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Reviewing SMT Fundamentals General Pipeline Lattice Rescoring System Combination

Statistical Machine Translation (SMT)

Fundamental idea:

“Any word sequence of a target language is a possible translation
of a given input sentence of a source language”

I Each target word sequence is a translation hypothesis, and it has a certain probability
I This probability is defined according to a statistical model describing the translation

process
I The model parameters are estimated automatically from big parallel texts

Translation ≡ finding the highest-probability hypothesis

t̂ = argmaxt P (t|s) = argmaxt P (s|t) P (t)
Translation Language

Model Model
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SMT Depends on Data

Statistical translation models try to learn from the parallel corpus of translation ’examples’
in order to generalize to unseen input data.

The corpus is crucial:

I Parallel texts and monolingual texts
. size← the bigger, the better
. language pairs, direction← which was the original?
. domain, literalness, domain scalability
. quality, noise, complete errors← automatically generated?
. linguistic annotation← Part-Of-Speech, lemmas, dependencies, ...

I Consistent pre-processing
. tokenization, normalization, length-ratio filtering

I Evaluation metrics
. number of golden reference translations
. quality of golden reference translations← similar to training material?
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SMT General Concepts

Model definition and estimation:

I Translation unit: defines the model and search algorithms
I Fully automatic, inferred
I Data sparsity: parallel corpus quality and task definition
I Complexity: exact vs approximated estimation

Search:

I Complexity: monotonic vs reordered
I Completeness: exact vs pruned
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Minimum Error Training (MERT)
In practice, the translation process is formulated as a log-linear combination of features:

t̂I1 = argmax
tI1

{
M∑

m=1

λmhm(sJ1 , t
I
1)

}

I Each feature contributes differently according to a weight λm
I Minimum Error Training (MERT) used to optimize weights according to a given

development set and evaluation metric (BLEU)
I Significant gains over uniform weights

Typical feature functions:

. translation model (included in both directions)

. target language model

. word and phrase penalties

. lexical features based on IBM model 1 word-to-word probabilities (both directions)

. additional phrase counters
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General Pipeline. Model estimation
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General Pipeline. Discriminative training
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General Pipeline. Decoding
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Rescoring or hypothesis re-ranking

I Not all features can be straightforwardly integrated in decoding
I Complexity
I Unavailable contextual information

I Additional complex features can be integrated via Rescoring

I Over N-best lists or lattices

I Rescoring models
I Large Language Models: higher orders, extra material, ...
I Phrase Segmentation Models
I Minimum Bayes Risk Decoding
I Lattice-to-String word-to-word Model 1 alignment, Syntactic features ...
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Large Language Model Rescoring

Stupid backoff zero cut-off 5-gram language model 1

Directly build sentence-specific LMs:
I Counts are extracted beforehand from all monolingual English data
I 5-grams are extracted from first-pass lattices
I All observed n-grams are kept and backoff weight α is fixed for all orders:

S(si|si−1
i−n+1) =


#(sii−n+1)

#(s
i−1
i−n+1

)
if #(sii−n+1) > 0

α S(si|si−1
i−n+2) otherwise

I equal weight interpolation with first-pass 4-gram LM
I exact search with OpenFST libraries in second-pass lattice rescoring

1T. Brants et al. 2007. Large Language Models in Machine Translation. EMNLP
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Phrasal Segmentation Model Rescoring
Assign probability to sequences of English phrases

I phrases are translatable word sequences
I complement word-based N-grams

0

1

that
5that_is_the

2that_is

3is

4

is_the
7

fundamental_problem

6

fundamental

the

the_fundamental_problem

the

the_fundamental_problem

fundamental_problem

fundamental
problem

Phrase segmentation transducer can assign ‘bigram’ probabilities to phrases:

P (uK1 |sI1) =
∏
k

P (uk | uk−1 , s
K
1 )
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Minimum Bayes Risk Decoding 3

Taking the goal as BLEU maximization
I A baseline translation model to give the probabilities over translations: P (S|T)

I A set N of N-Best Translations of T
I A Loss function L(S′,S) that measures the the quality of S′ relative to S

MBR Decoder
Ŝ = argmin

S∈N

∑
S′∈N

−BLEU(S′,S)P (S′|T)

Ŝ is sometimes called the ‘consensus hypothesis’
I picks from the middle of the similar, relatively likely translation hypotheses
I typically over an N-Best list, but also lattices 2

Rationale is to balance estimation criteria (e.g. MLE) with translation criteria (e.g. BLEU)

2Tromble, R. et al. 2008. Lattice Minimum Bayes-Risk Decoding for Statistical Machine Translation. EMNLP.
3S. Kumar W. Byrne. 2004. Minimum Bayes-risk decoding for statistical machine translation. HLT-NAACL
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Rescoring Results. Task

NIST 2008 Arabic-English MT task 4

I development set (mt02-05-tune): odd-numbered sentences of the NIST MT02 through
MT05 evaluation sets

I validation set (mt02-05-test): even-numbered sentences of the NIST MT02 through MT05
evaluation sets

I test sets: MT06 (with newswire and newsgroup subsets) and MT08

TTM system trained on all available Arabic-English data for NIST MT08
I ∼ 6M sentences, ∼ 150M words
I word-aligned using MTTK

English Language Model data includes:
I first-pass 4-gram: parallel corpus + subset from English GigaWord Third Edition (∼ 965M

words)
I second-pass zero-cutoff 5-gram: ∼ 4.7B words (newswire text)
I phrasal segmentation model: ∼ 1.8B word subset of the above text

4nist.gov/speech/tests/mt/2006 nist.gov/speech/tests/mt/2008
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Rescoring Results. TTM

TTM. Phrase-based system implemented with WFST:
I Reordering model is MJ1 (maximum one phrase swap)

Lowercase BLEU/TER scores over five test sets from 2002 through 2008:

Method mt02-05-tune mt02-05-test mt06-nist-nw mt06-nist-ng mt08-nist
TTM+MET 50.9 / 42.8 50.3 / 43.3 48.1 / 44.3 37.5 / 53.5 43.1 / 49.5

+5g 53.5 / 41.8 52.4 / 42.4 49.6 / 43.9 39.0 / 54.0 43.7 / 49.3
+PSM 53.9 / 42.1 53.3 / 42.7 50.1 / 44.3 39.0 / 54.7 44.3 / 49.3
+MBR 54.0 / 41.7 53.7 / 42.2 51.0 / 43.9 39.4 / 54.1 45.0 / 48.9

I Important gains from lattice rescoring (improved fluency)
I Phrasal segmentation model complements 5-gram rescoring with further (yet smaller)

gains
I Minimum Bayes Risk on the 1000-best list produces consistent gains
I Ranks among the group of top single-system entries in NIST 2008 official results
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Rescoring Results. HiFST
HiFST. Hierarchical Phrase-based system implemented with WFST:

I Reordering model is explicit in rules
I CYK parsing

Method mt02-05-tune mt02-05-test mt08
BLEU TER BLEU TER BLEU TER

HiFST+MET 52.2 41.5 51.6 42.1 42.4 48.7
+5gram 53.3 40.6 52.7 41.3 43.7 48.1
+MBR 53.7 40.4 53.3 40.9 44.0 48.0

For Chinese-to-English:

tune-nw test-nw mt08
BLEU TER BLEU TER BLEU TER

HiFST+MET 32.0 60.1 32.2 60.0 27.1 60.5
+5gram 32.7 58.3 33.1 58.4 28.1 59.1
+MBR 32.9 58.4 33.4 58.5 28.9 58.9

I Very important contribution of large monolingual data
I MBR decoding always helps
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System Combination

Given a set of alternative MT outputs

Different SMT approaches:
I Phrase-based systems
I Hierarchical phrase-based systems
I Syntax-based systems
I ...

Different configurations:
I Features set
I Search parameters, feature weights
I ...

Different data:
I Corpora, subcorpora weights
I Pre-processing, Morphological segmentations
I ...
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ROVER for Combining Speech Recognisers

ROVER 5 is a method of system combination based on consensus networks:
I Originally devised for combining ASR output

1 Take one output hypothesis as reference

2 Time-align all other hyps to the reference to build confusion network / word graph

3 Re-decode using consensus scores and language models

From Schwenk,H. and Gauvain, J-L. ICSLP 2000

5Fiscus, J.G. 1997. A post-processing system to yield reduced error word rates: Recognizer output voting error
reduction (ROVER). Proc. ASRU
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ROVER for MT System Combination
ROVER can be applied successfully to the translation task 6:

I Select Reference Hypothesis: least cost, MBR hypothesis, ...
I Align other hypothesis to reference← allow shifts?
I Re-Decode including extra features

I Alignment strategy is crucial for good performance 7

6Sim, C-K. et al. 2007. Consensus network decoding for statistical machine translation system combination. In
ICASSP.

7Rosti, A-V. et al. 2007. Combining Outputs from Multiple Machine Translation Systems. Proc. NAACL.
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MBR-based System Combination

Minimum Bayes Risk decoding over N-best list:

I A baseline translation model to give the probabilities over translations: P (S|T)

I A set N of N-Best Translations of T
I A Loss function L(S′,S) that measures the the quality of S′ relative to S

MBR Decoder
Ŝ = argmin

S∈N

∑
S′∈N

−BLEU(S′,S)P (S′|T)

Steps:
I Take N-best hypotheses from each system
I Apply scaling factor to probs. of each system→ tune scale factor on dev data
I Decode using MBR as usual
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MBR-based System Combination. Results (1)

Alternative translation systems

Phrase-based vs Hierarchical Phrase-based

Chinese-to-English large-data task: ∼ 11M sentences

newswire Tune.text SysCombTune.text Test.text
system IBLEU TER IBLEU TER IBLEU TER
TTM MET 30.0 61.07 30.6 60.26 20.5 63.77

+5grams 30.7 59.92 31.4 59.58 20.7 63.25
+PSM (A) 30.8 60.80 31.6 60.18 21.1 63.59
+MBR 31.0 60.80 31.6 60.36 21.4 63.37

HiFST MET 32.1 60.37 32.6 59.72 22.3 63.21
+6grams (B) 33.1 58.61 34.0 57.69 22.5 61.83
+MBR 33.3 58.70 34.1 58.03 22.9 61.65

MBRCOMB A+B 33.5 58.61 34.3 57.96 23.2 61.50
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MBR-based System Combination. Results (2)

Identical translation system

Alternative data segmentations

Arabic-to-English HiFST system trained on multiple data segmentations 8

Arabic wqrrt An tn$A ljnp tHDyryp jAmEp lljmEyp AlEAmp fY dwrthA AlvAnyp wAlxmsyn
MADA D2 w+ qrrt >n tn$A ljnp tHDyryp jAmEp l+ AljmEyp AlEAmp fy dwrthA AlvAnyp w+ Alxmsyn
SAKHR w+ qrrt An tn$A ljnp tHDyryp jAmEp l*l+ jmEyp Al+ EAmp fY dwrt +hA Al+ vAnyp w*Al+ xmsyn

English a preparatory committee of the whole of the general assembly is to be established at its fifty-second session

Large gains:

mt02-05-
-tune -test mt08

MADA-based 53.3 52.7 43.7
+MBR 53.7 53.3 44.0
SAKHR-based 52.7 52.8 43.3
+MBR 53.2 53.2 43.8
MBR-combined 54.6 54.6 45.6

8de Gispert, A. et al. 2009. Minimum Bayes Risk Combination of Translation Hypotheses from Alternative
Morphological Decompositions. Proc. of HLT-NAACL: short papers.
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MBR-based System Combination. Results (3)

Identical translation system

Alternative data segmentations

Finnish-to-English HiFST system trained on multiple data segmentations 9

Finnish vaarallisten aineiden kuljetusten turvallisuusneuvonantaja
Morfessor vaaraSTM llistenSTM aineSTM idenSUF kuljetusPRE tenSTM turvallisuusPRE neuvoSTM nSUF antajaSTM
Linguistic vaara llis t en aine i den kuljet us t en turva llis uus neuvo n anta ja

English safety adviser for the transport of dangerous goods

Large gains:

devel test
Word-based 30.2 27.9
Morph-based 29.4 27.4
MBR-combined 30.5 28.9

9de Gispert, A. et al. 2009. Minimum Bayes Risk Combination of Translation Hypotheses from Alternative
Morphological Decompositions. Proc. of HLT-NAACL: short papers.
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Lattice Minimum Bayes-Risk Decoding

I Lattice-based MBR uses a linear approximation to BLEU for efficiency
I Linearized lattice MBR10 maximizes conditional expected gain:

Ê = argmax
E′∈E

{
θ0|E′|+

∑
u∈N

θu#u(E
′)p(u|E)

}
(1)

I p(u|E) is “path posterior probability” of n-gram u

p(u|E) =
∑

E∈Eu

P (E|F ) (2)

I Efficient and exact implementation of Equation (1) can be achieved with WFST
operations11

I LMBR outperforms N-best MBR, both for single system and system combination
I due to considering more options when carrying out consensus decisions (better n-gram

posterior estimates)

10Roy Tromble, Shankar Kumar, Franz Och, and Wolfgang Macherey. Lattice Minimum Bayes-Risk decoding for
statistical machine translation. EMNLP 2008.

11Graeme Blackwood, Adrià de Gispert and Bill Byrne. Efficient Path Counting Transducers for Minimum
Bayes-Risk decoding of Statistical Machine Translation Lattices. COLING 2010.
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Morphological Analysis in Arabic-English MT

Multiple analysis schemes are available. Early or late fusion ?
I Early fusion: combine analyses into a lattice and perform lattice translation12

I Late fusion: hypothesis (lattice) combination at the output

ةيريضتح ةنلج اشنت نا تررقو  
ىف ةماعلا ةيعمجلل ةعماج  

ينسملخاو ةيناثلا اهترود  ;

MADA Translation Reordering /
LMs / ...

SAKHR

MBR 
a preparatory committee 

of the whole of the 
general assembly is to be 
established at its fifty @-

@ second session ;Translation Reordering / 
LMs / ...

w+ qrrt >n tn$A ljnp tHDyryp jAmEp l+ AljmEyp AlEAmp fy dwrthA AlvAnyp w+ Alxmsyn ;

ينسمخ +لا*و ةيناث +لا اه+ ترود ىف ةماع +لا ةيعمج +ل*ل ةعماج ةيريضتح ةنلج اشنت نا تررق +و  ;

12C. Dyer, S. Muresan, and P. Resnik. Generalizing Word Lattice Translation. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics (ACL), Columbus, Ohio, July 2008.
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MBR – Easy Integration of Multiple Morphological Analyses

Arabic-to-English results when using alternative Arabic decompositions13,14

I Contrast N-best-based and lattice-based Minimum Bayes Risk rescoring
I Nice gains from LMBR

I Further advantages in direct generation of lattices
I Very robust for noisy text – see NIST MT09 Web results

configuration mt02-05-tune mt02-05-test mt08
a HiFST+5g 54.2 53.8 44.9
b HiFST+5g 53.8 53.6 45.0
c HiFST+5g 54.1 53.8 44.7

a+b +MBR (N=1000) 55.1 54.7 46.1
+LMBR 55.7 55.4 46.7

a+c +MBR (N=500x2) 55.4 54.9 46.5
+LMBR 56.0 55.9 46.9

a+b+c +MBR (N= 1000
3

x3) 55.3 54.9 46.5
+LMBR 56.0 55.7 47.3

13A. de Gispert, S. Virpioja, M. Kurimo, and W. Byrne. Minimum Bayes risk combination of translation hypotheses
from alternative morphological decompositions. Procedings of NAACL-HLT, 2009.

14M. Kurimo, S. Virpioja, V. T. Turunen, G. W. Blackwood, W. Byrne. Overview and results of Morpho Challenge
2009. 10th Workshop of the Cross-Language Evaluation Forum - CLEF 2009
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