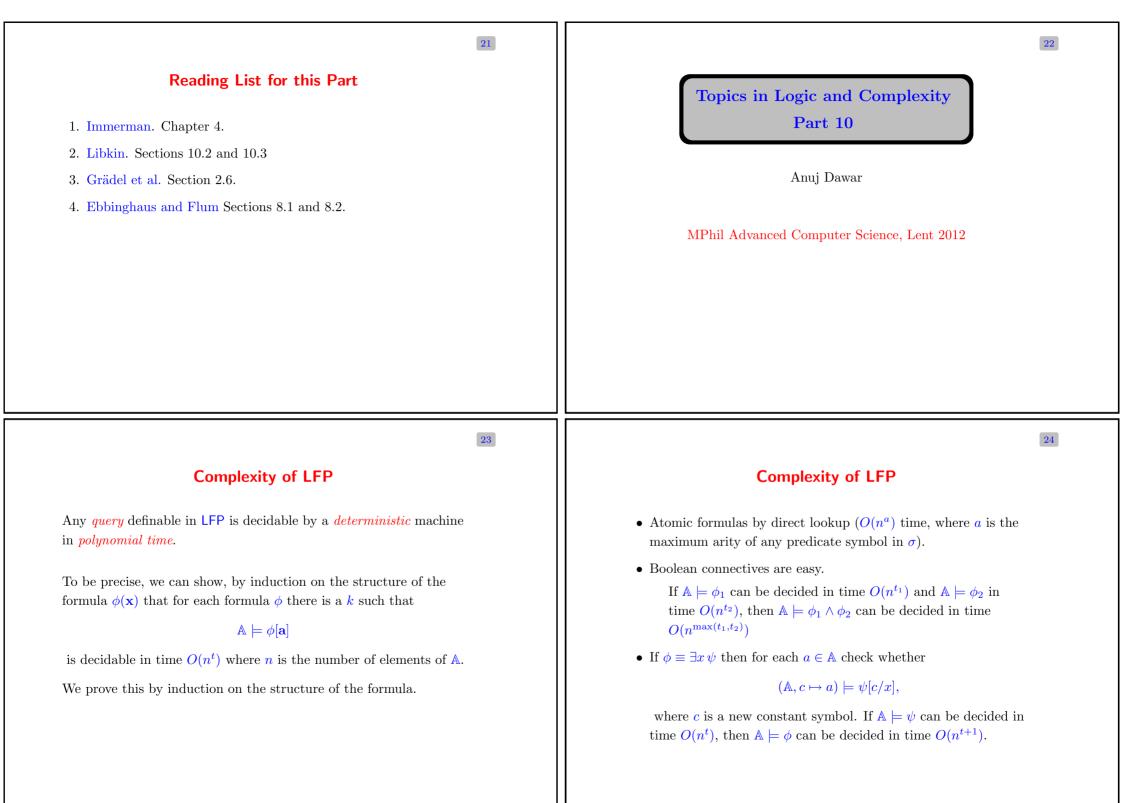
Let $\phi(\mathbf{R}, \mathbf{x})$ be a formula defining an operator F_{ϕ} and IF_{ϕ} be the associated *inflationary* operator given by

 $IF_{\phi}(S) = S \cup F_{\phi}(S)$

In a structure \mathbb{A} , we define for each $\mathbf{a} \in A^k$ a rank $|\mathbf{a}|_{\phi}$.

The least n such that $\mathbf{a} \in IF^{\alpha}$, if there is such an n and ∞ otherwise.

17 18 **Stage Comparison Stage Comparison** We define the two *stage comparison* relations \prec and \prec by: $\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{b}' \mid \mathbf{b}' \prec \mathbf{b}\}).$ $\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}^{\infty} \land |\mathbf{a}|_{\phi} \leq |\mathbf{b}|_{\phi};$ $\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{b} \notin \{\mathbf{a}' \mid \neg (\mathbf{a} \prec \mathbf{a}')\}.$ $\mathbf{a} \prec \mathbf{b} \Leftrightarrow |\mathbf{a}|_{\phi} < |\mathbf{b}|_{\phi}.$ Together, these give: These two relations can themselves be defined in IFP. $\mathbf{a} \prec \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{b}' \mid \mathbf{b} \notin \{\mathbf{a}' \mid \neg(\mathbf{a} \prec \mathbf{b}')\}\}).$ This is an inductive definition of \prec . A similar inductive definition is obtained from \prec . 19 20 Stage Comparison in LFP **Maximal Rank** In the inductive definition of \leq : There is a formula $\mu(\mathbf{y})$, which defines the set of tuples of maximal rank. $\mathbf{a} \preceq \mathbf{b} \Leftrightarrow \mathbf{a} \in IF_{\phi}(\{\mathbf{b}' \mid \mathbf{b} \notin \{\mathbf{a}' \mid \neg(\mathbf{a} \preceq \mathbf{b}')\}\}).$ $IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \preceq \mathbf{a}\}) \subseteq IF_{\phi}(\{\mathbf{b} \mid \mathbf{b} \prec \mathbf{a}\}).$ we can replace the *negative* occurrences of $\mathbf{a} \leq \mathbf{b}$ with $\neg(\mathbf{b} < \mathbf{a})$, and similarly, in the definition of \prec replace negative occurrences of Replace the negative occurrence of $\mathbf{b} \leq \mathbf{a}$ by $\neg(\mathbf{a} \prec \mathbf{b})$. \prec with positive occurrences of \preceq as long as we can define the maximal rank



27

Complexity of LFP

Suppose $\phi \equiv \mathbf{lfp}_{R,\mathbf{x}}\psi(\mathbf{t})$ (*R* is *l*-ary)

To decide $\mathbb{A} \models \phi[\mathbf{a}]$:

 $egin{aligned} R &:= \emptyset \ \mathbf{for} \ i &:= 1 \ \mathbf{to} \ n^l \ \mathbf{do} \ R &:= F_{ab}(R) \end{aligned}$

end if $\mathbf{a} \in R$ then accept else reject

Capturing P

For any ϕ of LFP, the language $\{[\mathbb{A}]_{<} \mid \mathbb{A} \models \phi\}$ is in P.

Suppose ρ is a signature that contains a *binary relation symbol* <, possibly along with other symbols.

Let \mathcal{O}_{ρ} denote those structures \mathbb{A} in which < is a *linear order* of the universe.

For any language $L \in \mathsf{P}$, there is a sentence ϕ of LFP that defines the class of structures

$\{\mathbb{A}\in\mathcal{O}_{\rho}\mid [\mathbb{A}]_{<^{\mathbb{A}}}\in L\}$

(Immerman; Vardi 1982)

28

Complexity of LFP

To compute $F_{\psi}(R)$

For every tuple $\mathbf{a} \in A^l$, determine whether $(\mathbb{A}, R) \models \psi[\mathbf{a}]$.

If deciding $(\mathbb{A}, R) \models \psi$ takes time $O(n^t)$, then each assignment to R inside the loop requires time $O(n^{l+t})$. The total time taken to execute the loop is then $O(n^{2l+t})$. Finally, the last line can be done by a search through R in time $O(n^l)$. The total running time is, therefore, $O(n^{2l+t})$.

The *space* required is $O(n^l)$.

Capturing P

Recall the proof of *Fagin's Theorem*, that ESO captures NP.

Given a machine M and an integer k, there is a *first-order* formula $\phi_{M,k}$ such that

 $\mathbb{A} \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}$

if, and only if, M accepts $[\mathbb{A}]_{<}$ in time n^k , for some order <.

If we *fix* the order < as part of the structure A, we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations $T_{\sigma_1} \ldots T_{\sigma_s}, S_{q_1} \ldots S_{q_m}, H$ can be defined *inductively*.

31

Capturing P

For any ϕ of LFP, the language $\{[\mathbb{A}]_{\leq} \mid \mathbb{A} \models \phi\}$ is in P.

Suppose ρ is a signature that contains a *binary relation symbol* <, possibly along with other symbols.

Let \mathcal{O}_{ρ} denote those structures \mathbb{A} in which < is a *linear order* of the universe.

For any language $L \in \mathsf{P}$, there is a sentence ϕ of LFP that defines the class of structures

$\{\mathbb{A}\in\mathcal{O}_{\rho}\mid [\mathbb{A}]_{<^{\mathbb{A}}}\in L\}$

(Immerman; Vardi 1982)

Recall the proof of *Fagin's Theorem*, that ESO captures NP.

Given a machine M and an integer k, there is a *first-order* formula $\phi_{M,k}$ such that

Capturing P

 $\mathbb{A} \models \exists < \exists T_{\sigma_1} \cdots T_{\sigma_s} \exists S_{q_1} \cdots S_{q_m} \exists H \phi_{M,k}$

if, and only if, M accepts $[\mathbb{A}]_{<}$ in time n^{k} , for some order <.

If we *fix* the order < as part of the structure \mathbb{A} , we do not need the outermost quantifier.

Moreover, for a *deterministic* machine M, the relations $T_{\sigma_1} \ldots T_{\sigma_s}, S_{q_1} \ldots S_{q_m}, H$ can be defined *inductively*.

Capturing P

 $\begin{aligned} \mathsf{Tape}_{a}(\mathbf{x}, \mathbf{y}) \Leftrightarrow \\ (\mathbf{x} = \mathbf{1} \land \mathrm{Init}_{a}(\mathbf{y})) \lor \\ \exists \mathbf{t} \exists \mathbf{h} \bigvee_{q} \quad (\mathbf{x} = \mathbf{t} + 1 \land \mathsf{State}_{q}(\mathbf{t}, \mathbf{h}) \land \\ [(\mathbf{h} = \mathbf{y} \land \bigvee_{\{b, d, q' \mid \Delta(q, b, q', a, d)\}} \mathsf{Tape}_{b}(\mathbf{t}, \mathbf{y}) \lor \\ \mathbf{h} \neq \mathbf{y} \land \mathsf{Tape}_{a}(\mathbf{t}, \mathbf{y})]); \end{aligned}$

where $\text{Init}_{a}(\mathbf{y})$ is the formula that defines the positions in which the symbol a appears in the input.

Capturing P

$$\begin{split} \mathsf{State}_q(\mathbf{x},\mathbf{y}) \Leftrightarrow \\ (\mathbf{x} = \mathbf{1} \land \mathbf{y} = \mathbf{1} \land q = q_0) \lor \\ \exists \mathbf{t} \exists \mathbf{h} \quad \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,R)\}} \quad \begin{pmatrix} \mathbf{x} = \mathbf{t} + 1 \land \mathsf{State}_{q'}(\mathbf{t},\mathbf{h}) \land \\ & \mathsf{Tape}_a(\mathbf{t},\mathbf{h}) \land \mathbf{y} = \mathbf{h} + 1) \end{pmatrix} \\ \bigvee_{\{a,b,q' \mid \Delta(q',a,q,b,L)\}} \quad \begin{pmatrix} \mathbf{x} = \mathbf{t} + 1 \land \mathsf{State}_q'(\mathbf{t},\mathbf{h}) \land \\ & \mathsf{Tape}_a(\mathbf{t},\mathbf{h}) \land \mathbf{y} = \mathbf{h} + 1) \end{pmatrix} \\ & \mathsf{Tape}_a(\mathbf{t},\mathbf{h}) \land \mathbf{h} = \mathbf{y} + 1) \end{pmatrix}. \end{split}$$

Unordered Structures

In the absence of an *order relation*, there are properties in P that are not definable in LFP.

There is no sentence of LFP which defines the structures with an *even* number of elements.

Evenness

Let \mathcal{E} be the collection of all structures in the empty signature.

In order to prove that *evenness* is not defined by any LFP sentence, we show the following.

Lemma

For every LFP formula ϕ there is a first order formula ψ , such that for all structures \mathbb{A} in \mathcal{E} , $\mathbb{A} \models (\phi \leftrightarrow \psi)$.

Unordered Structures

Let $\psi(\mathbf{x}, \mathbf{y})$ be a first order formula.

 $\mathbf{lfp}_{R,\mathbf{x}}\psi$ defines the relation

$$F^\infty_{\psi,\mathbf{b}} = \bigcup_{i\in\mathbb{N}} F^i_{\psi,\mathbf{b}}$$

for a fixed interpretation of the variables \mathbf{y} by the tuple of parameters \mathbf{b} .

For each i, there is a first order formula ψ^i such that on any structure \mathbb{A} ,

$$F^{i}_{\psi,\mathbf{b}} = \{\mathbf{a} \mid \mathbb{A} \models \psi^{i}[\mathbf{a},\mathbf{b}]\}$$

Defining the Stages

These formulas are obtained by *induction*.

 ψ^1 is obtained from ψ by replacing all occurrences of subformulas of the form $R(\mathbf{t})$ by $t \neq t$.

 ψ^{i+1} is obtained by replacing in ψ , all subformulas of the form $R(\mathbf{t})$ by $\psi^{i}(\mathbf{t}, \mathbf{y})$

		37		38
Let b be an that	$l\text{-tuple},$ and $\mathbf a$ and $\mathbf c$ two $k\text{-tuples}$ in a structure $\mathbb A$ such	n	Bounding the Induction	
there is an a itself) such	automorphism i of \mathbb{A} (i.e. an <i>isomorphism</i> from \mathbb{A} to that		This defines an <i>equivalence relation</i> $\mathbf{a} \sim_{\mathbf{b}} \mathbf{c}$.	
• $\imath(\mathbf{b}) = \mathbf{b}$	5		If there are p distinct equivalence classes, then	
• $\imath(\mathbf{a}) = \mathbf{c}$:		$F^\infty_{\psi,\mathbf{b}}=F^p_{\psi,\mathbf{b}}$	
Then,	$\mathbf{a} \in F^i_{\psi,\mathbf{b}}$ if, and only if, $\mathbf{c} \in F^i_{\psi,\mathbf{b}}$.		In \mathcal{E} there is a uniform bound p , that does not depend on the size of the structure.	
		39		40
	Reading List for this Part		Topics in Logic and Complexity	
	Chapter 10.		Part 11	
2. Grädel e	et al. Section 3.3.		Anuj Dawar	
			MPhil Advanced Computer Science, Lent 2013	

Complexity of First-Order Logic

The problem of deciding whether $\mathbb{A} \models \phi$ for first-order ϕ is in time $O(ln^m)$ and $O(m \log n)$ space.

where *n* is the size of \mathbb{A} , *l* is the length of ϕ and *m* is the quantifier rank of ϕ .

We have seen that the problem is $\mathsf{PSPACE}\text{-}\mathrm{complete},$ even for fixed $\mathbb{A}.$

For each fixed ϕ , the problem is in L.

Parameterized Problems

Some problems are given a graph G and a positive integer k

Independent Set: does G contain k vertices that are pairwise distinct and non-adjacent?

Dominating Set: does G contain k vertices such that every vertex is among them or adjacent to one of them?

Vertex Cover: does G contain k vertices such that every edge is incident on one of them?

For each fixed value of k, there is a first-order sentence ϕ_k such that $G \models \phi_k$ if, and only if, G contains an independent set of k vertices.

Similarly for dominating set and vertex cover.

Is there a fixed c such that for every first-order ϕ , $Mod(\phi)$ is decidable in time $O(n^c)$?

If P = PSPACE, then the answer is yes, as the satisfaction relation is then itself decidable in time $O(n^c)$.

Thus, though we expect the answer is no, this would be difficult to prove.

A more uniform version of the question is:

Is there a constant c and a computable function f so that the satisfaction relation for first-order logic is decidable in time $O(f(l)n^c)$?

In this case we say that the satisfaction problem is *fixed-parameter tractable* (FPT) with the formula length as parameter.

43

Parameterized Complexity

FPT—the class of problems of input size n and *parameter* l which can be solved in time $O(f(l)n^c)$ for some computable function f and constant c.

There is a hierarchy of *intractable* classes.

 $\mathsf{FPT} \subseteq W[1] \subseteq W[2] \subseteq \cdots \subseteq \mathsf{AW}[\star]$

Vertex Cover is FPT. Independent Set is W[1]-complete. Dominating Set is W[2]-complete.

47

Parameterized Complexity of First-Order Satisfaction

Writing Π_t for those formulas which, in prenex normal form have t alternating blocks of quantifiers starting with a universal block:

The satisfaction problem restricted to Π_t formulas (parameterized by the length of the formula) is hard for the class W[t].

The satisfaction relation for first-order logic ($\mathbb{A} \models \phi$), parameterized by the length of ϕ is $\mathsf{AW}[\star]$ -complete.

Thus, if the satisfaction problem for first-order logic were FPT, this would collapse the edifice of parameterized complexity theory.

Words as Relational Structures

For an alphabet $\Sigma = \{a_1, \ldots, a_s\}$ let

 $\sigma_{\Sigma} = (\langle, P_{a_1}, \dots, P_{a_s})$

where

< is binary; and P_{a_1}, \ldots, P_{a_s} are unary.

With each $w \in \Sigma^*$ we associate the canonical structure

$$S_w = (\{1, \dots, n\}, <, P_{a_1}, \dots, P_{a_s})$$

where

• n is the length of w

- < is the natural linear order on $\{1, \ldots, n\}$.
- $i \in P_a$ if, and only if, the *i*th symbol in w is a.

Restricted Classes

One way to get a handle on the complexity of first-order satisfaction is to consider restricted classes of structures.

Given: a first-order formula ϕ and a structure $\mathbb{A} \in \mathcal{C}$ Decide: if $\mathbb{A} \models \phi$

For many interesting classes C, this problem has been shown to be FPT, even for formulas of MSO.

We say that satisfaction of FO (or MSO) is *fixed-paramter tractable* on C.

Languages Defined by Formulas

The formula ϕ in the signature σ_{Σ} defines:

 $\{w \mid S_w \models \phi\}.$

The class of structures isomorphic to word models is given by:

$$lo(<) \land \forall x \bigvee_{a \in A} P_a(x) \land \forall x \bigwedge_{a, b \in A, a \neq b} (P_a(x) \to \neg P_b(x)),$$

where

lo(<) is the formula that states that < is a linear order

49 50 **Examples Examples** The set of strings of length 3 or more: $(ab)^*$: $\forall x (\forall y \quad y < x) \to P_a(x) \land$ $\exists x \exists y \exists z (x \neq y \land y \neq z \land z \neq z).$ $\forall x \forall y \quad (x < y \land \forall z (z < x \lor y < z))$ The set of strings which begin with an *a*: $\rightarrow (P_a(x) \leftrightarrow P_b(y)) \land$ $\exists x (P_a(x) \land \forall yy > x)$ $\forall x (\forall y \quad x < y) \to P_b(x).$ The set of strings of even length: $\exists X \ \forall x (\forall y \quad y \leq x) \to X(x) \land$ $\forall x \forall y \quad (x < y \land \forall z (z \le x \lor y \le z))$ $\rightarrow (X(x) \leftrightarrow \neg X(y)) \land$ $\forall x (\forall y \quad x < y) \to \neg X(x).$ 51 52 MSO on Words **Myhill-Nerode Theorem** Theorem (Büchi-Elgot-Trakhtenbrot) Let ~ be an equivalence relation on Σ^* . A language L is defined by a sentence of MSO if, and only if, L is regular. We say \sim is *right invariant* if, for all $u, v \in \Sigma^*$, if $u \sim v$, then for all $w \in \Sigma^*$, $uw \sim vw$. Recall that a language L is *regular* if: • it is the set of words matching a *regular expression*; or Theorem (Myhill-Nerode) equivalently The following are equivalent for any language $L \subseteq \Sigma^*$: • it is the set of words accepted by some *nondeterministic finite* • *L* is regular; *automaton*; or equivalently • L is the union of equivalence classes of a right invariant • it is the set of words accepted by some *deterministic finite* equivalence relation of finite index on Σ^* . automaton.

55

MSO Equivalence

We write $\mathbb{A} \equiv_m^{\mathsf{MSO}} \mathbb{B}$ to denote that, for all MSO sentences ϕ with $\operatorname{qr}(\phi) \leq m$,

 $\mathbb{A} \models \phi$ if, and only if, $\mathbb{B} \models \phi$.

We count both first and second order quantifiers towards the rank.

The relation \equiv_m^{MSO} has finite index for every m.

For any m, there are up to logical equivalence, only finitely many formulas with quantifier rank at most m, with at most k free variables.

Regular Expressions to MSO

For the converse, we translate a regular expression r to an MSO sentence ϕ_r .

- $r = \emptyset: \ \phi_r = \exists x (x \neq x).$
- $r = \varepsilon: \ \phi_r = \neg \exists x (x = x).$
- r = a: $\phi_r = \exists x \forall y (y = x \land P_a(x)).$
- r = s + t: $\phi_r = \phi_s \lor \psi_t$.
- $r = st: \phi_r = \exists x (\phi_s^{< x} \land \phi_t^{\geq x}),$

where $\phi_s^{<x}$ and $\phi_t^{\geq x}$ are obtained from ϕ_s and ϕ_t by relativising the first order quantifiers.

That is, every subformula of ϕ_s of the form $\exists y\psi$ is replaced by $\exists y(y < x \land \psi^{< x})$,

and similarly every subformula $\exists y\psi$ of ϕ_t by $\exists y(y \geq x \land \psi^{\geq x})$

Invariance

Suppose u_1, u_2, v_1, v_2 are words over an alphabet Σ such that

$$u_1 \equiv_m^{\mathsf{MSO}} u_2$$
 and $v_1 \equiv_m^{\mathsf{MSO}} v_2$

then $u_1 \cdot v_1 \equiv_m^{\mathsf{MSO}} u_2 \cdot v_2$.

Dulpicator has a winning strategy on the game played on the pair of words $u_1 \cdot v_1, u_2 \cdot v_2$ that is obtained as a composition of its strategies in the games on u_1, u_2 and v_1, v_2 .

It follows that \equiv_m^{MSO} is *right invariant*.

For any MSO sentence ϕ , the language defiend by ϕ is the union of equivalence classes of \equiv_m^{MSO} where *m* is the quantifier rank of ϕ .

Kleene Star

$$r = s^*$$
:

$$\begin{split} \phi_r &= \phi_{\varepsilon} \lor \\ \exists X \ \forall x (X(x) \land \forall y (y < x \to \neg X(y)) \to \phi_s^{$$

where $\phi_s^{\geq x, \leq y}$ is obtained from ϕ_s by relativising all first order quantifiers simultaneously with $\langle y \rangle$ and $\geq x$.

First-Order Languages

The class of *star-free* regular expressions is defined by:

- the strings \emptyset and ε are star-free regular expressions;
- for any element $a \in A$, the string a is a star-free regular expression;
- if r and s are star-free regular expressions, then so are (rs), (r+s) and (\bar{r}) .

A language is defined by a first order sentence *if, and only if,* it is denoted by a star-free regular expression.

Applications

A class of linear orders is definable by a sentence of MSO if, and only if, its set of cardinalities is *eventually periodic*.

Some results on graphs:

The class of balanced bipartite graphs is not definable in $\ensuremath{\mathsf{MSO}}.$

The class of Hamiltonian graphs is not definable by a sentence of $\mathsf{MSO}.$

59

Reading List for this Handout

- 1. Libkin. Sections 7.4 and 7.5
- 2. Ebbinghaus, Flum Chapter 6

Topics in Logic and Complexity Part 12

Anuj Dawar

MPhil Advanced Computer Science, Lent 2013

MSO is FPT on Words

61

63

There is a computable function f such that the problem of deciding, given a word w and an MSO sentence ϕ whether,

$S_w \models \phi$

can be decided in time O(f(l)n) where l is the length of ϕ and n is the length of w.

The algorithm proceeds by constructing, from ϕ an *automaton* \mathcal{A}_{ϕ} such that the language recognized by \mathcal{A}_{ϕ} is

$\{w \mid S_w \models \phi\}$

then running \mathcal{A}_{ϕ} on w.

Trees

An (undirected) *forest* is an *acyclic* graph and a *tree* is a connected forest.

We next aim to show that there is an algorithm that decides, given a tree T and an MSO sentence ϕ whether

$T \models \phi$

and runs in time O(f(l)n) where l is the length of ϕ and n is the size of T.

The automaton \mathcal{A}_{ϕ}

The states of \mathcal{A}_{ϕ} are the equivalence classes of $\equiv_{m}^{\mathsf{MSO}}$ where m is the quantifier rank of ϕ .

We write $\mathsf{Type}_m^{\mathsf{MSO}}(\mathbb{A})$ for the set of all formulas ϕ with $qr(\phi) \leq m$ such that $\mathbb{A} \models \phi$.

 $\mathbb{A} \equiv_{m}^{\mathsf{MSO}} \mathbb{B} \text{ is equivalent to}$

 $\mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{A}) = \mathsf{Type}^{\mathsf{MSO}}_m(\mathbb{B})$

There is a single formula $\theta_{\mathbb{A}}$ that characterizes $\mathsf{Type}_{m}^{\mathsf{MSO}}(\mathbb{A})$. It turns out that we can compute $\theta_{S_{w,e}}$ from $\theta_{S_{w}}$.

Rooted Directed Trees

A rooted, directed tree (T, a) is a directed graph with a distinguished vertex a such that for every vertex v there is a *unique* directed path from a to v.

We will actually see that MSO satisfaction is FPT for rooted, directed trees.

The result for undirected trees follows, as any undirected tree can be turned into a rooted directed one by choosing any vertex as a root and directing edges away from it.

67

Sums of Rooted Trees

Given rooted, directed trees (T, a) and (S, b) we define the sum

 $(T,a)\oplus(S,b)$

to be the rooted directed tree which is obtained by taking the *disjoint union* of the two trees while *identifying* the roots.

That is,

- the set of vertices of $(T, a) \oplus (S, b)$ is $V(T) \uplus V(S) \setminus \{b\}$.
- the set of edges is $E(T) \cup E(S) \cup \{(a, v) \mid (b, v) \in E(S)\}.$

Congruence

If
$$(T_1, a_1) \equiv_m^{\text{MSO}} (T_2, a_2)$$
 and $(S_1, b_1) \equiv_m^{\text{MSO}} (S_2, b_2)$, then
 $(T_1, a_1) \oplus (S_1, b_1) \equiv_m^{\text{MSO}} (T_2, a_2) \oplus (S_2, b_2).$

This can be proved by an application of Ehrenfeucht games.

Moreover (though we skip the proof), $\mathsf{Type}_m^{\mathsf{MSO}}((T, a) \oplus (S, b))$ can be computed from $\mathsf{Type}_m^{\mathsf{MSO}}((T, a))$ and $\mathsf{Type}_m^{\mathsf{MSO}}((S, b))$.

Add Root

For any rooted, directed tree (T, a) define r(T, a) to be rooted directed tree obtained by adding to (T, a) a new vertex, which is the root and whose only child is a.

That is,

- the vertices of r(T, a) are $V(T) \cup \{a'\}$ where a' is not in V(T);
- the root of r(T, a) is a'; and
- the edges of r(T, a) are $E(T) \cup \{(a', a)\}$.

Again, $\mathsf{Type}_m^{\mathsf{MSO}}(r(T, a))$ can be computed from $\mathsf{Type}_m^{\mathsf{MSO}}(T, a)$.

MSO satisfaction is FPT on Trees

Any rooted, directed tree (T, a) can be obtained from singleton trees by a sequence of applications of \oplus and r.

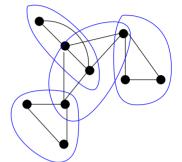
The length of the sequence is linear in the size of T.

We can compute $\mathsf{Type}_m^{\mathsf{MSO}}(T, a)$ in linear time.

Treewidth

The *treewidth* of an undirected graph is a measure of how tree-like the graph is.

A graph has treewidth k if it can be covered by subgraphs of at most k+1 nodes in a tree-like fashion.



This gives a *tree decomposition* of the graph.

71

The Method of Decompositions

Suppose C is a class of graphs such that there is a finite class B and a finite collection Op of operations such that:

- \mathcal{C} is contained in the closure of \mathcal{B} under the operations in Op ;
- there is a polynomial-time algorithm which computes, for any $G \in \mathcal{C}$, an Op-decomposition of G over \mathcal{B} ; and
- for each *m*, the equivalence class ≡^{MSO}_m is an *effective* congruence with respect to to all operations *o* ∈ Op (i.e., the ≡^{MSO}_m-type of *o*(*G*₁,...,*G_s*) can be computed from the ≡^{MSO}_m-types of *G*₁,...,*G_s*).

Then, MSO satisfaction is fixed-parameter tractable on \mathcal{C} .

Treewidth

Treewidth is a measure of how *tree-like* a graph is.

For a graph G = (V, E), a *tree decomposition* of G is a relation $D \subset V \times T$ with a tree T such that:

- for each $v \in V$, the set $\{t \mid (v, t) \in D\}$ forms a connected subtree of T; and
- for each edge $(u, v) \in E$, there is a $t \in T$ such that $(u, t), (v, t) \in D$.

The *treewidth* of G is the least k such that there is a tree T and a tree decomposition $D \subset V \times T$ such that for each $t \in T$,

 $|\{v \in V \mid (v,t) \in D\}| \le k+1.$

Dynamic Programming

It has long been known that graphs of small treewidth admit efficient *dynamic programming* algorithms for intractable problems.

In general, these algorithms proceed bottom-up along a tree decomposition of G.

At any stage, a small set of vertices form the "*interface*" to the rest of the graph.

This allows a recursive decomposition of the problem.

 G_2

75

Treewidth

More formally,

Consider graphs with up to k + 1 distinguished vertices $C = \{c_0, \ldots, c_k\}.$

Define a *merge* operation $(G \oplus_C H)$ that forms the union of G and H disjointly apart from C.

Also define $erase_i(G)$ that erases the name c_i .

Then a graph G is in \mathcal{T}_k if it can be formed from graphs with at most k + 1 vertices through a sequence of such operations.

Courcelle's Theorem

Theorem (Courcelle) For any MSO sentence ϕ and any k there is a linear time algorithm that decides, given $G \in \mathcal{T}_k$ whether $G \models \phi$.

Given $G \in \mathcal{T}_k$ and ϕ , compute:

- from G a labelled tree T; and
- from ϕ a bottom-up tree automaton \mathcal{A}

such that \mathcal{A} accepts T if, and only if, $G \models \phi$.

Looking at the decomposition *bottom-up*, a graph of treewidth k is obtained from graphs with at most k + 1 nodes through a finite sequence of applications of the operation of taking *sums over sets* of at most k elements.

We let \mathcal{T}_k denote the class of graphs G such that $\operatorname{tw}(G) \leq k$.

Congruence

- Any $G \in \mathcal{T}_k$ is obtained from \mathcal{B}_k by finitely many applications of the operations erase_i and \oplus_C .
- If $G_1, \rho_1 \equiv_m^{\mathsf{MSO}} G_2, \rho_2$, then

 $\mathsf{erase}_i(G_1,\rho_1)\equiv^{\mathsf{MSO}}_m\mathsf{erase}_i(G_2,\rho_2)$

• If $G_1, \rho_1 \equiv_m^{\mathsf{MSO}} G_2, \rho_2$, and $H_1, \sigma_1 \equiv_m^{\mathsf{MSO}} H_2, \sigma_2$ then $(G_1, \rho_1) \oplus_C (H_1, \sigma_1) \equiv_m^{\mathsf{MSO}} (G_2, \rho_2) \oplus_C (H_2, \sigma_2)$

Note: a special case of this is that \equiv_m^{MSO} is a congruence for *disjoint union* of graphs.

79

Bounded Degree Graphs

In a graph G = (V, E) the *degree* of a vertex $v \in V$ is the number of neighbours of v, i.e.

$|\{u \in V \mid (u, v) \in E\}|.$

We write $\delta(G)$ for the *smallest* degree of any vertex in G.

We write $\Delta(G)$ for the *largest* degree of any vertex in G.

 \mathcal{D}_k —the class of graphs G with $\Delta(G) \leq k$.

Hanf Types

For an element a in a structure \mathbb{A} , define

 $N_r^{\mathbb{A}}(a)$ —the substructure of \mathbb{A} generated by the elements whose distance from a (in $G\mathbb{A}$) is at most r.

We say \mathbb{A} and \mathbb{B} are *Hanf equivalent* with radius r and threshold q $(\mathbb{A} \simeq_{r,q} \mathbb{B})$ if, for every $a \in A$ the two sets

 $\{a' \in a \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{A}}(a')\} \quad \text{and} \quad \{b \in B \mid N_r^{\mathbb{A}}(a) \cong N_r^{\mathbb{B}}(b)\}$

either have the same size or both have size greater than q; and, similarly for every $b \in B$.

Bounded Degree Graphs

Theorem (Seese)

For every sentence ϕ of FO and every k there is a linear time algorithm which, given a graph $G \in \mathcal{D}_k$ determines whether $G \models \phi$.

A proof is based on *locality* of first-order logic. To be precise a strengthening of *Hanf's theorem*.

Note: this is not true for MSO unless P = NP. Construct, for any graph G, a graph G' such that $\Delta(G') \leq 5$ and G' is 3-colourable iff G is, and the map $G \mapsto G'$ is polynomial-time computable.

Hanf Locality Theorem

Theorem (Hanf)

For every vocabulary σ and every m there are $r \leq 3^m$ and $q \leq m$ such that for any σ -structures \mathbb{A} and \mathbb{B} : if $\mathbb{A} \simeq_{r,q} \mathbb{B}$ then $\mathbb{A} \equiv_m \mathbb{B}$.

In other words, if $r \geq 3^m$, the equivalence relation $\simeq_{r,m}$ is a refinement of \equiv_m .

For $\mathbb{A} \in \mathcal{D}_k$:

 $N_r^{\mathbb{A}}(a)$ has at most $k^r + 1$ elements

each $\simeq_{r,m}$ has finite index.

Each $\simeq_{r,m}$ -class t can be characterised by a finite table, I_t , giving isomorphism types of neighbourhoods and numbers of their occurrences up to threshold m.

81	82
Satisfaction on \mathcal{D}_k	Reading List for this Handout
For a sentence ϕ of FO, we can compute a set of tables $\{I_1, \ldots, I_s\}$ describing $\simeq_{r,m}$ -classes consistent with it.	1. Libkin. Sections 7.6 and 7.7
This computation is independent of any structure \mathbb{A} .	
Given a structure $\mathbb{A} \in \mathcal{D}_k$,	
for each a, determine the isomorphism type of $N_r^{\mathbb{A}}(a)$	
construct the table describing the $\simeq_{r,m}$ -class of \mathbb{A} .	
compare against $\{I_1, \ldots, I_s\}$ to determine whether $\mathbb{A} \models \phi$.	
For fixed k, r, m , this requires time <i>linear</i> in the size of A.	
Note: satisfaction for FO is in $O(f(l, k)n)$.	