

Social and Technological Network Analysis

Lecture 4: Community Detection and Overlapping Communities

Dr. Cecilia Mascolo

Communities

- Weak ties (Lecture 2) seemed to bridge groups of tightly coupled nodes (communities)
- How do we find these communities?

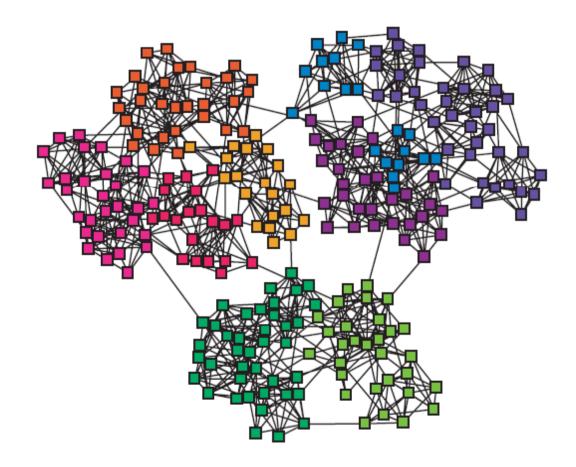
In This Lecture

- We will describe a Community Detection method based on betweenness centrality.
- We will describe the concept of Modularity and Modularity Optimization.
- We will describe methods for overlapping community detection.

network communities

itomatically find

nodes?



INIVERSITY OF

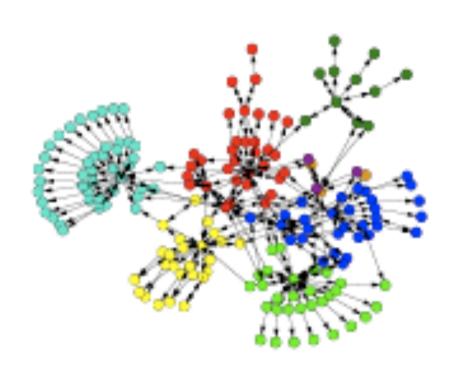
Why do we want to find partitions/communities?

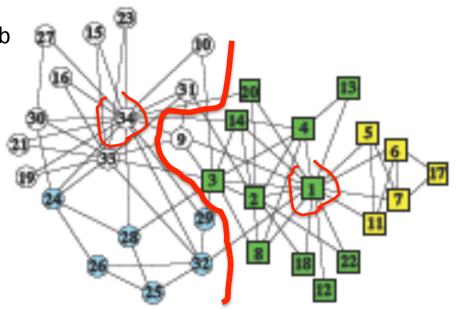
- Clustering web clients with similar interest or geographically near can improve performance
- Customers with similar interests could be clustered to help recommendation systems
- Clusters in large graphs can be used to create data structures for efficient storage of graph data to handle queries or path searches
- Study the relationship/mediation among nodes
 - Hierarchical organization study

Example

Zachary's Karate club: 34 members of a club

over 3 years. Edges: interaction outside the club





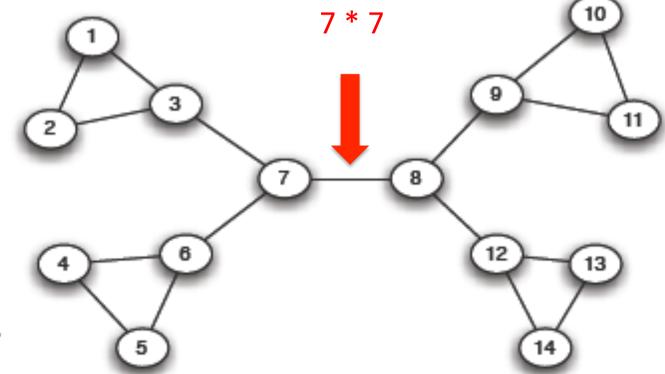
WWW: pages and hyperlinks Identification of clusters can improve pageranking

Remove weak ties

- Local bridges connect weakly interacting parts of the network
- What if we have many bridges: which do we remove first? Or there might be no bridges.
- Note: Without those bridges paths between nodes would be longer

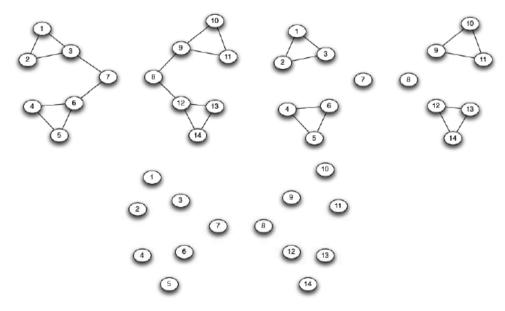
Edge Betweenness

 Edge Betweenness: the number of shortest paths between pairs of nodes that run along the edge.



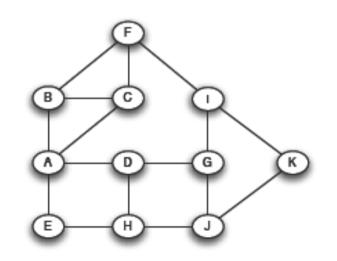
Algorithm of Girvan-Newmann (PNAS 2002)

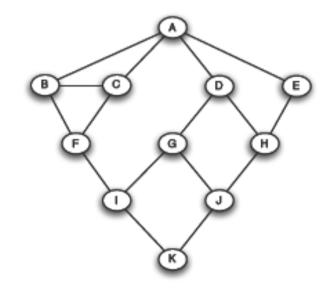
- Calculate the betweenness of all edges
- Cut the edge with highest betweenness
- Recalculate edge betweenness



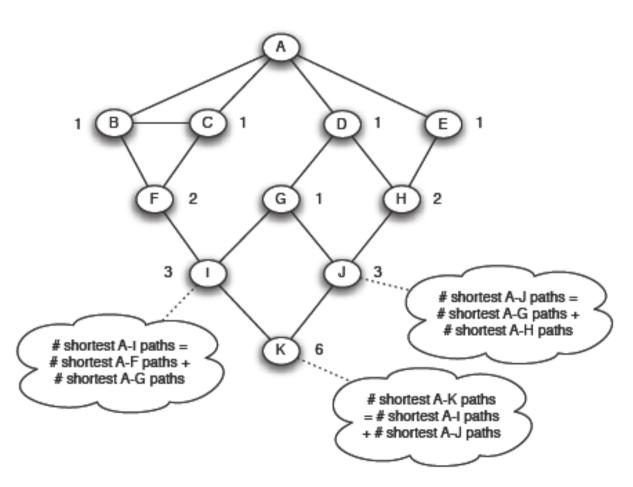
How is the betweenness computed?

- Calculate the shortest paths from node A
 - BFS search from A.
 - Determine number of shortest paths from A to each node.

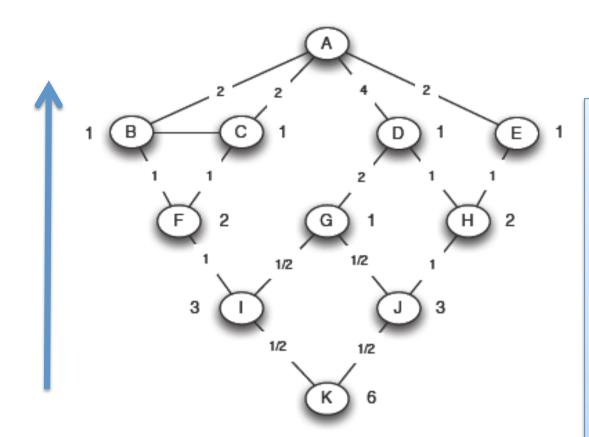




Calculating number of shortest paths



Calculating flows



When we get to a node X in the breadth-first search structure, working up from the bottom, we add up all the flow arriving from edges directly below X, plus 1 for the flow destined for X itself. We then divide this up over the edges leading upward from X, in proportion to the number of shortest paths coming through each.

Calculating Edge Betweenness

- Build one of these graphs for each node in the graph
- Sum the values on the edges on each graph to obtain the edge betweenness

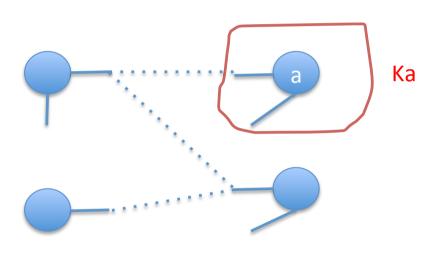
Edge: deletion When do we stop?

- How do we know when to stop?
- When X communities have been detected?
- When the level of cohesion inside a community has reached Y?
- There is no prescriptive way for every case
- There are also many other ways of detecting communities

Modularity

- Perhaps a good measure of when to stop is when for each community the "cohesion" within the community is higher than outside...
- Q= (edges inside the community)- (expected number of edges inside the community for a random graph with same node degree distribution as the given network)

Modularity on a randomized graph calculation



The expected number of edges in the randomized version of the graph where nodes are rewired:

$$\frac{k_a k_b}{2m}$$

m is the number of edges of the graph = ½ sum(ki)

Modularity (2)

Number of edges inside a community:

$$\frac{1}{2} \sum_{a,b} A_{a,b} \delta(c_a, c_b)$$

- Where:
- A_{a,b} is 1 if there is an edge a->b,
- $\delta(c_a, c_b)$ is the Kronecker Delta (1 if c_a is equal to c_b)

Modularity (3)

$$Q1 = \frac{1}{2} \sum_{a,b} A_{a,b} \delta(c_a, c_b) - \frac{1}{2} \sum_{a,b} \frac{k_a k_b}{2m} \delta(c_a, c_b)$$

$$Q1 = \frac{1}{2} \sum_{a,b} (A_{a,b} - \frac{k_a k_b}{2m}) \delta(c_a, c_b)$$

$$Q = \frac{1}{2m} \sum_{a,b} (A_{a,b} - \frac{k_a k_b}{2m}) \delta(c_a, c_b)$$

Fraction of edges over all edges m

Modularity (4)

- Modularity ranges from -1 to 1.
 - It is positive if the number of edges inside the group are more than the expected number.
 - Variation from 0 indicate difference with random case.
- Modularity can be used at each round of the Girvan-Newmann algorithm to check if it is time to stop.
 However the complexity of this is O(m²n).
- Why don't we try to just maximize modularity?

Modularity Optimization

- Finding the configuration with maximum modularity in a graph is an NP complete problem.
- However there are good approximation algorithms.

Fast Modularity

- Start with a network of n communities of 1 node
- Calculate ΔQ for all possible community pairs
- Merge the pair of the largest increase in Q
- Repeat (2)&(3) until one community remains
- Cross cut the dendrogram where Q is maximum.
- This runs in O((m + n)n).
- A further optimization runs in O(m d logn) [d depth of dendrogram].
- Most networks are sparse so m~n and d~log n

Example of Dendrogram

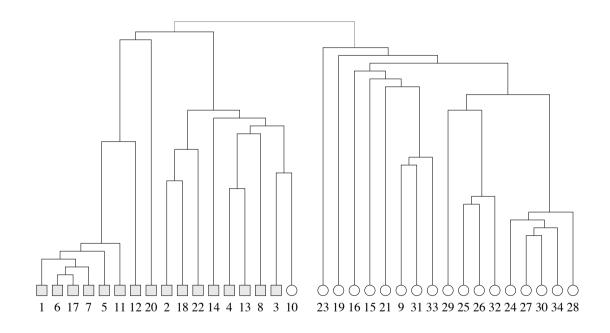


FIG. 2: Dendrogram of the communities found by our algorithm in the "karate club" network of Zachary [5, 17]. The shapes of the vertices represent the two groups into which the club split as the result of an internal dispute.

Application to Amazon Recommedations

- Network of products.
- A link between product a and product b if b was frequently purchased by buyers of a.
- 200000 nodes and 2M edges.
- Max when 1684 communities
- Mean size of 243 products

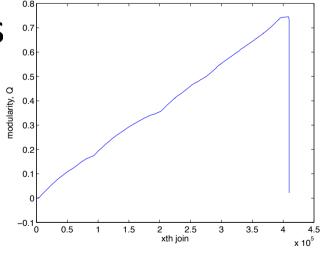
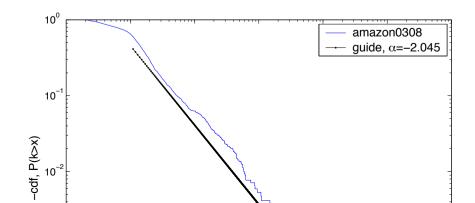


FIG. 1: The modularity Q over the course of the algorithm (the x axis shows the number of joins). Its maximum value is Q = 0.745, where the partition consists of 1684 communities.

Amazon: Top Communities (87% of nodes)

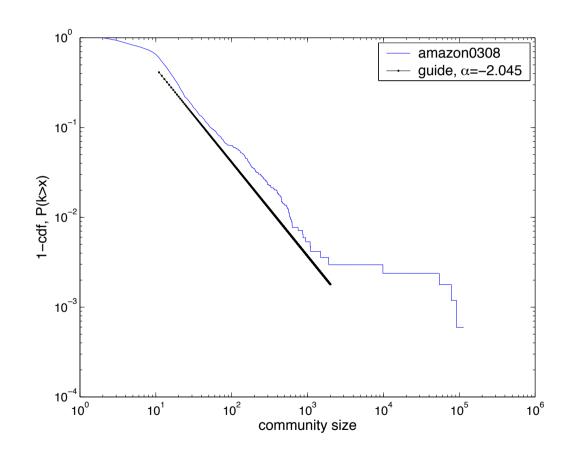
Rank	Size	Description
1	114538	General interest: politics; art/literature; general fiction; human nature; technical books; how things,
		people, computers, societies work, etc.
2	92276	The arts: videos, books, DVDs about the creative and performing arts
3	78661	Hobbies and interests I: self-help; self-education; popular science fiction, popular fantasy; leisure; etc.
4	54582	Hobbies and interests II: adventure books; video games/comics; some sports; some humor; some classic
		fiction; some western religious material; etc.
5	9872	classical music and related items
6	1904	children's videos, movies, music and books
7	1493	church/religious music; African-descent cultural books; homoerotic imagery
8	1101	pop horror; mystery/adventure fiction
9	1083	jazz; orchestral music; easy listening
10	947	engineering; practical fashion

TABLE I: The 10 largest communities in the Amazon.com network, which account for 87% of the vertices in the network.



Amazon: Community Size Distribution

- A power law distribution of community size
- (more on power laws in later lectures)



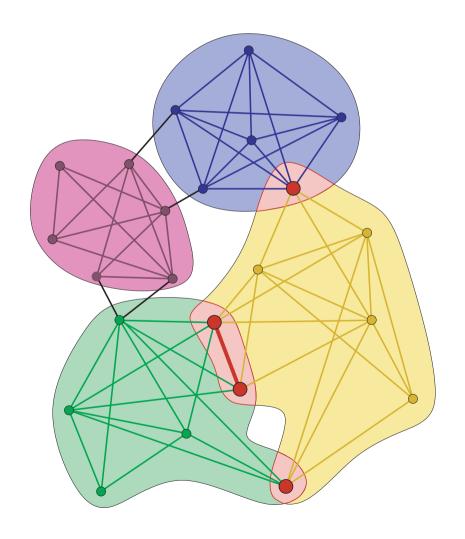
Limitations of Modularity

- Modularity is not a perfect measures
- It appears to depend on the number of links in the network (L).
- Problems for modules with a number of internal links of the order of V2L or smaller.
- Intuition: modularity depends on links of a community to the "outside", ie the rest of the
 - network.

S. Fortunato, S. Barthelemy. Resolution limit in community detection. Proc. Natl. Acad. Sci., 2007.

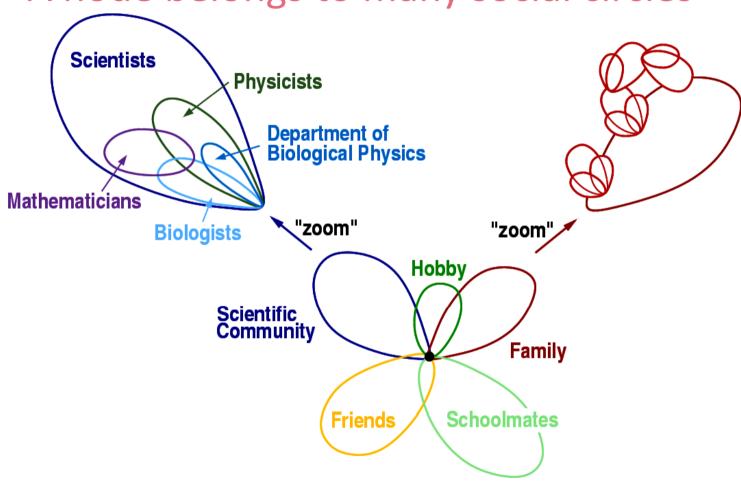
Overlapping Communities

Community
 membership
 could overlap:
 a node could
 be part of more
 than 1
 community.



Overlaps of social circles

A node belongs to many social circles



Clique Percolation Method: the idea (Palla 2005)

- Two nodes belong to the same community if they can be connected through adjacent kcliques.
- A k-clique is a fully nodes.

Clique Percolation Me

- K-cliques are adjaction overlapping nodes
- K-clique community. The same of reached through a sequence of adjacent k-cliques.

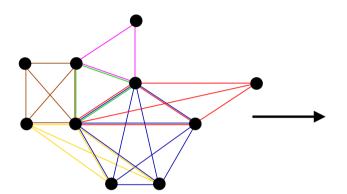
Clique Percolation Method: The algorithm

- Find the maximal cliques
 - A maximal clique is a clique that cannot be extended by including one more adjacent vertex
 - This is complex but real networks are relatively sparse.
- Build clique overlap matrix
 - Each clique is a node
 - Connect two cliques if they overlap in at least k-1 nodes
- Communities:
 - Connected components of the clique overlap matrix

Example

k=4

Maximal cliques

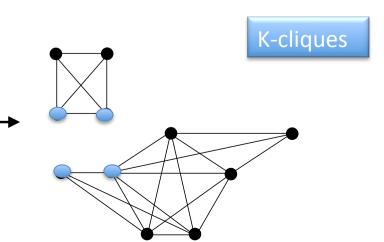


5	3	2	1	3	1
3	4	2	1	1	1
2	2	3	2	1	2
1	1	2	3	0	1
3	1	1	0	4	2
1	1	2	1	2	4

Overlap Matrix: elements are n. of overlapping nodes

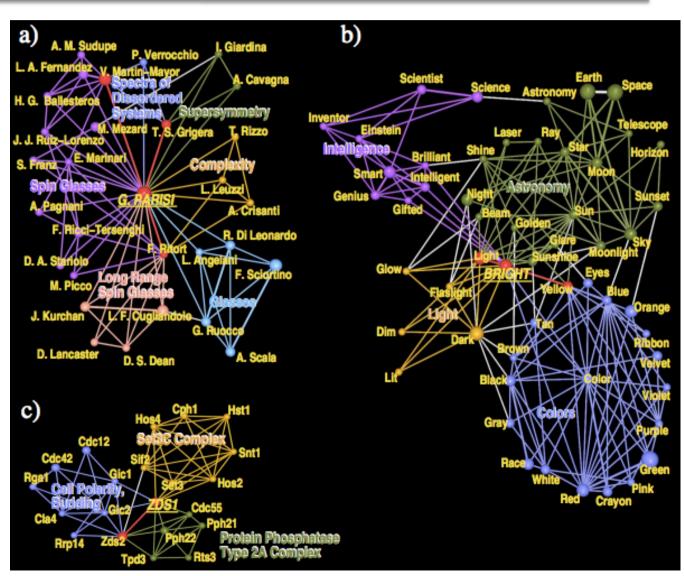
less than 4 on diagonal and less than 3 elsewhere

1	1	0	0	1	0
1	1	0	0	0	0
0	0	0	0	0	0
0	0	0	0	0	0
1	0	0	0	1	0
0	0	0	0	0	1



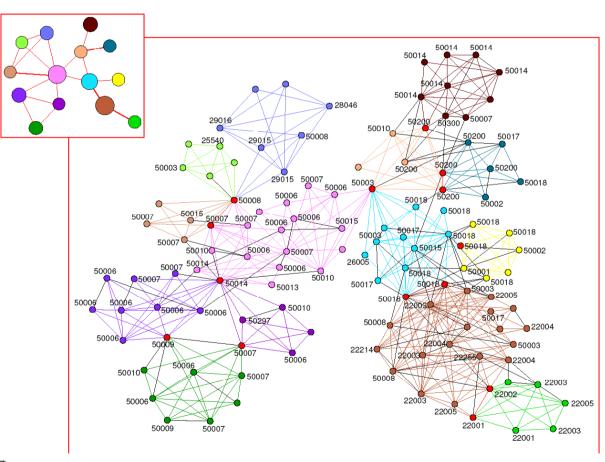
Overlapping networks:

- Parisi's coauthorship networks
- Networks of "bright" in the word association network
- 3) Protein to protein interaction network



Application:

Example: Phone call network

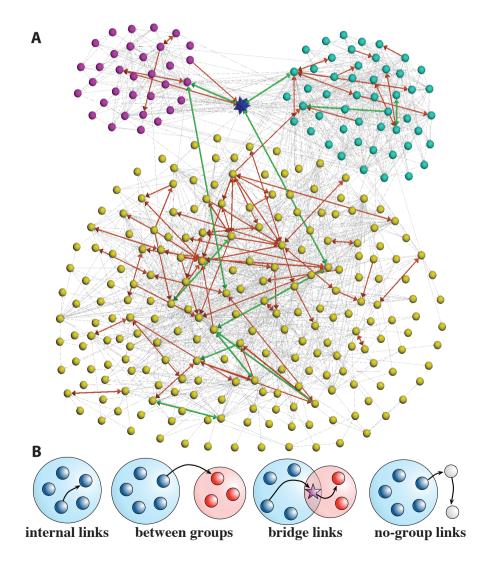


Community Detection and Weak Ties

- Twitter was analyzed trying to identify if the static network of followers gives information about the dynamics of retweeting and mentioning.
- Dataset: follower network (undirected), 2M users, and network of tweets, mention and retweets for 1 month.
- Some community detection methods are used to find clusters in the follower network.

Sample

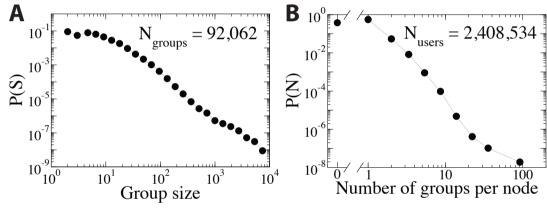
- Gray: followers
- Red: mentions
- Green: retweet
- 3 groups, one users between groups.



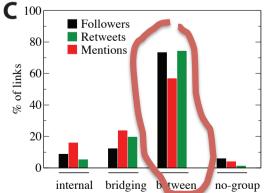
92,000 groups

Largest group: 10,000 users

37% users: no group



Mentions are double the followers in internal and bridging

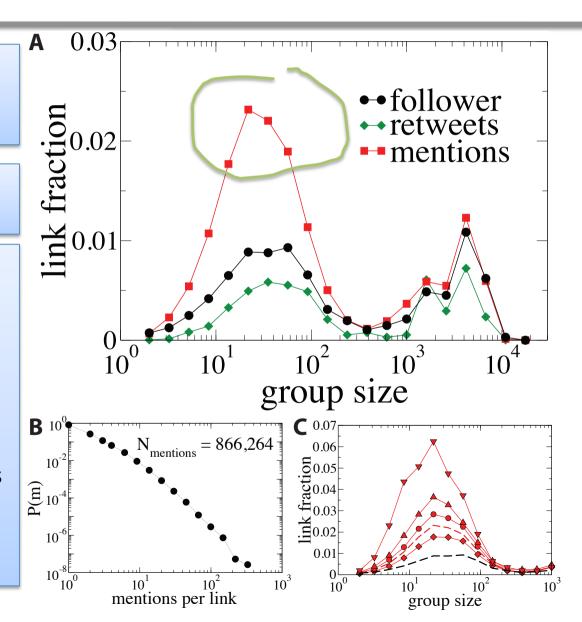


Internal Links

Internal mentions are more than follower links with groups around 100.

The distribution of mentions over links is quite wide

C: The dashed curves are the total for the follower network (black) and for the links with mentions (red). Others (from bottom to top): fractions of links with: 1 non-reciprocated mention (diamonds), 3 mentions (circles), 6 mentions (triangle up) and more than 6 reciprocated mentions (triangle down).

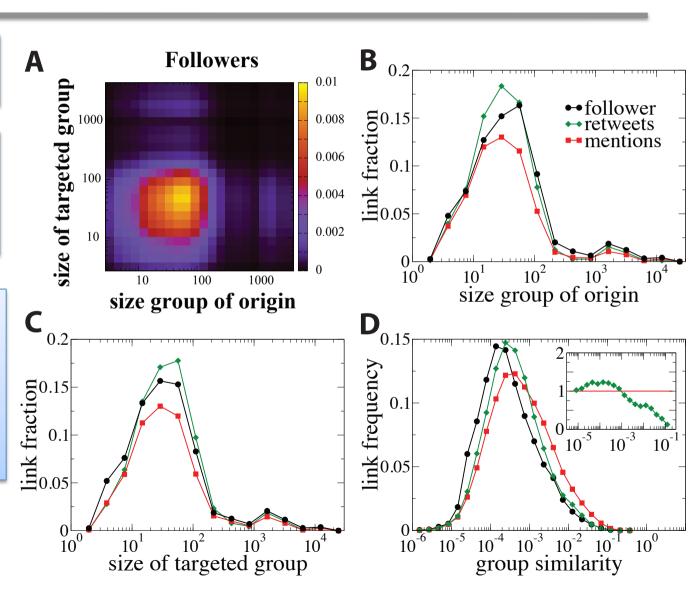


Links between groups

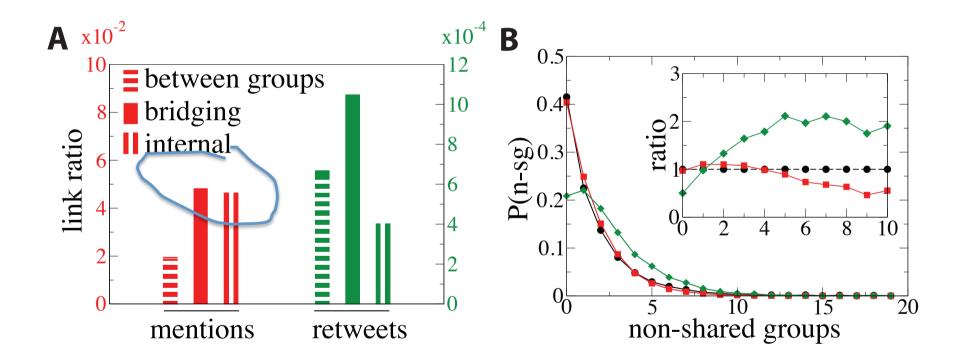
Occur between groups of <200 nodes

$$sim(A,B) = \frac{|\bigcap linksAandB|}{|\bigcup linksAandB|}$$

Retweets seem to occur more between groups than within! Weak ties!!!!! Retweets also seem to happen **between** less similar groups!



Bridge Links



Retweets on a bridge increase with the number of groups assigned to the bridging nodes

Discussion on findings

- There seems to be a correlation with the role of weak ties and the clustering done on the followers network
- Weak ties seem to be carrier of information (retweets) while internal group links seem to be more about mentions and communication

Summary

- We have discussed modularity based community detection as well as overlapping community detection.
- Many methods exist...
- We have shown cluster and weak ties analysis on an online social network dataset.

References

- M. Girvan and M. E. J. Newman. **Community structure in social and biological networks** Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, June 2002.
- S. Fortunato. **Community detection in graphs**, Arxiv 2009.
- Michelle Girvan and Mark E. J. Newman. **Community structure in social and biological networks.** Proc. Natl. Acad. Sci. USA, 99(12):7821–7826, June 2002.
- M.E.J. Newman, M. Girvan. **Finding and evaluating community structure in networks.** Phys. Rev. E 69, 026113, 2004.
- A. Clauset, M.E.J. Newman, C. Moore. **Finding community structure in very large networks**. Phys. Rev. E 70, 066111, 2004.
- G. Palla, I. Derényi, I. Farkas, and T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. *Nature.* 435, 814-818 (2005).
- A. Lancichinetti, F. Radicchi, 3 J. Ramasco, S. Fortunato. **Finding statistically significant communities in networks.** PLOS One 2011; 6(4). (not discussed).
- P. Grabowicz, J. Ramasco, E. Moro, J. Pujol, V.. Eguiluz. Social features of online networks: the strength of weak ties in online social media. arXiv:1107.4009. July 2011.

