L11 : Algebraic Path Problems with Applications to Internet Routing Lecture 11

Timothy G. Griffin

computer Laboratory
University of Cambridge, UK

Michaelmas Term 2012

Path Weight with functions on arcs?

For graph G = (V, E), and arc path $p = (u_0, u_1)(u_1, u_2) \cdots (u_{k-1}, u_k)$.

Functions on arcs: two natural ways to do this...

Weight function $w : E \to (S \to S)$. Let $f_j = w(u_{j-1}, u_j)$.

$$w_a^L(p) = f_1(f_2(\cdots f_k(a)\cdots)) = (f_1 \circ f_2 \circ \cdots \circ f_k)(a)$$

$$w_a^R(p) = f_k(f_{k-1}(\cdots f_1(a)\cdots)) = (f_k \circ f_{k-1} \circ \cdots \circ f_1)(a)$$

How can we "make this work" for path problems?

Algebra of Monoid Endomorphisms (See Gondran and Minoux 2008)

Let $(S, \oplus, \overline{0})$ be a commutative monoid.

 $(S, \oplus, F \subseteq S \to S, \overline{0}, i, \omega)$ is an algebra of monoid endomorphisms (AME) if

- $\bullet \ \forall f \in F \ \forall b, c \in S : f(b \oplus c) = f(b) \oplus f(c)$
- $\forall f \in F : f(\overline{0}) = \overline{0}$
- $\bullet \ \exists i \in F \ \forall a \in S : i(a) = a$
- $\exists \omega \in F \ \forall a \in S : \omega(a) = \overline{0}$

So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings

Suppose (S, \oplus, F) is a monoid of endomorphisms. We can turn it into a semiring

where $(f \oplus g)(a) = f(a) \oplus g(a)$

Functions are hard to work with....

- All algorithms need to check equality over elements of semiring,
- f = g means $\forall a \in S : f(a) = g(a)$,
- S can be very large, or infinite.

Left and Right AME of Matrices

Given an AME $S = (S, \oplus, F)$, define the (left or right) AME of $n \times n$ -matrices over S as

$$\mathbb{M}_n(S) = (\mathbb{M}_n(S), \oplus, \mathbb{F}),$$

where for $\mathbf{A}, \mathbf{B} \in \mathbb{M}_n(\mathcal{S})$ we have

$$(\mathbf{A} \oplus \mathbf{B})(i, j) = \mathbf{A}(i, j) \oplus \mathbf{B}(i, j).$$

Elements of the set $\mathbb F$ are $n \times n$ matrices of functions in F. That is, if $\mathbf A \in \mathbb F$, then $\mathbf A(i, j) \in F$.

Left and Right AME of Matrices

We have two natural options for treating **A** as a function in $\mathbb{M}_n(S) \to \mathbb{M}_n(S)$.

Left application

$$(\mathbf{A}(\mathbf{B}))(i, j) = \bigoplus_{1 \le q \le n} \mathbf{A}(i, q)(\mathbf{B}(q, j))$$

Right application

$$((\mathbf{B})\mathbf{A})(i, j) = \bigoplus_{1 \leq q \leq n} \mathbf{A}(q, j)(\mathbf{B}(i, q))$$

Check distributivity : $\mathbf{A}(\mathbf{B} \oplus \mathbf{B}) = \mathbf{A}(\mathbf{B}) \oplus \mathbf{A}(\mathbf{B})$ and

 $(B \oplus B)A = (B)A \oplus (B)A$.

Solving (some) equations. Left version here ...

We will be interested in solving for **L** equations of the form

$$L = A(L) \oplus M$$

Let

$$\mathbf{A}^0(\mathbf{B}) = \mathbf{B}$$

 $\mathbf{A}^{k+1}(\mathbf{B}) = \mathbf{A}(\mathbf{A}^k(\mathbf{B}))$

and

$$\mathbf{A}^{(k)}(\mathbf{B}) = \mathbf{A}^{0}(\mathbf{B}) \oplus \mathbf{A}^{1}(\mathbf{B}) \oplus \mathbf{A}^{2}(\mathbf{B}) \oplus \cdots \oplus \mathbf{A}^{k}(\mathbf{B})$$

$$\mathbf{A}^{*}(\mathbf{B}) = \mathbf{A}^{0}(\mathbf{B}) \oplus \mathbf{A}^{1}(\mathbf{B}) \oplus \mathbf{A}^{2}(\mathbf{B}) \oplus \cdots \oplus \mathbf{A}^{k}(\mathbf{B}) \oplus \cdots$$

Definition (q stability)

If there exists a q such that for all \mathbf{B} , $\mathbf{A}^{(q)}(\mathbf{B}) = f^{(q+1)}(\mathbf{B})$, then \mathbf{A} is q-stable. Therefore, $\mathbf{A}^{(*)}(\mathbf{B}) = \mathbf{A}^{(q)}(\mathbf{B})$.

Key result (again)

Lemma

If **A** is q-stable, then $\mathbf{L} = \mathbf{A}^{(*)}(\mathbf{B})$ solves the AME equation

$$L = A(L) \oplus B$$
.

Proof: Substitute $\mathbf{A}^{(*)}(\mathbf{B})$ for \mathbf{L} to obtain

$$A(A^{(*)}(B)) \oplus B$$

 $= A(A^{(q)}(B)) \oplus B$
 $= A(A^{0}(B) \oplus A^{1}(B) \oplus A^{2}(B) \oplus \cdots \oplus A^{q}(B)) \oplus B$
 $= A^{1}(B) \oplus A^{1}(B) \oplus A^{2}(B) \oplus \cdots \oplus A^{q+1}(B) \oplus B$
 $= A^{0}(B) \oplus A^{1}(B) \oplus A^{1}(B) \oplus A^{2}(B) \oplus \cdots \oplus A^{q+1}(B)$
 $= A^{(q+1)}(B)$
 $= A^{(q)}(B)$
 $= A^{(*)}(B)$

Lexicographic product of AMEs

$$(S, \oplus_{S}, F) \stackrel{\vec{\times}}{\times} (T, \oplus_{T}, G) = (S \times T, \oplus_{S} \stackrel{\vec{\times}}{\times} \oplus_{T}, F \times G)$$

Theorem 11.1

$$\mathsf{D}(\mathcal{S}\,\vec{\times}\,\mathcal{T})\iff \mathsf{D}(\mathcal{S})\land \mathsf{D}(\mathcal{T})\land (\mathsf{C}(\mathcal{S})\lor\mathsf{K}(\mathcal{T}))$$

Where		
	Property	Definition
	D	$\forall a, b, f : f(a \oplus b) = f(a) \oplus f(b)$
	С	$\forall a, b, f : f(a) = f(b) \implies a = b$
	K	$\forall a, b, f : f(a) = f(b)$

Functional Union of AMEs

$$(S, \oplus, F) +_m (S, \oplus, G) = (S, \oplus, F + G)$$

Fact

$$D(S +_m T) \iff D(S) \land D(T)$$

Left and Right

right

$$\mathsf{right}(\mathcal{S},\oplus,F) = (\mathcal{S},\oplus,\{i\})$$

left

$$\mathsf{left}(\mathcal{S},\oplus,\mathcal{F}) = (\mathcal{S},\oplus,\mathcal{K}(\mathcal{S}))$$

where K(S) represents all constant functions over S. For $a \in S$, define the function $\kappa_a(b) = a$. Then $K(S) = \{\kappa_a \mid a \in S\}$.

Facts

The following are always true.

```
D(\mathbf{right}(S))

D(\mathbf{left}(S)) (assuming \oplus is idempotent)

C(\mathbf{right}(S))

K(\mathbf{left}(S))
```

Scoped Product

$$\mathcal{S}\Theta\mathcal{T} = (\mathcal{S} \times \text{left}(\mathcal{T})) +_{m} (\text{right}(\mathcal{S}) \times \mathcal{T})$$

Theorem 11.2

$$D(S\Theta T) \iff D(S) \wedge D(T).$$

Proof.

$$\begin{array}{c} \mathsf{D}(S\Theta\,T) \\ \mathsf{D}((S\,\vec{\times}\,\mathsf{left}(T)) +_{\mathsf{m}}(\mathsf{right}(S)\,\vec{\times}\,T)) \\ \iff \mathsf{D}(S\,\vec{\times}\,\mathsf{left}(T)) \land \mathsf{D}(\mathsf{right}(S)\,\vec{\times}\,T) \\ \iff \mathsf{D}(S) \land \mathsf{D}(\mathsf{left}(T)) \land (\mathsf{C}(S) \lor \mathsf{K}(\mathsf{left}(T))) \\ \land \mathsf{D}(\mathsf{right}(S)) \land \mathsf{D}(T) \land (\mathsf{C}(\mathsf{right}(S)) \lor \mathsf{K}(T)) \\ \iff \mathsf{D}(S) \land \mathsf{D}(T) \end{array}$$

How do we represent functions?

Definition (transforms (indexed functions))

A set of transforms (S, L, \triangleright) is made up of non-empty sets S and L, and a function

$$\triangleright \in L \rightarrow (S \rightarrow S).$$

We normally write $l \triangleright s$ rather than $\triangleright(I)(s)$. We can think of $l \in L$ as the index for a function $f_l(s) = l \triangleright s$, so (S, L, \triangleright) represents the set of function $F = \{f_l \mid l \in L\}$.

Examples

Example 1: Trivial

Let (S, \otimes) be a semigroup.

$$transform(S, \oplus) = (S, S, \triangleright_{\otimes}),$$

where $a \rhd_{\otimes} b = a \otimes b$

Example 2: Restriction

For $T \subset S$,

Restrict(
$$T$$
, (S, \oplus)) = $(S, T, \triangleright_{\otimes})$,

where $a \rhd_{\otimes} b = a \otimes b$

Example 3: mildly abstract description of BGP's ASPATHs

Let
$$\operatorname{apaths}(X) = (\mathcal{E}(\Sigma^*) \cup \{\infty\}, \ \Sigma \times \Sigma, \ \triangleright)$$
 where
$$\begin{aligned} \mathcal{E}(\Sigma^*) &= & \text{finite, elementary sequences over } \Sigma \text{ (no repeats)} \\ (m, \ n) &\rhd \infty &= & \infty \\ (m, \ n) &\rhd I &= & \begin{cases} n \cdot I & \text{(if } m \notin n \cdot I) \\ \infty & \text{(otherwise)} \end{cases} \end{aligned}$$

HW2 — Due 27 November

- Construct an interesting example using the semi-direct product.
- Construct an interesting example using the scoped product.
- Let A be an adjacency matrix for a directed graph G weighted over semiring S. Let B be a matrix over the Semiring of Elementary Paths sep(G) such that

$$\mathbf{A}(i,j) = \overline{0} \iff \mathbf{B}(i,j) = \{\}$$

$$\mathbf{A}(i,j) \neq \overline{0} \iff \mathbf{B}(i,j) = \{(i,j)\}$$

Is it always the case that

$$\mathbf{A}^*(i,j) = \bigoplus_{\rho \in \mathbf{B}^*(i,j)} w(\rho)$$

holds?

Here "an interesting example" means a specific algebraic structure, a graph weighted over that structure, either a global, left-, or right-local solution.