ACS Statistical Machine Translation

Lecture 10: Minimum Error Training, Rescoring and System Combination

Department of Engineering University of Cambridge

Bill Byrne bill.byrne@cam.ac.uk

Lent 2013

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 → � < ♡ < ♡

Statistical Machine Translation (SMT)

Fundamental idea:

"Any word sequence of a target language is a possible translation of a given input sentence of a source language"

- Each target word sequence is a translation hypothesis, and it has a certain probability
- This probability is defined according to a statistical model describing the translation process
- The model parameters are estimated automatically from big parallel texts

Translation \equiv **finding** the highest-probability hypothesis

$$\hat{t} = \operatorname{argmax}_{t} P(t|s) = \operatorname{argmax}_{t} P(s|t) P(t)$$

Translation Language

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

SMT Depends on Data

Statistical translation models try to *learn* from the parallel corpus of translation 'examples' in order to *generalize* to unseen input data.

The corpus is crucial:

- Parallel texts and monolingual texts
 - \triangleright size \leftarrow the bigger, the better
 - ▷ language pairs, direction ← which was the original?
 - domain, literalness, domain scalability
 - ▷ quality, noise, complete errors ← automatically generated?
 - ▷ linguistic annotation ← Part-Of-Speech, lemmas, dependencies, ...
- Consistent pre-processing
 - tokenization, normalization, length-ratio filtering
- Evaluation metrics
 - number of golden reference translations
 - ▷ quality of golden reference translations ← similar to training material?

・ ロ ト ・ 雪 ト ・ 目 ト ・ 日 ト

SMT General Concepts

Model definition and estimation:

- Translation unit: defines the model and search algorithms
- Fully automatic, inferred
- Data sparsity: parallel corpus quality and task definition
- Complexity: exact vs approximated estimation

Search:

- Complexity: monotonic vs reordered
- Completeness: exact vs pruned

ъ.

Minimum Error Training (MERT)

In practice, the translation process is formulated as a log-linear combination of features:

$$\hat{t}_1^I = \operatorname*{argmax}_{t_1^I} \left\{ \sum_{m=1}^M \lambda_m h_m(s_1^J, t_1^I) \right\}$$

- Each feature contributes differently according to a weight λ_m
- Minimum Error Training (MERT) used to optimize weights according to a given development set and evaluation metric (BLEU)
- Significant gains over uniform weights

Typical feature functions:

- translation model (included in both directions)
- target language model
- word and phrase penalties
- ▷ lexical features based on IBM model 1 word-to-word probabilities (both directions)
- additional phrase counters

・ロット (雪) (日) (日) (日)

General Pipeline. Model estimation

・ コ マ チ (雪 マ チ (雪 マ ー)

General Pipeline. Discriminative training

Department of Engineering University of Cambridge ACS Statistical Machine Translation. Lecture 10 Lent 2013 ъ

A D > A B > A B > A B >

General Pipeline. Decoding

э

Rescoring or hypothesis re-ranking

- > Not all features can be straightforwardly integrated in decoding
 - Complexity
 - Unavailable contextual information
- Additional complex features can be integrated via Rescoring
- Over N-best lists or lattices
- Rescoring models
 - Large Language Models: higher orders, extra material, ...
 - Phrase Segmentation Models
 - Minimum Bayes Risk Decoding
 - Lattice-to-String word-to-word Model 1 alignment, Syntactic features ...

・ロット (雪) (日) (日) (日)

Large Language Model Rescoring

Stupid backoff zero cut-off 5-gram language model¹

Directly build sentence-specific LMs:

- Counts are extracted beforehand from all monolingual English data
- 5-grams are extracted from first-pass lattices
- All observed n-grams are kept and backoff weight α is fixed for all orders:

$$S(s_i|s_{i-n+1}^{i-1}) = \begin{cases} \frac{\#(s_{i-n+1}^i)}{\#(s_{i-n+1}^{i-1})} & \text{if } \#(s_{i-n+1}^i) > 0\\ \\ \alpha S(s_i|s_{i-n+2}^{i-1}) & \text{otherwise} \end{cases}$$

- equal weight interpolation with first-pass 4-gram LM
- exact search with OpenFST libraries in second-pass lattice rescoring ►

¹T. Brants et al. 2007. Large Language Models in Machine Translation. EMNLP

Phrasal Segmentation Model Rescoring

Assign probability to sequences of English phrases

- phrases are translatable word sequences
- complement word-based N-grams

Phrase segmentation transducer can assign 'bigram' probabilities to phrases:

$$P(u_1^K | s_1^I) = \prod_k P(u_k | u_{k-1}, s_1^K)$$

Minimum Bayes Risk Decoding ³

Taking the goal as BLEU maximization

- A baseline translation model to give the probabilities over translations: $P(\mathbf{S}|\mathbf{T})$
- A set N of N-Best Translations of T
- ► A Loss function L(S', S) that measures the the quality of S' relative to S

MBR Decoder

$$\widehat{\mathbf{S}} = \operatorname*{argmin}_{\mathbf{S} \in \mathcal{N}} \sum_{\mathbf{S}' \in \mathcal{N}} - \mathsf{BLEU}(\mathbf{S}', \mathbf{S}) P(\mathbf{S}' | \mathbf{T})$$

 $\widehat{\mathbf{S}}$ is sometimes called the 'consensus hypothesis'

- picks from the middle of the similar, relatively likely translation hypotheses
- typically over an N-Best list, but also lattices ²

Rationale is to balance estimation criteria (e.g. MLE) with translation criteria (e.g. BLEU)

 ²Tromble, R. et al. 2008. Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation. EMNLP.
³S. Kumar W. Byrne. 2004. Minimum Bayes-risk decoding for statistical machine translation. HLT-NAACL ()

Rescoring Results. Task

NIST 2008 Arabic-English MT task ⁴

- development set (*mt02-05-tune*): odd-numbered sentences of the NIST MT02 through MT05 evaluation sets
- validation set (mt02-05-test): even-numbered sentences of the NIST MT02 through MT05 evaluation sets
- test sets: MT06 (with newswire and newsgroup subsets) and MT08

TTM system trained on all available Arabic-English data for NIST MT08

- ~ 6M sentences, ~ 150M words
- word-aligned using MTTK

English Language Model data includes:

- first-pass 4-gram: parallel corpus + subset from English GigaWord Third Edition (~ 965M) words)
- second-pass zero-cutoff 5-gram: ~ 4.7B words (newswire text)
- phrasal segmentation model: ~ 1.8B word subset of the above text

⁴nist.gov/speech/tests/mt/2006 nist.gov/speech/tests/mt/2008

▲□▶▲□▶▲□▶▲□▶ □ のQで

Rescoring Results. TTM

TTM. Phrase-based system implemented with WFST:

Reordering model is MJ1 (maximum one phrase swap)

Lowercase BLEU/TER scores over five test sets from 2002 through 2008:

Method	mt02-05-tune	mt02-05-test	mt06-nist-nw	mt06-nist-ng	mt08-nist
TTM+MET	50.9 / 42.8	50.3 / 43.3	48.1 / 44.3	37.5 / 53.5	43.1 / 49.5
+5g	53.5 / 41.8	52.4 / 42.4	49.6 / 43.9	39.0 / 54.0	43.7 / 49.3
+PSM	53.9 / 42.1	53.3 / 42.7	50.1 / 44.3	39.0 / 54.7	44.3 / 49.3
+MBR	54.0 / 41.7	53.7 / 42.2	51.0 / 43.9	39.4 / 54.1	45.0 / 48.9

- Important gains from lattice rescoring (improved fluency)
- Phrasal segmentation model complements 5-gram rescoring with further (yet smaller) gains
- Minimum Bayes Risk on the 1000-best list produces consistent gains
- Ranks among the group of top single-system entries in NIST 2008 official results

・ ロ ト ・ 雪 ト ・ 国 ト ・ 日 ト

Rescoring Results. HiFST

HiFST. Hierarchical Phrase-based system implemented with WFST:

- Reordering model is explicit in rules
- CYK parsing

Method	mt02-05-tune		mt02-05-test		mt08	
	BLEU	TER	BLEU	TER	BLEU	TER
HiFST+MET	52.2	41.5	51.6	42.1	42.4	48.7
+5gram	53.3	40.6	52.7	41.3	43.7	48.1
+MBR	53.7	40.4	53.3	40.9	44.0	48.0

For Chinese-to-English:

	tune-nw		test-nw		mt08	
	BLEU	TER	BLEU	TER	BLEU	TER
HiFST+MET	32.0	60.1	32.2	60.0	27.1	60.5
+5gram	32.7	58.3	33.1	58.4	28.1	59.1
+MBR	32.9	58.4	33.4	58.5	28.9	58.9

- Very important contribution of large monolingual data
- MBR decoding always helps

・ ロ ト ・ 戸 ト ・ ヨ ト ・ ヨ ト

System Combination

Given a set of alternative MT outputs

Different SMT approaches:

- Phrase-based systems
- Hierarchical phrase-based systems
- Syntax-based systems
- <u>►</u> ...

Different configurations:

- Features set
- Search parameters, feature weights

۰...

Different data:

- Corpora, subcorpora weights
- Pre-processing, Morphological segmentations

١...

ROVER for Combining Speech Recognisers

ROVER⁵ is a method of system combination based on consensus networks:

- Originally devised for combining ASR output
- 1 Take one output hypothesis as reference
- 2 Time-align all other hyps to the reference to build confusion network / word graph
- 3 Re-decode using consensus scores and language models

From Schwenk, H. and Gauvain, J-L. ICSLP 2000

⁵Fiscus, J.G. 1997. A post-processing system to yield reduced error word rates: Recognizer output voting error reduction (ROVER). Proc. ASRU

ROVER for MT System Combination

ROVER can be applied successfully to the translation task ⁶:

- ► Select Reference Hypothesis: least cost, MBR hypothesis, ...
- ► Align other hypothesis to reference ← allow shifts?
- Re-Decode including extra features

System/	20	003	20)04	
Combination	TER	BLEU	TER	BLEU	
BBN Phrase	41.56	53.32	41.71	45.40	
BBN Hiero	42.36	52.03	44.26	42.67	
Edinburgh	42.05	52.5	44.20	47.76	
ISI Hiero	40.53	54.54	42.21	46.49	
ISI Phrase	41.94	52.35	43.09	45.21	
ISI Syntax	42.96	52.36	45.00	44.11	
MBR-BLEU	39.71	56.16	41.29	48.37	
Confusion	39.37	55.67	41.21	46.45	
ConMBR-BLEU	39.02	56.64	40.23	48.93	

Alignment strategy is crucial for good performance ⁷

⁶Sim, C-K. et al. 2007. Consensus network decoding for statistical machine translation system combination. In ICASSP.

⁷Rosti, A-V. et al. 2007. Combining Outputs from Multiple Machine Translation Systems. Proc. NAACL 🕢 🚊 🕨 🚆

MBR-based System Combination

Minimum Bayes Risk decoding over N-best list:

- A baseline translation model to give the probabilities over translations: $P(\mathbf{S}|\mathbf{T})$
- A set N of N-Best Translations of T
- ► A Loss function L(S', S) that measures the the quality of S' relative to S

MBR Decoder

$$\widehat{\mathbf{S}} = \mathop{\mathrm{argmin}}_{\mathbf{S} \in \mathcal{N}} \sum_{\mathbf{S}' \in \mathcal{N}} - \mathsf{BLEU}(\mathbf{S}', \mathbf{S}) P(\mathbf{S}' | \mathbf{T})$$

Steps:

- Take N-best hypotheses from each system
- Apply scaling factor to probs. of each system \rightarrow tune scale factor on dev data
- Decode using MBR as usual

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のので

MBR-based System Combination. Results (1)

Alternative translation systems

Phrase-based vs Hierarchical Phrase-based

Chinese-to-English large-data task: \sim 11M sentences

newswire		Tune	Tune.text		SysCombTune.text		Test.text	
system		IBLEU	TER	IBLE	EU TER	IBLEU	TER	
TTM	MET	30.0	61.07	30.	6 60.26	20.5	63.77	
	+5grams	30.7	59.92	31.	4 59.58	20.7	63.25	
	+PSM (A)	30.8	60.80	31.	6 60.18	21.1	63.59	
	+MBR	31.0	60.80	31.	6 60.36	21.4	63.37	
HiFST	MET	32.1	60.37	32.	6 59.72	22.3	63.21	
	+6grams (B)	33.1	58.61	34.	0 57.69	22.5	61.83	
	+MBR	33.3	58.70	34.	1 58.03	22.9	61.65	
MBRCOMB	A+B	33.5	58.61	34.	3 57.96	23.2	61.50	

MBR-based System Combination. Results (2)

Identical translation system

Alternative data segmentations

Arabic-to-English HiFST system trained on multiple data segmentations 8

Arabic	wqrrt An tn\$A ljnp tHDyryp jAmEp lljmEyp AlEAmp fY dwrthA AlvAnyp wAlxmsyn
MADA D2 SAKHR	w+ qrrt >n tn\$A linp tHDyryp jAmEp I+ AljmEyp AlEAmp fy dwrthA AlvAnyp w+ Alxmsyn w+ grrt An tn\$A linp tHDyryp jAmEp I*I+ jmEyp Al+ EAmp fY dwrt +hA Al+ vAnyp w*Al+ xmsyn
English	a preparatory committee of the whole of the general assembly is to be established at its fifty-second session

Large gains:

	mt02-05- -tune -test		mt08
MADA-based	53.3	52.7	43.7
+MBR	53.7	53.3	44.0
SAKHR-based	52.7	52.8	43.3
+MBR	53.2	53.2	43.8
MBR-combined	54.6	54.6	45.6

⁸de Gispert, A. et al. 2009. Minimum Bayes Risk Combination of Translation Hypotheses from Alternative Morphological Decompositions. Proc. of HLT-NAACL: short papers.

MBR-based System Combination. Results (3)

Identical translation system Alternative data segmentations

Finnish-to-English HiFST system trained on multiple data segmentations 9

Finnish	vaarallisten aineiden kuljetusten turvallisuusneuvonantaja
Morfessor Linguistic	vaara _{STM} llisten _{STM} aine _{STM} iden _{SUF} kuljetus _{PRE} ten _{STM} turvallisuus _{PRE} neuvo _{STM} n _{SUF} antaja _{STM} vaara llis t en aine i den kuljet us t en turva llis uus neuvo n anta ja
English	safety adviser for the transport of dangerous goods

Large gains:

	devel	test
Word-based	30.2	27.9
Morph-based	29.4	27.4
MBR-combined	30.5	28.9

⁹de Gispert, A. et al. 2009. Minimum Bayes Risk Combination of Translation Hypotheses from Alternative Morphological Decompositions. Proc. of HLT-NAACL: short papers.

Lattice Minimum Bayes-Risk Decoding

- Lattice-based MBR uses a linear approximation to BLEU for efficiency
- ► Linearized lattice MBR¹⁰ maximizes conditional expected gain:

$$\hat{E} = \operatorname*{argmax}_{E' \in \mathcal{E}} \left\{ \theta_0 | E'| + \sum_{u \in \mathcal{N}} \theta_u \#_u(E') p(u|\mathcal{E}) \right\}$$
(1)

 $\blacktriangleright \ p(u|\mathcal{E})$ is "path posterior probability" of $n\text{-}\mathrm{gram}\ u$

$$p(u|\mathcal{E}) = \sum_{E \in \mathcal{E}_u} P(E|F) \tag{2}$$

- Efficient and exact implementation of Equation (1) can be achieved with WFST operations¹¹
- LMBR outperforms N-best MBR, both for single system and system combination
- due to considering more options when carrying out consensus decisions (better n-gram posterior estimates)

¹⁰ Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice Minimum Bayes-Risk decoding for statistical machine translation. EMNLP 2008.

¹¹Graeme Blackwood, Adrià de Gispert and Bill Byrne. *Efficient Path Counting Transducers for Minimum* Bayes-Risk decoding of Statistical Machine Translation Lattices. COLING 2010.

Morphological Analysis in Arabic-English MT

Multiple analysis schemes are available. Early or late fusion ?

- Early fusion: combine analyses into a lattice and perform lattice translation¹²
- Late fusion: hypothesis (lattice) combination at the output

٩p

¹²C. Dyer, S. Muresan, and P. Resnik. Generalizing Word Lattice Translation. In Proceedings of the Annual Meeting of the Association for Computational Linguistics (ACL), Columbus, Ohio, July 2008.

MBR – Easy Integration of Multiple Morphological Analyses

Arabic-to-English results when using alternative Arabic decompositions¹³,¹⁴

- Contrast N-best-based and lattice-based Minimum Bayes Risk rescoring
- Nice gains from LMBR
 - Further advantages in direct generation of lattices
 - Very robust for noisy text see NIST MT09 Web results

configuration		mt02-05-tune	mt02-05-test	mt08
а	HiFST+5g	54.2	53.8	44.9
b	HiFST+5g	53.8	53.6	45.0
с	HiFST+5g	54.1	53.8	44.7
a+b	+MBR (N=1000)	55.1	54.7	46.1
	+LMBR	55.7	55.4	46.7
a+c	+MBR (N=500x2)	55.4	54.9	46.5
	+LMBR	56.0	55.9	46.9
a+b+c	+MBR (N= $\frac{1000}{3}$ x3)	55.3	54.9	46.5
	+LMBR	56.0	55.7	47.3

¹³A. de Gispert, S. Virpioja, M. Kurimo, and W. Byrne. Minimum Bayes risk combination of translation hypotheses from alternative morphological decompositions. Proceedings of NAACL-HLT, 2009.

¹⁴M. Kurimo, S. Virpioja, V. T. Turunen, G. W. Blackwood, W. Byrne. Overview and results of Morpho Challenge 2009. 10th Workshop of the Cross-Language Evaluation Forum - CLEF 2009