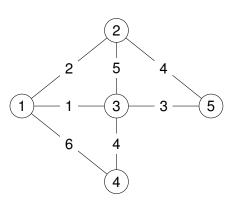
L11 : Algebraic Path Problems with Applications to Internet Routing

Timothy G. Griffin

timothy.griffin@cl.cam.ac.uk Computer Laboratory University of Cambridge, UK

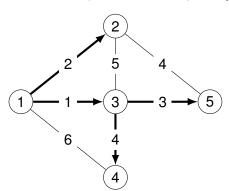
> Michaelmas Term 2012

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



The adjacency matrix

Shortest paths example, $(\mathbb{N}^{\infty}, \min, +)$



Bold arrows indicate the shortest-path tree rooted at 1.

The routing matrix

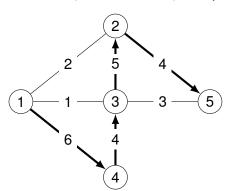
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 0 & 2 & 1 & 5 & 4 \\ 2 & 0 & 3 & 7 & 4 \\ 1 & 3 & 0 & 4 & 3 \\ 4 & 5 & 7 & 4 & 0 & 7 \\ 5 & 4 & 4 & 3 & 7 & 0 \end{bmatrix}$$

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \min_{p \in P(i, j)} w(p),$$

where P(i, j) is the set of all paths from i to j.

Widest paths example, (\mathbb{N}^{∞} , max, min)



Bold arrows indicate the widest-path tree rooted at 1.

The routing matrix

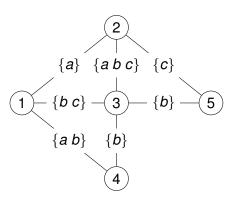
$$\mathbf{R} = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & \infty & 4 & 4 & 6 & 4 \\ 2 & 4 & \infty & 5 & 4 & 4 \\ 4 & 5 & \infty & 4 & 4 \\ 6 & 4 & 4 & \infty & 4 \\ 5 & 4 & 4 & 4 & 4 & \infty \end{bmatrix}$$

Matrix **R** solves this global optimality problem:

$$\mathbf{R}(i, j) = \max_{p \in P(i, j)} w(p),$$

where w(p) is now the minimal edge weight in p.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$



We want a Matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcup_{p \in P(i, j)} w(p),$$

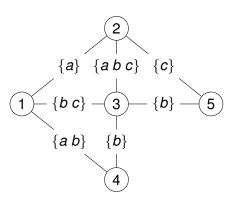
where w(p) is now the intersection of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that there is at least one path from i to j with x in every arc weight along the path.

Unfamiliar example, $(2^{\{a, b, c\}}, \cup, \cap)$

The matrix R

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$



We want matrix **R** to solve this global optimality problem:

$$\mathbf{R}(i, j) = \bigcap_{p \in P(i, j)} w(p)$$

where w(p) is now the union of all edge weights in p.

For $x \in \{a, b, c\}$, interpret $x \in \mathbf{R}(i, j)$ to mean that every path from i to j has at least one arc with weight containing x.

Another unfamiliar example, $(2^{\{a, b, c\}}, \cap, \cup)$

What this course is about ...

- How can we capture "generalized path problems"?
- How can we compute solutions?
- How do familiar algorithms (Dijkstra, Bellman-Ford, Floyd-Warshall, etc) fit into the picture?
- Can we use this knowledge to "reverse engineer" Internet routing protocols?
- Can we use this knowledge to design new routing protocols?
- Can we use this knowledge in other application areas?

We will start by looking at **Semirings**

name	S	\oplus ,	\otimes	$\overline{0}$	1	possible routing use
sp	N_{∞}	min	+	∞	0	minimum-weight routing
bw	\mathbb{N}_{∞}	max	min	0	∞	greatest-capacity routing
rel	[0, 1]	max	×	0	1	most-reliable routing
use	$\{0, 1\}$	max	min	0	1	usable-path routing
	2^W	U	\cap	{}	W	shared link attributes?
	2^W	\cap	\cup	W	{}	shared path attributes?

A wee bit of notation!

Symbol	Interpretation
\mathbb{N}	Natural numbers (starting with zero)
\mathbb{M}_{∞}	Natural numbers, plus infinity
$\overline{0}$	Identity for ⊕
1	Identity for ⊗

The (Tentative) Plan

- 1 5 October : Motivation, overveiw
- 2 9 October : Semigroups and Orders
- 3 12 October : Semirings Theory
- 4 16 October : Semirings Constructions
- 5 19 October : Semirings Examples
- 6 23 October : Semirings algorithms
- 7 26 October : Beyond Semirings "functions on arcs"
- 8 30 October : Path finding vs Routing (**HW 1 due**)
- 9 2 November : Graph (Network) decomposition
- 10 6 November : Protocols : RIP, OSPF, IS-IS
- 11 9 November : Beyond Semirings Global vs Local optimality
- 12 3 November : More on Global vs Local optimality
- 13 16 November : Protocols : EIGRP, BGP
- 14 20 November : Dijkstra revisited
- 15 23 November : Route redistribution, administrative distance
- 16 27 November : Metarouting project (**HW 2 due**)

15 January : HW 3 due

Reading related to topic of next 5 lectures

J. Inst. Maths Applies (1971) 7, 273-294

An Algebra for Network Routing Problems

B. A. CARRÉ

Department of Electrical Engineering, University of Southampton, England

[Received 15 May 1970 and in revised form 25 June 1970]