ACS Statistical Machine Translation

Lecture 8: Hierarchical Phrase-based Translation

Department of Engineering University of Cambridge

Bill Byrne

bill.byrne@eng.cam.ac.uk

Lent 2013

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣

Statistical Machine Translation (SMT)¹

Translate s into t:

"Any target word sequence t is a possible translation of the input source sentence s"

Translating \equiv **Finding** the best hypothesis

$$\hat{t} = \operatorname*{argmax}_{t \in \mathcal{T}} P(t|s) = \operatorname*{argmax}_{t \in \mathcal{T}} P(s|t) P(t)$$
Translation Language

- Translation Model: from phrases to hierarchical phrases
- Language Model is a standard N-gram model

HARD: $|\mathcal{T}|$ can be very large (at most V^I)

Model

Model

¹Brown, P. et al. 1990. A Statistical Approach to Machine Translation. Computational Linguistics, Volt 6, Num.2. 🚊 🗠 🔿 🔍

Motivation

Example:

澳洲 是 与 北韩 有 邦交 的 少数 国家 之一 。 Aozhou shi yu Beihan you bangjiao de shaoshu guojia zhiyi . Australia is with North Korea have dipl. rels. that few countries one of .

Australia is one of the few countries that have diplomatic relations with North Korea.

Limitation of Phrase-based SMT:

[Aozhou] [shi]1 [yu Beihan]2 [you] [bangjiao] [de shaoshu guojia zhiyi] [.]

[Australia] [has] [dipl. rels.] [with North Korea]₂ [is]₁ [one of the few countries] [.]

Distorsion limits (maximum jump distance, ...) required to avoid computational explosion prohibit the correct reordering

Motivation (2)

With Hierarchical Phrases:

 $\begin{array}{l} \langle yu \; X_{[]} \; you \; X_{[]}, have \; X_{[]} \; with \; X_{[]} \rangle \\ \langle X_{[]} \; de \; X_{[]}, the \; X_{[]} \; that \; X_{[]} \rangle \\ \langle X_{[]} \; zhiyi, one \; of \; X_{[]} \rangle \end{array}$

Translation would be possible:

[Aozhou] [shi] [[[yu [Beihan]₁ you [bangjiao]₂] de [shaoshu guojia]₃] zhiyi]

[Australia] [is] [one of [the [few countries]3 that [have [dipl. rels.]2 with [N. Korea]1]]]

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 $\begin{array}{l} \mathsf{R}_1\colon \mathsf{S}{\rightarrow}\langle\mathsf{X},\,\mathsf{X}\rangle\\ \mathsf{R}_2\colon \mathsf{S}{\rightarrow}\langle\mathsf{S}\,\mathsf{X}\,,\,\mathsf{S}\,\mathsf{X}\rangle\\ \mathsf{R}_3\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_1\,,\,\mathsf{said}\rangle\\ \mathsf{R}_4\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_1\,\,\mathsf{s}_2\,\,\mathsf{s}_1\,\,\mathsf{the}\,\,\mathsf{president}\,\,\mathsf{said}\rangle\\ \mathsf{R}_5\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_1\,\,\mathsf{s}_2\,\,\mathsf{s}_3\,\,,\,\mathsf{Syrian}\,\,\mathsf{president}\,\,\mathsf{says}\rangle\\ \mathsf{R}_6\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_2\,\,,\,\mathsf{president}\rangle\\ \mathsf{R}_7\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_3\,\,,\,\mathsf{the}\,\,\mathsf{Syrian}\rangle\\ \mathsf{R}_8\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_4\,\,,\,\mathsf{yesterday}\rangle\\ \mathsf{R}_9\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_5\,\,,\,\mathsf{that}\rangle\\ \mathsf{R}_{10}\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_6\,\,,\,\mathsf{would}\,\,\mathsf{return}\rangle\\ \mathsf{R}_{11}\colon \mathsf{X}{\rightarrow}\langle\mathsf{s}_6\,\,,\,\mathsf{he}\,\,\mathsf{would}\,\,\mathsf{return}\rangle\end{array}$

s₁ S₂ S₃ S₄ S₅ S₆ wqAl Alr}ys Alswry Ams Anh syEwd (وقال الرئيس السوري امس انه سيعود)

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

 $\begin{array}{l} \mathsf{R}_1\colon \boldsymbol{S}{\rightarrow}\langle\boldsymbol{X}\;,\boldsymbol{X}\rangle\\ \mathsf{R}_2\colon S{\rightarrow}\langle S\;X\;,\;S\;X\rangle\\ \mathsf{R}_3\colon \boldsymbol{X}{\rightarrow}\langle\boldsymbol{s}_1\;,\boldsymbol{said}\rangle\\ \mathsf{R}_4\colon X{\rightarrow}\langle\boldsymbol{s}_1\;s_2\;,\;\text{the president said}\rangle\\ \mathsf{R}_5\colon X{\rightarrow}\langle\boldsymbol{s}_1\;s_2\;s_3\;,\;\text{Syrian president says}\rangle\\ \mathsf{R}_6\colon X{\rightarrow}\langle\boldsymbol{s}_2\;,\;\text{president}\rangle\\ \mathsf{R}_7\colon X{\rightarrow}\langle\boldsymbol{s}_3\;,\;\text{the Syrian}\rangle\\ \mathsf{R}_8\colon X{\rightarrow}\langle\boldsymbol{s}_4\;,\;\text{yesterday}\rangle\\ \mathsf{R}_9\colon X{\rightarrow}\langle\boldsymbol{s}_5\;,\;\text{that}\rangle\\ \mathsf{R}_{10}\colon X{\rightarrow}\langle\boldsymbol{s}_6\;,\;\text{would return}\rangle\\ \mathsf{R}_{11}\colon X{\rightarrow}\langle\boldsymbol{s}_6\;,\;\text{he would return}\rangle\end{array}$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

said

-

・ コ マ チ (雪 マ チ (雪 マ ー)

said president the Syrian yesterday that would return

イロト イポト イヨト イヨト

said president the Syrian yesterday that he would return

Department of Engineering University of Cambridge イロト イポト イヨト イヨト

Syrian president says yesterday that he would return

Department of Engineering University of Cambridge イロト イポト イヨト イヨト

the Syrian president said yesterday that he would return

Department of Engineering University of Cambridge < ロ > < 同 > < 回 > < 回 > .

yesterday the Syrian president said that he would return

Each rule has a probability assigned by the Translation Model

Department of Engineering University of Cambridge

 $\begin{array}{l} \mathsf{R}_1\colon \textbf{S} \! \rightarrow \! \langle \textbf{X} \,, \textbf{X} \rangle \\ \mathsf{R}_2 \colon \textbf{S} \! \rightarrow \! \langle \textbf{S} \, \textbf{X} \,, \textbf{S} \, \textbf{X} \rangle \\ \mathsf{R}_3 \colon X \! \rightarrow \! \langle s_1 \,, said \rangle \\ \mathsf{R}_4 \colon X \! \rightarrow \! \langle s_1 \, s_2 \,, the \, \text{president said} \rangle \\ \mathsf{R}_5 \colon X \! \rightarrow \! \langle s_1 \, s_2 \, s_3 \,, \text{Syrian president says} \rangle \\ \mathsf{R}_6 \colon X \! \rightarrow \! \langle s_2 \,, \text{president} \rangle \\ \mathsf{R}_7 \colon X \! \rightarrow \! \langle s_3 \,, the \, \text{Syrian} \rangle \\ \mathsf{R}_8 \colon X \! \rightarrow \! \langle s_4 \,, \text{yesterday} \rangle \\ \mathsf{R}_8 \colon X \! \rightarrow \! \langle s_5 \,, that \rangle \\ \mathsf{R}_{10} \colon X \! \rightarrow \! \langle s_6 \,, \text{would return} \rangle \\ \mathsf{R}_{11} \colon X \! \rightarrow \! \langle s_6 \,, he \, \text{would return} \rangle \end{array}$

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

ъ.

Cube Pruning Algorithm²

- The number of derivations can be vast
- Each derivation will produce a translation candidate
- Each candidate has a score
- Find best candidate

$$\mathop{\mathrm{argmax}}_{t \in \mathcal{T}} P(s|t) \ P(t)$$

S	Х		
x8420	x20		
x420	x20		
x20	x20	x20	x20
	S,	S ₂	S ₃

²Chiang, D. 2005. A Hierarchical Phrase-Based Model for Statistical Machine Translation. Proc. ACL: 🕨 👍 🚊 🛶 👳

Cube Pruning Algorithm²

- The number of derivations can be vast
- Each derivation will produce a translation candidate ►
- Each candidate has a score
- Find best candidate

argmax P(s|t) P(t) $t \in \mathcal{T}$

S Х x8420 x20 x420 x20 x20 x20 x20 x20 S S S,

- Cube-Pruning Algorithm
 - One-by-one processing of all derivations is not feasible
 - Lists of k-best hypotheses are kept in each cell (k=10⁴)
 - Local decisions based on Translation and Language Model
 - Translation Model fits well in this grid representation
 - × Language Model does not: $P(t) = \prod_{n=1}^{I} p(t_n | t_{n-1})$

would return $\leftarrow p(return|would) \times p(would|?)$ he would return $\leftarrow p(return|would) \times p(would|he) \times p(he|?)$

Local decisions should be avoided!

²Chiang, D. 2005. A Hierarchical Phrase-Based Model for Statistical Machine Translation. Proc. ACL.

Reviewing Weighted Finite-State Acceptors (WFSAs)

- WFSAs are devices that compactly model a formal language
- A Weighted Acceptor of strings 'a b c d' and 'a b b d' :

$$0 \xrightarrow{a/0.1} 1 \xrightarrow{b/0.3} 2 \xrightarrow{c/0.7} 3 \xrightarrow{d} 4$$

is defined by a set of states Q and a set of arcs : $q \stackrel{x/w}{\to} q'$

- Weighted Acceptors can assign costs to strings:
 - strings are associated with paths, which are sequences of arcs
 - weights are accumulated over paths by means of a product operation \otimes

$$w(p) = w(e_1) \otimes \cdots \otimes w(e_n)$$

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Reviewing Weighted Finite-State Acceptors (WFSAs)

- WFSAs are devices that compactly model a formal language
- A Weighted Acceptor of strings 'a b c d' and 'a b b d' :

$$0 \xrightarrow{a/0.1} 1 \xrightarrow{b/0.3} 2 \xrightarrow{c/0.7} 3 \xrightarrow{d} 4$$

is defined by a set of states Q and a set of arcs : $q \stackrel{x/w}{\rightarrow} q'$

- Weighted Acceptors can assign costs to strings:
 - strings are associated with paths, which are sequences of arcs
 - weights are accumulated over paths by means of a product operation \otimes

$$w(p) = w(e_1) \otimes \cdots \otimes w(e_n)$$

Probability Semiring: $w(a b c d') = 0.1 \times 0.3 \times 0.7 \times 1.0 = 0.021 \leftarrow \text{BEST}$ $w(a b b d') = 0.1 \times 0.3 \times 0.2 \times 1.0 = 0.006$

・ロット (雪) (日) (日) (日)

Reviewing Weighted Finite-State Acceptors (WFSAs)

- WFSAs are devices that compactly model a formal language
- A Weighted Acceptor of strings 'a b c d' and 'a b b d' :

$$0 \xrightarrow{a/0.1} 1 \xrightarrow{b/0.3} 2 \xrightarrow{c/0.7} 3 \xrightarrow{d} 4$$

is defined by a set of states Q and a set of arcs : $q \stackrel{x/w}{\rightarrow} q'$

- Weighted Acceptors can assign costs to strings:
 - strings are associated with paths, which are sequences of arcs
 - weights are accumulated over paths by means of a product operation \otimes

$$w(p) = w(e_1) \otimes \cdots \otimes w(e_n)$$

Tropical Semiring: w(a b c d') = 0.1 + 0.3 + 0.7 + 0.0 = 1.1 $w(a b b d') = 0.1 + 0.3 + 0.2 + 0.0 = 0.6 \leftarrow \mathsf{BEST}$

WFSA Operations - Union

A string x is accepted by $A = A \cup B$ if x is accepted by A or by B

$$\llbracket C \rrbracket(x) = \llbracket A \rrbracket(x) \bigoplus \llbracket B \rrbracket(x)$$

WFSA Operations - Concatenation (or Product)

A string x is accepted by $C = A \otimes B$ if x can be split into $x = x_1x_2$ such that x_1 is accepted by A and x_2 is accepted by B

ACS Statistical Machine Translation. Lecture 8 Lent 2013

・ロット (雪) (日) (日)

WFSA Operations for Compactness

WFSAs can be made compact with operations that:

- reduce their size in number of states/arcs
- accept the same distinct strings
- ▷ the cost of each string is respected according to the semiring

- ▶ WFSAs can represent compactly more than 10⁶⁰ paths
- Processing a WFSA is much faster than processing all of the paths individually

・ロト ・ 同ト ・ ヨト ・ ヨト

HiFST. Hierarchical Translation with WFSTs ³

 Keep all possible derivations in each cell Efficiently explore largest T in

```
\underset{t \in \mathcal{T}}{\operatorname{argmax}} P(s|t) P(t)
```


Build a WFSA in each cell

- They compactly store millions of paths with Translation Model costs
- We can operate with them easily and faster
- Applying a Language Model to a WFSA is a well-established task

```
In each cell, do:
For each rule in the cell:
Build Rule WFSA by Concatenating target elements ( ⊗ )
Build Cell WFSA by Unioning Rule WFSAs ( ⊕ )
```

³Iglesias, G. et al. 2009. Hierarchical Phrase-Based Translation with Weighted Finite State Transducers. Proc. of NAACL-HLT.

Building Rule WFSAs by Concatenation

Building Cell WFSA by Union

- Can be made compact
- Target language model can be applied
- Search can be carried out efficiently

Delayed Translation

lattices with translated text

・ コ マ チ (雪 マ チ (雪 マ ー)

Easy implementation with FST Replace operation

 $\checkmark\,$ Usual FST operations can be applied to skeleton \rightarrow lattice size reduction

3

Pruning

Final translation lattice L(S, 1, J) typically requires pruning

- Compose with target Language Model
- Perform likelihood-based pruning

Pruning in Search:

- ▶ If number of states, non-terminal category and source span meet certain conditions, then:
 - Expand Pointers in translation Lattice and Compose with Language Model
 - Perform likelihood-based pruning of the lattice
 - Remove Language Model
- ► Only required for certain language pairs, i.e. Chinese→English
- The hierarchical grammar can be defined to avoid this (next lecture)

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

Translation Experiments into English

Large collections of parallel text are available

- Arabic-to-English: ${\sim}6M$ sentences, ${\sim}150M$ words
- Chinese-to-English: ~10M sentences, ~250M words
- Spanish-to-English: \sim 1.3M sentences, \sim 37M words

Hierarchical phrases are extracted from alignments

Maximum Likelihood estimates for P(s|t)

5-gram Language Model P(t)

Contrast: Cube Pruning (CP) vs HiFST

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

Translation Results into English. Contrast CP vs HiFST

Translation Results into English. Change in Semiring

ACS Statistical Machine Translation. Lecture 8 Lent 2013

Conclusions

✓ HiFST generates a bigger, richer space of translation candidates

Fewer Search Errors: 19% in Arabic, 48% in Chinese Leveraged by subsequent rescoring techniques

- ✓ Faster decoding times, particularly in Arabic and Spanish
- Simple implementation, Google OpenFST toolkit ⁴ General, well-studied algorithms Capable of complex semiring operations

✓ HiFST system is very competititve!

Top-3/4 in Arabic→ and Chinese→English NIST 2012 MT Evaluation (20 participants) **Top-1 in Arabic→English NIST 2009 MT Evaluation (22 participants)** Top-5 in Chinese→English NIST 2008 MT Evaluation task (20 participants) Top-1 in Spanish→English ACL 2008 Workshop on SMT task (14 participants)

⁴C. Allauzen, M. Riley, J. Schalkwyk, W. Skut , and M. Mohri (2007), OpenFst: A General and Efficient Weighted Finite-State Transducer Library. CIAA.

