MPhil in Advanced Computer Science
Module L102: Statistical Machine Translation

Practical Handout 2
Weighted Finite-State Transducers for Language Proagssin

1 Introduction

This second practical focuses on the use of Weighted F8tite Transducers (WFSTs) for lan-
guage processing. For this purpose, we will use the OpeniBsarl, an open-source project de-
veloped by contributors from Google Research and NYU’s @aulnstitute. If you have interest,

much more information about OpenFST, including examplésyials and software, can be found at
www. openfst.org.

Important: Run the following command in order to setup the variablegladdo run the practical.

source /usr/groups/acs-software/L102/ setup. sh

1.1 Preliminary tutorial

This is a brief tutorial to get acquainted with OpenFST (howcteate fsts, print them draw them,
etc...), based on material from the project’'s website.

Example FST

Figure 1 depicts an example finite state transducer:

Figure 1. Example FST

The initial state is label 0. There can only be one initiatestd he final state is 2 with final weight
of 3.5. Any state with non-infinite final weight is a final statend is drawn with a double circle.
There is an arc (or transition) from state 0 to 1 with inputlah’, output label 'x’, and weight 0.5.
This FST transduces, for instance, the string 'ac’ to 'xzthaweight 6.5 (the sum of the arc and final
weights).

Creating FSTsUsing Text Filesfrom the Shell

We can create the text FST file for our example as follows:

arc format: src dest ilabel ol abel [weight]

final state format: state [weight]

lines may occur in any order except initial state nust be first line

unspecified weights default to 0.0 (for the library-default Wi ght type)
$ cat >text.fst <<EOF

01lax.5

01by 15

12cz 25

2 3.5

ECF

The internal representation of an arc label is an integer. st provide the mapping from
symbols to integers explicitly with a symbol table file, iretfollowing format:

$ cat >isyms.txt <<ECF
<eps> 0

al

b 2

c 3

EOF

$ cat >osyns.txt <<ECF
<eps> 0

x 1

y 2

z 3

ECF

You may use any string for a label; you may use any non-negatteger for a label ID. The zero
label ID is reserved for the epsilon label, which is the engiting. We have included 0 in our table,
even though it is not used in our example. Since subsequénbp&ations might add epsilons, it is
good practice to include a symbol for it.

This text FST must be converted into a binary FST file beforeait be used by the OpenFst
library.

Creates binary Fst fromtext file.
The synmbolic labels will be converted into integers using the synbol table files.
$ fstconpile --isynbol s=isynms.txt --osynbol s=osyns.txt text.fst binary.fst

Accessing FSTs. Printing, Drawing, Summarizing
As FSTs are encoded in binary files, a set of special commandsba used to access the information
they contain. The following command wibrint out an FST in text format:

Print FST using synbol table files.
$ fstprint --isynbol s=isyns.txt --osynbol s=osyns.txt binary.fst text.fst

If the symbol table files are omitted, the FST will be printedhwnumeric labels. The following
command willdraw an FST using Graphviz dot format:

Draw FST using synbol table files and Graphviz dot:
$ fstdraw --isynbol s=i syns. txt --osynbol s=osyns. txt binary.fst binary. dot
$ dot -Tps binary.dot >binary.ps

Summary information about an FST can be obtained with:

$ fstinfo binary.fst

fst type vect or
arc type st andard
i nput synbol table i syms.txt
out put synbol table osyms. t xt
of states 3

of arcs

3
initial state 0
of final states 1
of input/output epsilons 0
of input epsilons 0
of output epsilons 0
of accessible states 3
of coaccessible states 3
of connected states 3
of connected conponents 1
of strongly conn conponents 3

H o HHHHHHH

FST Operations

The FST operations can be invoked from shell-level commawtisch typically read one or more
input binary FST files and then write an output binary FST filehe output file is omitted, standard
output is used. If the input file is also omitted (unary casejsd-", then standard input is used.
Specifically, they have the form:

e Unary Operations

fstunaryop in.fst out.fst
fstunaryop < in.fst > out.fst

e Binary Operations

fstbinaryop inl.fst in2.fst out.fst
fstbinaryop - in2.fst < inl.fst > out.fst

Available include (among others):

e concatenating and unioning two FSTs¢ concat, fstuni on)
e composing two FSTS (st conpose)
e obtaining the intersection or the difference between twdd®st i nt ersect, fstdifference)

¢ finding equivalent FSTs with less states/arcs by removingtgmiarcs, determinizing and minimizing
(fstrmepsilon, fstdeterm nize, fstmnimze)

e computing shortest distance, N-best paths and prufisgghor t est di st ance, fstshort est path,
fstprune)

e creating an acceptor from a transducer by projecting inpotitput labelsf(st pr oj ect)

e sorting arcsf(starcsort, fsttopsort)

e reverse the directiorf 6t r ever se) or swap input-output symbol§ §t i nvert)
e connect final states with the initial state via epsilon accthsit st cl osur e)

e other:f st push, fstrelabel, fstreplace, etc

Details of each operation can be foundwatv. openf st. org.

Example: Obtaining N-best Listsand Composing two FSTs
The following command will return thil shortest pathsin the FST, ranked by cost:

Print the N shortest paths (-n 10), showing their cost (-c)

and the strings they encode in the input labels (-1 -i isymtxt)
$ cat binary.fst | fstprintstrings -n 10 -c -1 -i isyns.txt

ac 6.5

bc 7.5

Print the N shortest paths (-n 10), showing their cost (-c)

and the strings they encode in the output labels (-2 -i osymtxt)
$ cat binary.fst | fstprintstrings -n 10 -c -2 -i osyns.txt

Xz 6.5

yz 7.5

In this example, only two possible paths exist in the traneduepresenting two distinct hypothe-
ses. However, an FST can contain multiple paths representiagame string, in which case repeated
strings would be listed, each with its associated cost. Taisbe avoided using the -u’ switch, so
that only the least cost instance of each string is shown.

One of the most useful finite-state operations is compasitidich produces the relational composi-
tion of two transductions (see lecture notes 7 for more B@tdt can be used, for example, to apply
a transduction to some input according to a particular mdelehmple:

Create an input transducer in text format:
When i nput and output |labels are equal, it is an acceptor
$ cat > input.txt <<ECF

01aa

12bb

23cc

34aa0.4

25aa0.2

56 aa

2 1.0

3

4

6 0.1

ECF

Compile as binary file (using sane input/output table):
$ fstconpile --isynbol s=i syms. txt --osynbol s=i syms.txt input.txt input.fst

!Please note that this command returns one empty line afteali strings. This line should not be counted when
calculating how many paths or strings are contained in an FST

Create a weighted transducer in text fornat
$ cat > nodel.txt <<EOF
01lax20.2

0O01lby1.2

01lcz3

12by0.5

14bzo0.1

2 3cCcX

2 4 a <eps> 0.5

4 4 ax0.1

3

4

EOF

Conpile as binary file (using sane input/output table):
$ fstconpile --isynbol s=isyms.txt --osynbol s=osyns.txt nodel.txt nodel.fst

Composition is obtained as follows:

Creates the conmposed FST
$ fstconpose input.fst nodel.fst conp.fst

Just keeps the output |abel
$ fstproject --project_output conp.fst result.fst

Note that the FSTs must be sorted along the dimensions thegengomposed (in fact, only one
needs to be so sorted). In case your FST is not sorted, yowckih sy doing the following:

Conpose with a previous arc sorting step

$ fstarcsort --sort_type=ol abel input.fst input_sorted.fst
$ fstarcsort --sort_type=ilabel nodel.fst nodel _sorted.fst
$ fstconpose input_sorted. fst nodel _sorted.fst conp.fst

Do it all in a single command |ine.
$ fstarcsort --sort_type=ilabel nodel.fst | fstconpose input.fst - |\
fstproject --project_output result.fst

Preliminary Question Draw the input and model FSTs generated above. Then contbeseand
project the result to keep only output symbols, and drawdbkalting FST (result.fst). Note that when
drawing acceptors (such as 'input’), you can optionally Uset dr aw - - accept or’ to avoid
showing the redundant output symbols (only showing inpaspnAnswer the following questions:

() How many alternative paths exist in the input FST? How yndistinct strings do these encode?
Which ones of these strings can be accepted by the modetitreer®

(i) How many alternative paths exist in the result FST? Hosngndistinct strings do these encode?

(iif) Now remove epsilon arcs, determinize and minimizerégult FST. How many alternative paths
exist now? How many distinct strings do these encode? Why?

(iv) How many alternative strings are accepted by the mo&dl'FRefer to the drawing to support
your answer.

2 Practical Exercise

The following sections describe a set of exercises to be et in this practical. In your re-
port you should state how you have achieved a solution, diredudescription or drawings of FSTs
and listings of FST operationsPlease seek help from the demonstrator should you enacgonute-

lems with this part of the practical. All relevant files canfband in:

DI R=/ usr/ groups/ acs-sof tware/ L102/ practical -2/fil es

1.

Given the alphabel = {a,b, ...z, A, B, ...Z, (space) }, for which a symbol table file can be
found in$DI R/ t abl el. t xt , create an automaton that:

(a) Accepts a letter i (including space).

(b) Accepts a single space.

(c) Accepts a capitalized word (where a word is a string détstin . excluding space and a
capitalized word has its initial letter uppercase and remgiletters lowercase)

(d) Accepts a word containing the leti@r
Using the automata in Question 1 as the building blocks,appropriate FST operations on
them to create an automaton that:

(a) Accepts zero or more capitalized words followed by space

(b) Accepts a word beginning or ending in a capitalized tette

(c) Accepts a word that is capitalized and contains therlette

(d) Accepts a word that is capitalized or does not contain.an

(e) Accepts a word that is capitalized or does not contaia &ithout usingf st uni on.

For each case, give the number of states and arcs before tencyaplying epsilon removal,
determinization and minimization to the resulting autcemat

. Given the alphabelt = {0, 1, ...9}, create a transducer that maps numbers (in the range 00000

to 99999) represented as strings of 5 digits to their Engésla form, e.g.

00001— one
0 0 8 0 7— eight hundred seven
1 3 2 5 5— thirteen thousand two hundred fifty five
A complete symbol table file has already been created foriy8i R/ t abl e3. t xt . Please

try to define basic transducers as building blocks and useaay ST operations as possible
to create the final transducer.

. Given the alphabet = {a, b, ...z, (space),.,,} (includes period and comma), for which a sym-

bol table file can be found iiDl R/ t abl e4. t xt :

(a) Create atransducer that implementsrdt#3 cipher.a - n,b—o,...,m — 2,n—a
,0—b,...,z—m.

(b) Encode and decode the message 'secr et nessage’ (assume(space) — (space),
.—.and,—)).

(c) We wish to decipher the message that can be found in the file
$DI R/ 4. encodedl. f st

knowing that in order to do so, we must simultaneously allw transductions, namely
rotl3androtl6 (e« — ¢, b — r, ...), SO thaw can either encode an originalor ¢. Build

a suitable decoding transducer, apply it to the encodedagesmnd examine the resulting
FST (after projecting onto the output symbols). How maniestand arcs does it contain?
How many states and arcs after removing epsilons, deteriminand minimizing it? How
many distinct strings does it represent?

(d) We now know that the original text belongs to Charles Bitk David Copperfielchovel.
Accordingly, a language model has been implemented as arighted automaton that
accepts any sentence contained in this novel. This can Ingl fiou

$DIR/ 4.1 m f st

Compose your resulting FST from question (c) with this laaggimodel. What was the
original text?

(e) Similarly, a second text belonging to the same novel eas lencoded in the file
$DI R/ 4. encoded?2. f st

by applying theot13 cipher and allowing some pairs of consecutive letters toNapped
(excluding (space) or punctuation). Build a suitable decoding transdéicapply it to
the encoded message and compose your answer with the langaatel. What was the
original text?

2You will need to allow any possible pair of letters to be sweghn the input.

