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Model-theoretic semantics and denotation

Model-theoretic semantics

Kitty sleeps is true in a particular model if the individual
denoted by Kitty (say k ) in that model is a member of the set
denoted by sleep (S):

k ∈ S

Two models where Kitty sleeps is true:
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Model-theoretic semantics and denotation

Model-theoretic semantics
A model where Kitty sleeps is false:
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Model-theoretic semantics and denotation

Ordered pairs

I The denotation of chase is a set of ordered pairs.
I For instance, if Kitty chases Rover and Lynx chases Rover

and no other chasing occurs then chase denotes
{〈k , r〉, 〈l , r〉}.

I Ordered pairs are not the same as sets.
I Repeated elements: if chase denotes {〈r , r〉} then Rover

chased himself.
I Order is significant, 〈k , r〉 is not the same as 〈r , k〉 ‘Kitty

chased Rover’ vs ‘Rover chased Kitty’
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Model-theoretic semantics and denotation

every, some and no
The sentence every cat sleeps is true just in case the set of all
cats is a subset of the set of all things that sleep.
If the set of cats is {k , l} then every cat sleeps is equivalent to:

{k , l} ⊆ S

Or, if we name the set of cats C:

C ⊆ S
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Model-theoretic semantics and denotation

Logic and model theory

I Model theory: meaning can be expressed set theoretically
with respect to a model.

I But set theoretic representation is messy: we want to
abstract away from individual models.

I Instead, think in terms of logic: truth-conditions for and, or
etc. e.g., if Kitty sleeps is true, then Kitty sleeps or Rover
barks will necessarily also be true.



L100: Lecture 7, Compositional semantics

Quantifiers

Quantifiers

(1) ∃x [sleep′(x)]
Something sleeps

(2) ∀x [sleep′(x)]
Everything sleeps

(3) ∃x [cat′(x) ∧ sleep′(x)]
Some cat sleeps

(4) ∀x [cat′(x) =⇒ sleep′(x)]
Every cat sleeps

(5) ∀x [cat′(x) =⇒ ∃y [chase′(x , y)]]
Every cat chases something

(6) ∀x [cat′(x) =⇒ ∃y [dog′(y) ∧ chase′(x , y)]]
Every cat chases some dog
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Quantifiers

Variables

I x , y , z pick out entities in model according to variable
assignment function: e.g., sleeps′(x) may be true or false
in a particular model, depending on the function.

I Constants and variables:
(29) ∀x [cat′(x) =⇒ chase′(x , r)]

Every cat chases Rover.
I No explicit representation of variable assignment function:

we just care about bound variables for now (i.e., variables
in the scope of a quantifier).
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Quantifiers

Quantifier scope ambiguity

I The truth conditions of formulae with quantifiers depend on
the relative scope of the quantifiers

I Natural languages sentences can be ambiguous wrt FOPC
without being syntactically ambiguous

I Everybody in the room speaks two languages
same two languages or not?
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The semantics of some nominal modifiers

The semantics of some nominal modifiers
(33) every big cat sleeps

∀x [(cat′(x) ∧ big′(x)) =⇒ sleep′(x)]

(34) every cat on some mat sleeps
wide scope every:

∀x [(cat′(x) ∧ ∃y [mat′(y) ∧ on′(x , y)]) =⇒ sleep′(x)]

wide scope some (i.e., single mat):

∃y [mat′(y) ∧ ∀x [(cat′(x) ∧ on′(x , y)) =⇒ sleep′(x)]]

on′(x , y) must be in the scope of both quantifiers.
Adjectives and prepositional phrases (in this use) are
syntactically modifiers.
Semantically: intersective modifiers: combine using ∧, modified
phrase denotes a subset of what’s denoted by the noun.
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The semantics of some nominal modifiers

Going from FOPC to natural language

Well-formed FOPC expressions, don’t always correspond to
natural NL utterances. For instance:
(35) ∀x [cat′(x) ∧ ∃y [bark′(y)]]
This best paraphrase of this I can come up with is:
(36) Everything is a cat and there is something which barks.
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General principles of semantic composition

Semantic composition

I Semantic rules parallel syntax rules.
I Semantics is build up compositionally: meaning of the

whole is determined from the meaning of the parts.
I Semantic derivation: constructing the semantics for a

sentence.
I Interpretation with respect to a model (true or false).
I The logical expressions constructed (logical form) could (in

principle) be dispensed with.
Maybe . . .
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Typing in compositional semantics

Typing

I Semantic typing ensures that semantic expressions are
consistent.
e.g., chase′(dog′(k)) is ill-formed.

I Two basic types:
I e is the type for entities in the model (such as k )
I t is the type for truth values (i.e., either ‘true’ or ‘false’)

All other types are composites of the basic types.
I Complex types are written 〈type1, type2〉, where type1 is

the argument type and type2 is the result type and either
type1 or type2 can be basic or complex.
e.g., 〈e, 〈e, t〉〉, 〈t , 〈t , t〉〉
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Typing in compositional semantics

Types of lexical entities

First approximation: predicates corresponding to:
I intransitive verbs (e.g. bark′) — 〈e, t〉

take an entity and return a truth value
I (simple) nouns (e.g., dog′, cat′) — 〈e, t〉
I transitive verbs (e.g., chase′) — 〈e, 〈e, t〉〉

take an entity and return something of the same type as an
intransitive verb
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Lambda expressions

Lambda expressions

Lambda calculus is a logical notation to express the way that
predicates ‘look’ for arguments. e.g.,

λx [bark′(x)]

I Syntactically, λ is like a quantifier in FOPC:
the lambda variable (x above) is said to be within the
scope of the lambda operator

I lambda expressions correspond to functions: they denote
sets (e.g., {x : x barks})

I the lambda variable indicates a variable that will be bound
by function application.
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Lambda expressions

Lambda conversion

Applying a lambda expression to a term will yield a new term,
with the lambda variable replaced by the term
(lambda-conversion).
For instance:

λx [bark′(x)](k) = bark′(k)
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Lambda expressions

Lambda conversion and typing

Lambda conversion must respect typing, for example:

λx [bark′(x)] k bark′(k)
〈e, t〉 e t

λx [bark′(x)](k) = bark′(k)

We cannot combine expressions of incompatible types.
e.g.,

λx [bark′(x)](λy [snore′(y)])

is not well-formed
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Lambda expressions

Multiple variables

If the lambda variable is repeated, both instances are
instantiated:

λx [bark′(x) ∧ sleep′(x)] r bark′(r) ∧ sleep′(r)
〈e, t〉 e t

λx [bark′(x) ∧ sleep′(x)] denotes the set of things that bark and
sleep

λx [bark′(x) ∧ sleep′(x)](r) = bark′(r) ∧ sleep′(r)
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Lambda expressions

Transitive and intransitive verbs

A partially instantiated transitive verb predicate is of the same
type as an intransitive verb:

λx [chase′(x , r)] k chase′(k , r)
〈e, t〉 e t

λx [chase′(x , r)] is the set of things that chase Rover.

λx [chase′(x , r)](k) = chase′(k , r)
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Lambda expressions

Transitive verbs
Lambdas can be nested: transitive verbs can be represented
so they apply to only one argument at once.
For instance:

λx [λy [chase′(y , x)]]

often written
λxλy [chase′(y , x)]

λx [λy [chase′(y , x)]](r) = λy [chase′(y , r)]

Bracketing shows the order of application in the conventional
way:

(λx [λy [chase′(y , x)]](r))(k) = λy [chase′(y , r)](k)
= chase′(k , r)
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Example grammar with lambda calculus

A simple grammar
S -> NP VP
VP′(NP′)

VP -> Vtrans NP
Vtrans′(NP′)

VP -> Vintrans
Vintrans′

Vtrans -> chases
λxλy [chase′(y , x)]

Vintrans -> barks
λz[bark′(z)]

Vintrans -> sleeps
λw [sleep′(w)]

NP -> Kitty
k

NP -> Lynx
l

NP -> Rover
r
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Example grammar with lambda calculus

Example 1: lambda calculus with transitive verbs
1. Vtrans -> chases

λxλy [chase′(y , x)] (type: 〈e, 〈e, t〉〉)
2. NP -> Rover

r (type: e)
3. VP -> Vtrans NP

Vtrans′(NP′)
λxλy [chase′(y , x)](r)
= λy [chase′(y , r)] (type: 〈e, t〉)

4. NP -> Lynx
l (type: e)

5. S -> NP VP
VP′(NP′)
λy [chase′(y , r)](l)
= chase′(l , r) (type: t)
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Example grammar with lambda calculus

Ditransitive verbs

The semantics of give can be represented as
λxλyλz[give′(z, y , x)]. The ditransitive rule is:

VP -> Vditrans NP1 NP2
(Vditrans′(NP1′))(NP2′)

Two lambda applications in one rule:

(λx [λy [λz[give′(z, y , x)]]](l))(r)
= λy [λz[give′(z, y , l)]](r)

= λz[give′(z, r , l)]

Here, indirect object is picked up first (arbitrary decision in
rule/semantics for give)
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Example grammar with lambda calculus

Ditransitive verbs with PP

PP form of the ditransitive uses the same lexical entry for give,
but combines the arguments in a different order:

VP -> Vditrans NP1 PP
(Vditrans′(PP′))(NP1′)
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Example grammar with lambda calculus

Example 2

Rover gives Lynx Kitty
1. Vditrans -> gives

λx [λy [λz[give′(z, y , x)]]] type: 〈e, 〈e, 〈e, t〉〉〉
2. NP -> Lynx

l type: e
3. NP -> Kitty

k type: e
4. VP -> Vditrans NP1 NP2

(Vditrans′(NP1′))(NP2′)
(λx [λy [λz[give′(z, y , x)]]](l))(k)
= λy [λz[give′(z, y , l)]](k) type: 〈e, 〈e, t〉〉
= λz[give′(z, k , l)] type: 〈e, t〉
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Example grammar with lambda calculus

Example 2, continued

5 NP -> Rover
r type: e

6 S -> NP VP
VP′(NP′)
= λz[give′(z, k , l)](r)
= give′(r , k , l) type: t
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Example grammar with lambda calculus

PP ditransitive: Exercise

Rover gives Kitty to Lynx

Assumptions:
I has the same semantics as

Rover gives Lynx Kitty

I No semantics associated with to
I Same lexical entry for give as for the NP case
I So difference has to be in the VP rule
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Example grammar with lambda calculus

Coordination

S[conj=yes] -> CONJ S1[conj=no]
CONJ′(S1′)

S[conj=no] -> S1[conj=no] S2[conj=yes]
S2′(S1′)

CONJ -> and
λP[λQ[P ∧Q]] type: 〈t , 〈t , t〉〉

CONJ -> or
λP[λQ[P ∨Q]] type: 〈t , 〈t , t〉〉
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Example grammar with lambda calculus

Example 3: lambda calculus and coordination

Lynx chases Rover or Kitty sleeps
1. CONJ -> or

λP[λQ[P ∨Q]]

2. S[conj=yes] -> CONJ S1[conj=no]
CONJ′(S1′)
λP[λQ[P ∨Q]](sleep′(k)) = λQ[sleep′(k) ∨Q]

3. S[conj=no] -> S1[conj=no] S2[conj=yes]
S2′(S1′)
λQ[sleep′(k) ∨Q](chase′(l , r)) = sleep′(k) ∨ chase′(l , r)
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Example grammar with lambda calculus

VP coordination

I sentential conjunctions are of the type 〈t , 〈t , t〉〉
I conjunctions can also combine VPs, so
〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉: conjunctions are of polymorphic type

I general schema for conjunctions is 〈type, 〈type, type〉〉.

VP conjunction rule uses the same lexical entries for and and
or as sentential conjunction:
VP[conj=yes] -> CONJ VP1[conj=no]
λR[λx [(CONJ′(R(x)))(VP1′(x))]]

VP[conj=no] -> VP1[conj=no] VP2[conj=yes]
VP2′(VP1′)
This looks complicated, but doesn’t use any new formal
devices.
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Example grammar with lambda calculus

Example 4

1. chases Rover
λy [chase′(y , r)]

2. CONJ -> and
λPλQ[P ∧Q]

3. and chases Rover
VP[conj=yes] -> CONJ VP1[conj=no]
λRλx [(CONJ′(R(x)))(VP1′(x))] (grammar rule)
λRλx [(λP[λQ[P ∧Q]](R(x)))(λy [chase′(y , r)](x))]
(substituted CONJ and VP1)
= λRλx [(λP[λQ[P ∧Q]](R(x)))(chase′(x , r))] (lambda y)
= λRλx [λQ[R(x) ∧Q](chase′(x , r))] (applied lambda P)
= λRλx [R(x) ∧ chase′(x , r) ] (applied lambda Q)
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Example grammar with lambda calculus

Example 4, continued
4 Vintrans -> barks
λz[bark′(z)]

5 barks and chases Rover

VP[conj=no] ->
VP1[conj=no] VP2[conj=yes]

VP2′(VP1′) (grammar rule)
λRλx [R(x) ∧ chase′(x , r)](λz[bark′(z)]) (sub. VP1, VP2)
= λx [λz[bark′(z)](x) ∧ chase′(x , r)] (applied lambda R)
= λx [bark′(x) ∧ chase′(x , r)] (applied lambda z)

6 Kitty barks and chases Rover
S -> NP VP
VP′(NP′)
λx [bark′(x) ∧ chase′(x , r)](k)
= bark′(k) ∧ chase′(k , r)
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Quantifiers again

Denotation and type of quantifiers
every dog denotes the set of all sets of which dog′ is a subset.
i.e., a function which takes a function from entities to truth
values and returns a truth value.
For instance, every dog might denote the set
{bark′, run′, snore′}:
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D= dog′, B= bark′, S= snore′, R= run′

What does some dog denote?
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Quantifiers again

Denotation and type of quantifiers, continued
The type of every dog is 〈〈e, t〉, t〉 (its argument has to be of the
same type as an intransitive verb).
every dog:

λP[∀x [dog′(x) =⇒ P(x)]]

Semantically, every dog acts as a functor, with the intransitive
verb as the argument:

λP[∀x [dog′(x) =⇒ P(x)]](λy [sleep(y)])
= ∀x [dog′(x) =⇒ λy [sleep(y)](x)]
= ∀x [dog′(x) =⇒ sleep(x)]

This is higher-order: we need higher-order logic to express the
FOPC composition rules. Problem: every dog acts as a functor,
Kitty doesn’t, so different semantics for S -> NP VP,
depending on whether NP is a proper name or quantified NP.
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Quantifiers again

Denotation and type of quantifiers, continued
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Quantifiers again

Type raising

Change the type of the proper name NP: instead of the simple
expression of type e, we make it a function of type 〈〈e, t〉, t〉
So instead of k we have λP[P(k)] for the semantics of Kitty.
But, what about transitive verbs? We’ve raised the type of NPs,
so now transitive verbs won’t work.
Type raise them too . . .
chases:
λR[λy [R(λx [chase(y , x)])]]

Executive Summary:
I this gets complicated,
I and every cat chased some dog only produces one scope!
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Quantifiers again

Computational compositional semantics

I Event variables: chase(e,x,y) etc
I Underspecification of quantifier scope
I Alternatives to lambda calculus for composition

(sometimes)
I Robustness techniques
I Integration with distributional methods (very recent)
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