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Path Weight with functions on arcs?

For graph G = (V, E), and arc path p = (up, u1)(u1, U2)---(Uk_1, Uk)-
Functions on arcs: two natural ways to do this...
Weight function w : E — (S — S). Let f; = w(u;_1, uj).

wi(p) = f(R(--Kk(a)-)) = (hoko-of)(a)

wip) = ffea(---A(@)--)) = (fofro---0f)(a)

How can we “make this work” for path problems?
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Algebra of Monoid Endomorphisms (See Gondran and
Minoux 2008)

Let (S, @, 0) be a commutative monoid.

(S, ® FCS— S, 0, i, w)is an algebra of monoid endomorphisms
(AME) if

e Vfe FVb,ce S:f(bdc)=f(b)®f(c)
@ VfcF:f(0)=0

@ Jiec FVYae S:i(a)=a

@ JlwcFVacS:w(@a=0
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So why do we need Monoid Endomorphisms??

Monoid Endomorphisms can be viewed as semirings

Suppose (S, @, F) is a monoid of endomorphisms. We can turn it into

a semiring
(F, &, 0)

where (f & g)(a) = f(a) @ g(a)

Functions are hard to work with....
@ All algorithms need to check equality over elements of semiring,

@ f=gmeansVaec S:f(a)=g(a),
@ S can be very large, or infinite.
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Left and Right AME of Matrices

Given an AME S = (S, @, F), define the (left or right) AME of
n x n-matrices over S as

Mp(S) = (Mp(S), &, F),
where for A, B € M,(S) we have
(A®B)(i, j) = A(i, j) © B(, J)-

Elements of the set F are n x n matrices of functions in F. That is, if
A cF, then A(i, j) € F.
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Left and Right AME of Matrices
We have two natural options for treating A as a function in
M, (S) — Mj(S).

Left application

(AB))(i. )= P Al. 9)(B(q. /)

1<g<n

Right application
(B)A)(, ) = €D A(a. /)(B(, )

1<q<n

Check distributivity : A(B & B) = A(B) & A(B) and
(B B)A = (B)A® (B)A.
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Solving (some) equations. Left version here ...

We will be interested in solving for L equations of the form

L=AL) oM
Let
A°B) = B
A 1(B) = A(AK(B))
and

AKB) = AB (B) @ A2(B) @ --- @ AK(B)

) @ A
A*(B) = A°(B) @ A'(B) & A%(B) @ --- @ AKB)® ---

Definition (g stability)

If there exists a g such that for all B, A(9)(B) = f(¢+1)(B), then A is
g-stable. Therefore, A(*)(B) = A(9)(B).
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Key result (again)

Lemma
If A is g-stable, then L = A(¥)(B) solves the AME equation

L=A(L) & B.

Proof: Substitute A(*)(B) for L to obtain
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Lexicographic product of AMEs

(87 s, F)Q(T7 DT, G):(SXT7 @S;(‘EBT, FXG)

Theorem 11.1
D(SX T) <= D(S)AD(T)A(c(S) VK(T)) J
Where
Property  Definition
D Va,b,f: f(a® b) = f(a) ® f(b)
C Va,b,f:f(a)=f(b) = a=>b
K Va, b, f: f(a) = f(b)
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Functional Union of AMEs

(S, @, F)4m (S, @, G) = (S, @, F+ G)

Fact
D(S+m T) <= D(S)AD(T) }
Property  Definition
Where — va.b,f: f(a® b) = (@) & 7(b)
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Left and Right
right

right(S, &, F) = (S, &, {i})

left
left(S, @, F) = (S, ®, K(S))

where K(S) represents all constant functions over S. For a € S, define
the function k4(b) = a. Then K(S) = {ka | a € S}.

v

Facts
The following are always true.

D(right(S))
D(left(S)) (assuming & is idempotent)
c(right(S))
K(left(S))

.
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Scoped Product

SOT = (S X left(T)) +n (right(S) X T)
Theorem 11.2
D(SOT) < D(S)AD(T).

Proof.

D(SOT)

D((S X left(T)) +nm (right(S) X T))

S x left(T)) A D(right(S) x T)

S) A D(left(T)) A (c(S) v K(left(T)))

A D(right(S)) A D(T) A (c(right(S)) vV K(T))
< D(S)AD(T)

<~—D
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How do we represent functions?

Definition (transforms (indexed functions))

A set of transforms (S, L, ) is made up of non-empty sets S and L,
and a function
>el—(S—S).

We normally write / > s rather than >(/)(s). We can think of / € L as
the index for a function fi(s) = /> s, so (S, L, ) represents the set of
function F = {f; | | € L}.

v
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Examples

Example 1: Trivial
Let (S, ®) be a semigroup.

transform(S, @) = (S, S, >g),

where abg b=a®b

Example 2: Restriction
ForT C S,

Restrict(T, (S, ®)) =(S, T, >g),
where abg b=a®b
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Example 3 :
ASPATHs

Let apaths(X) = (£(X*) U {0}, X X X, >) where

E(XY)
(m, n) > oo

(m, n) > |

mildly abstract description of BGP’s

= finite, elementary sequences over ¥ (no repeats)

= o0

_ { n-1 (ftmgn-I)

oo  (otherwise)
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HW2 — Due 27 November

@ Construct an interesting example using the semi-direct product.

© Construct an interesting example using the scoped product.

© Let A be an adjacency matrix for a directed graph G weighted over
semiring S. Let B be a matrix over the Semiring of Elementary
Paths sep(G) such that

A(i.j)=0 <« B(i,j)={}
A(i.j)#0 <= B(i.j)={(i.))}
Is it always the case that
A (i) = P wip)
PEB* (i)
holds?

Here “an interesting example” means a specific algebraic structure, a
graph weighted over that structure, either a global, left-, or right-local

solutuon.
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