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In This Lecture

* |n this lecture we will study spatial networks
and geo-social networks through examples
from our work.
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Geo-social Network Analysis can lead §
to insights into social behaviour -
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Effect of geography over social link
formation
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What do we see in
Geo-social Networks?

 We have acquired data about the socio-spatial
network of 3 real-world location-based
services

 We design two randomized models of a socio-
spatial network to better understand which
factors shape the real networks.

 We study how individual users create their
social links and their social triangles over

space.

ELE UNIVERSITY OF
¥V CAMBRIDGE



Distance between Friends

e
X Brightkite | . o
Friends tend to be much 0.8 H o Foursquare|-------..: KX
closer than random + Gowalla | * .
users: about 50% of w 0.6 S ST ]
- Y. S
Coafiy DA SR :
' { I ”..
02F----- o oORERRRE Py Yol — TFrienas H
R ' i Users
] | PR

10° 10! 102 103 104 10°
Distance [km]

4 UNIVERSITY OF

ol Ko

{¥ CAMBRIDGE




Probability of Friendship vs Distance
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Network Randomization

Social Spatial

Description . .
properties | properties
Original data No modification. / V
Fix node locations and
Geo model | reassign all links according to x V
probability P(d).
. Fix links and shuffle all node
Social model locations. V x
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Users have heterogeneous

friend distances
Link length
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Average triangle geographic lengthg
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Effect of geography over interaction
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How does geography
affect interaction?
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Effect of geography on friendshig

Distance constrains social
interaction establishment Al
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Effects of geography on interactions
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Effect of Age
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Under 15 have 70%
friends within 10km.
They also have more
friends and interact

more.




Understanding human mobility
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Stouffer's law of intervening opportunities states, "The number of persons
going a given distance is directly proportional to the number of opportunities at
that distance and inversely proportional to the number of intervening
opportunities." *

- Empirically proven using data for migrating families in the city of Cleveland.

- Is this true in our data?

* 8. Stouffer (1940) Intervening opportunities: A theory relating mobility and distance, American Sociological
Review 5, 845-867
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Place density by far more important than
city area size with respect to mean length of
human movements (R? = 0.59 and 0.19
respectively).
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Rank universality
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The rank of all cities collapses to a single line.

We have measured a power law exponent a = 0.84 + 0.07
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Simulation Results ...

10—t
10-2 B E
10—3 ............................ 3
10—4 .................................... -
w w 105 " - w
8 8 10—6 ............................. ORI 8
10-TF- oo 1]
10-% - = rank model '
: , 10 H O BOSTON . - U ) :
10-81 L - 1010 - L 1081 - L
102 107! 10° 10* 10? 102 10-* 10° 10! 102 102 104 10° 10!
Distance [km] Distance [km] Distance [km]
101 W0 T
102 - 102 r R st < < -
103 F ............ L 10‘:: : : S GoN E
w W10 H ey l_L10' : T
o o . : : : Q10° : : R
G : : : 10°6F- o o W—
106 f o . N s |
0-7 rank model 0-7 = = rank model : : 10_8 = = rank model . N
! ) COLUMBUS 1 1 . O DALLAS 100 O DENVER ‘]q
10-8 10— 10—
10-2 10! 10° 10* 102 1072 10° 102 10—t 10° 10! 102
Distance [km] Distance [km] Distance [km]

L s . : . ® w . : i
o e | ' %1 = | » %
_ H . H (@] . . . 4 " [l
7L . N - TL . L
10_8 = = rank model : : d| 10_8 = = rank model : G 1
‘ 10 O INDIANAPOLIS | =" 10 O KUALALUMPUR| 7 U
108 L 109t . L 10-° L
102 10-! 10° 10* 10? 102 10! 10° 10! 10? 1072 10—t 10° 10! 102
Distance [km] Distance [km] Distance [km]

EE UNIVERSITY OF
¥ CAMBRIDGE




Understanding communities
and role of places
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City-scale social networks

 We look at intra-city social
networks

* People who have checked in at
a place in a given city, and their
friends who have also checked
in at those places

What do these place-based
social networks look like?
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FRIENDS

JennaR.
at Starlight Diner
0S ANGELES. CA

18 mins ago '

You, Melissa R, Christen S, Max P
Paul S: Their grilled cheese is the best!

L~y Matt H.
at Deschenes Rapids
OTTAWA DIVISION, ON

Quick walk after lunch




City-scale social networks

 Degree: power-law distribution
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City-scale social networks

* Degree: power-law distribution

* Clustering coefficient: high (between 0.1 and 0.2, in
random graph of the same size <0.001)

* Average shortest path length: small (about 4 hops),
comparable to random graph (Clustering coeff. +
average path length = “small world”)

 Community structure (modularity > 0.4)

Our city-level graphs
have well-known

I UNIVERSITY OF structural properties of
W CAMBRIDGE social networks.




The role of places

* Power-law distribution of place popularity
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Places vital for tie formation

* Power-law distribution of place popularity

* Analyze triangles: >70% of triangles have one
place shared between all three people

- clustering around certain places

These places could act as foci for tie formation...
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Role of categories...
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What can all this be used for? §

* Friendship Recommendation:

— Exploiting Place Features in Link Prediction on Location-based Social
Networks, Salvatore Scellato, Anastasios Noulas, Cecilia Mascolo. In
Proceedings of 17th ACM International Conference on Knowledge
Discovery and Data Mining (KDD 2011). San Diego, USA. August 2011.

* Place Recommendation:

— Mining User Mobility Features for Next Place Prediction in Location-
based Services. Anastasios Noulas, Salvatore Scellato, Neal Lathia and
Cecilia Mascolo. In Proceedings of IEEE International Conference on
Data Mining (ICDM 2012). Short Paper. Brussels, Belgium. December
2012.

— A Random Walk Around the City: New Venue Recommendation in
Location-Based Social Networks. Anastasios Noulas, Salvatore
Scellato, Neal Lathia and Cecilia Mascolo. In Proceedings of ASE/IEEE
International Conference on Social Computing (SocialCom).
Amsterdam, The Netherlands. September 2012.
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What can all this used for?

* More Modelling:

— Talking Places: Modelling and Analysing Linguistic Content in
Foursquare. Sandro Bauer, Anastasios Noulas, Diarmuid O
Séaghdha, Stephen Clark and Cecilia Mascolo. In Proceedings of
ASE/IEEE International Conference on Social Computing
(SocialCom). Amsterdam, The Netherlands. September 2012.

— Exploiting Foursquare and Cellular Data to Infer User Activity
in Urban Environments. Anastasios Noulas, Cecilia Mascolo and
Enrique Frias-Martinez. In Proceedings of 14th International
Conference on Mobile Data Management (MDM 2013). Milan,
ltaly. June 2013.

— Evolution of a Location-based Online Social Network: Analysis
and Models. Militiadis Allamanis, Salvatore Scellato and Cecilia
Mascolo. In Proceedings of ACM Internet Measurement
Conference (IMC 2012). Boston, MA. November 2012.
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