L108: Categorical theory and logic Exercise sheet 2

Sam Staton

sam.staton@cl.cam.ac.uk

Revised: November 8, 2012, 11:31.

- 1. Recall the arrow category $\hat{\Sigma}$: the objects are functions, and the morphisms are commuting squares. Does the arrow category have finite products?
- 2. Recall that a *preorder* is a category with at most one morphism between any two objects. To give a preorder is to give a set X (of objects) and a relation $(\leq) \subseteq X \times X$ that is reflexive and transitive. Informally " $x \leq y$ " means "there is a morphism $x \to y$ "; reflexivity supplies the identity morphisms and transitivity provides composition.

Do the following preorders have finite products?

- (a) The preorder (\mathbb{N}, \leq) of natural numbers, with \leq the usual "less than or equal" relation.
- (b) The preorder $(\mathcal{P}(\mathbb{N}), \subseteq)$ of subsets of the natural numbers, where \subseteq is set inclusion.
- (c) The preorder (\mathcal{O}, \subseteq) where \mathcal{O} is the set of open intervals of the real line and \subseteq is set inclusion. (For illustration, consider the intervals $(-2, e) = \{x \in \mathbb{R} \mid -2 < x < e\}$ and $(-\infty, \pi) = \{x \in \mathbb{R} \mid x < \pi\}$; then $(-2, e) \subseteq (-\infty, \pi)$.)
- 3. Every natural number n can be understood as a set with n elements. Precisely, we understand the natural number n as the set $\{1, \ldots, n\}$. In particular, zero is understood as the empty set.

Let \mathbb{F} be the full subcategory of the category of sets whose objects are natural numbers. That is, the objects of \mathbb{F} are natural numbers, considered as sets, and the morphisms are functions between the sets. Identities are the identity functions and composition is just composition of functions.

Show that the category $\mathbb F$ has finite products.

4. Let the category \mathbb{F}^{op} be the opposite of \mathbb{F} . That is, the objects are natural numbers, but the morphisms go in the opposite direction, as on Exercise Sheet 1. So a morphism $m \to n$ in \mathbb{F}^{op} is a function $n \to m$. Composition is still composition of functions. To be precise, given morphisms $f: n_1 \to n_2$ and $g: n_2 \to n_3$, i.e. functions $\overline{f}: n_2 \to n_1$ and $\overline{g}: n_3 \to n_2$, let the composite morphism $(g \circ f): n_1 \to n_3$ be the composed function $(\overline{f} \circ \overline{g}): n_3 \to n_1$.

Show that the category \mathbb{F}^{op} has finite products.