perfuector f: NM -1 N N7 f: nst -) net -) net.

Partial recursive functions in PCF

• Primitive recursion. $h: nat \rightarrow nat$

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

$$h z y = \int zero(y) then f(x) \\ else g z (pred y) (h x (pred y)) \end{cases}$$

$$fix (Ah Ax Ay . if (zero y) then fx \\ else g z (pred y) (h x (pred y)))$$

Partial recursive functions in PCF

Primitive recursion.

$$\begin{cases} h(x,0) = f(x) \\ h(x,y+1) = g(x,y,h(x,y)) \end{cases}$$

Minimisation.

$$m(x) = \text{ the least } y \ge 0 \text{ such that } k(x,y) = 0$$

$$m'(x,y) = i \int \frac{(2ero k(x,y))}{(x,y+1)} \frac{dy}{dx} y \qquad m(x) = m'(x,0)$$

$$eld m'(x,y+1)$$

$$7 := |bvol| not | 7 - 77$$

PCF evaluation relation

takes the form

Ground types $M \downarrow_{\tau} V$

where

- τ is a PCF type
- $M, V \in \mathrm{PCF}_{\tau}$ are closed PCF terms of type τ
- V is a value,

 $V ::= \mathbf{0} \mid \mathbf{succ}(V) \mid \mathbf{true} \mid \mathbf{false} \mid \mathbf{fn} \ x : \tau . M.$

M1(M2): Z > Z/ m not value

PCF evaluation (sample rules)

$$(\Downarrow_{\mathrm{val}})$$
 $V \Downarrow_{\tau} V$ $(V \text{ a value of type } \tau)$

PCF evaluation (sample rules)

$$(\Downarrow_{\mathrm{val}}) \quad V \Downarrow_{\tau} V \qquad \text{(V a value of type τ)}$$

$$(\Downarrow_{\mathrm{cbn}}) \ \frac{M_1 \Downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau \, . \, M_1' \qquad M_1' [M_2/x] \Downarrow_{\tau'} V}{M_1 \, M_2 \Downarrow_{\tau'} V}$$

PCF evaluation (sample rules)

$$(\downarrow_{\mathrm{val}})$$
 $V \downarrow_{\tau} V$ $(V \text{ a value of type } \tau)$

$$(\downarrow_{\text{cbn}}) \frac{M_1 \downarrow_{\tau \to \tau'} \mathbf{fn} \, x : \tau . M_1' \qquad M_1' [M_2/x] \downarrow_{\tau'} V}{M_1 M_2 \downarrow_{\tau'} V}$$

$$(\Downarrow_{\text{fix}}) \quad \frac{M(\text{fix}(M)) \Downarrow_{\tau} V}{\text{fix}(M) \Downarrow_{\tau} V}$$

$$\stackrel{?}{\nearrow} M : \nearrow \nearrow \nearrow$$

 $M_1 = \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f \chi \cdot (Z + Z') \rightarrow Z \rightarrow Z'$ $M_1 = \frac{1}{2} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} f \chi \cdot (Z + Z') \rightarrow Z \rightarrow Z'$ $M_2 \downarrow M_2 \downarrow M_2$

Contextual equivalence

Two phrases of a programming language are contextually equivalent if any occurrences of the first phrase in a complete program can be replaced by the second phrase without affecting the observable results of executing the program.

Contextual equivalence of PCF terms

Given PCF terms M_1, M_2 , PCF type au, and a type environment Γ , the relation $\Gamma \vdash M_1 \cong_{\operatorname{ctx}} M_2 : au$ is defined to hold iff

- ullet Both the typings $\Gamma \vdash M_1 : au$ and $\Gamma \vdash M_2 : au$ hold.
- For all PCF contexts $\mathcal C$ for which $\mathcal C[M_1]$ and $\mathcal C[M_2]$ are closed terms of type γ , where $\gamma=nat$ or $\gamma=bool$, and for all values $V:\gamma$,

$$\mathcal{C}[M_1] \Downarrow_{\gamma} V \iff \mathcal{C}[M_2] \Downarrow_{\gamma} V.$$

• PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.

• PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.

• Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket.$ Denotations of open terms will be continuous functions.

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- Compositionality.

```
In particular: \llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket.
```

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket$. Denotations of open terms will be continuous functions.
- ullet Compositionality. In particular: $\llbracket M
 Vert = \llbracket M'
 Vert \Rightarrow \llbracket \mathcal{C}[M]
 Vert = \llbracket \mathcal{C}[M']
 Vert.$
- Soundness.

- PCF types $\tau \mapsto \text{domains } \llbracket \tau \rrbracket$.
- Closed PCF terms $M: \tau \mapsto \text{elements } \llbracket M \rrbracket \in \llbracket \tau \rrbracket.$ Denotations of open terms will be continuous functions.
- Compositionality.

In particular:
$$\llbracket M \rrbracket = \llbracket M' \rrbracket \Rightarrow \llbracket \mathcal{C}[M] \rrbracket = \llbracket \mathcal{C}[M'] \rrbracket$$
.

Soundness.

For any type
$$\tau$$
, $M \downarrow_{\tau} V \Rightarrow \llbracket M \rrbracket = \llbracket V \rrbracket$.

Adequacy.

For
$$\tau = bool$$
 or nat , $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket \implies M \Downarrow_{\tau} V$.

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

MB: [M] = TM2] => [6(M1]] = [6(M2]]

Theorem. For all types τ and closed terms $M_1, M_2 \in \mathrm{PCF}_{\tau}$, if $\llbracket M_1 \rrbracket$ and $\llbracket M_2 \rrbracket$ are equal elements of the domain $\llbracket \tau \rrbracket$, then $M_1 \cong_{\mathrm{ctx}} M_2 : \tau$.

Proof.

and symmetrically.

$$\mathcal{C}[M_1] \Downarrow_{nat} V \Rightarrow \llbracket \mathcal{C}[M_1] \rrbracket = \llbracket V \rrbracket \quad ext{(soundness)}$$
 $\Rightarrow \llbracket \mathcal{C}[M_2] \rrbracket = \llbracket V \rrbracket \quad ext{(compositionality on } \llbracket M_1 \rrbracket = \llbracket M_2 \rrbracket ext{)}$ $\Rightarrow \mathcal{C}[M_2] \Downarrow_{nat} V \quad ext{(adequacy)}$

Proof principle

To prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

$$\frac{[M_1]] = [M_2] \in [T_2]}{M_1 = ch_x M_2 : 7}$$

Proof principle

To prove

$$M_1 \cong_{\operatorname{ctx}} M_2 : \tau$$

it suffices to establish

$$\llbracket M_1
rbracket = \llbracket M_2
rbracket$$
 in $\llbracket au
rbracket$

? The proof principle is sound, but is it complete? That is, is equality in the denotational model also a necessary condition for contextual equivalence?

Topic 6

Denotational Semantics of PCF

MEPGE (= D + M; Z) ~ [MY E [ZY

Denotational semantics of PCF

xi7+2:7 +fn2:7.2 :7→7

To every typing judgement

$$\Gamma \vdash M : \tau$$

we associate a continuous function

 $\llbracket\Gamma \vdash M\rrbracket : \llbracket\Gamma\rrbracket \to \llbracket\tau\rrbracket$

between domains.

doman

7::= not/brol/2-> C2

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

where
$$\mathbb{N} = \{0, 1, 2, \dots\}$$
 and $\mathbb{B} = \{true, false\}$.

Denotational semantics of PCF types

$$[nat] \stackrel{\text{def}}{=} \mathbb{N}_{\perp}$$
 (flat domain)

$$\llbracket bool \rrbracket \stackrel{\text{def}}{=} \mathbb{B}_{\perp}$$
 (flat domain)

$$\llbracket au o au'
Vert \stackrel{\mathrm{def}}{=} \llbracket au
Vert o \llbracket au'
Vert$$
 (function domain).

where $\mathbb{N}=\{0,1,2,\dots\}$ and $\mathbb{B}=\{\mathit{true},\mathit{false}\}$.

MB: Byndickion on Z, every TEY is a donoin

Denotational semantics of PCF type environments

$$[\Gamma] \stackrel{\text{def}}{=} \prod_{x \in dom(\Gamma)} [\Gamma(x)] \quad (\Gamma\text{-environments})$$

$$\Gamma = \{ z_1; \zeta_1, z_2; \zeta_2, \dots, z_n; \zeta_n \}$$

$$= \{ z_1 \mapsto \zeta_1, z_2 \mapsto \zeta_2, \dots, z_n \mapsto \zeta_n \}.$$

$$\text{denois of environents that to every variable}$$

$$z_i = \Gamma \text{ associate an element is the domain}$$

$$\text{in Expressing the type ζ_i of z_i}$$

Denotational semantics of PCF type environments

 $\llbracket \Gamma \rrbracket \stackrel{\mathrm{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket$ (Γ -environments)

= the domain of partial functions ρ from variables to domains such that $dom(\rho)=dom(\Gamma)$ and $\rho(x)\in \llbracket\Gamma(x)\rrbracket$ for all $x\in dom(\Gamma)$

If
$$\Gamma = (a:3,-,m:2n)$$

Then $\Gamma \cap J \cong \Gamma \cup X \Gamma \cup X \times \cdots \times \Gamma \cup J$

Denotational semantics of PCF type environments

$$\llbracket \Gamma \rrbracket \stackrel{\mathrm{def}}{=} \prod_{x \in dom(\Gamma)} \llbracket \Gamma(x) \rrbracket$$
 (Γ -environments)

= the domain of partial functions ρ from variables to domains such that $dom(\rho)=dom(\Gamma)$ and $\rho(x)\in \llbracket\Gamma(x)\rrbracket$ for all $x\in dom(\Gamma)$

Example:

[0]={1}

1. For the empty type environment \emptyset ,

$$\llbracket\emptyset\rrbracket=\{\,\bot\,\}$$

where \perp denotes the unique partial function with $dom(\perp) = \emptyset$.

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!])$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

2.
$$[\![\langle x \mapsto \tau \rangle]\!] = (\{x\} \to [\![\tau]\!]) \cong [\![\tau]\!]$$

3.

Fr $f \in I[T_1] \times \cdots \times [T_n]$ $(d_1, d_{2_1} - \cdots - d_n)$

Idu: di L'uvame of zi c'envilonent f

Denotational semantics of PCF terms, I

$$\llbracket\Gamma \vdash \mathbf{0}\rrbracket(\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket\Gamma \vdash \mathbf{true}\rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket\Gamma \vdash \mathbf{false}\rrbracket(\rho) \stackrel{\text{def}}{=} false \in \llbracket bool \rrbracket$$

Denotational semantics of PCF terms, I

$$\llbracket \Gamma \vdash \mathbf{0} \rrbracket (\rho) \stackrel{\text{def}}{=} 0 \in \llbracket nat \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{true} \rrbracket(\rho) \stackrel{\text{def}}{=} true \in \llbracket bool \rrbracket$$

$$\llbracket \Gamma \vdash \mathbf{false} \rrbracket(\rho) \stackrel{\text{def}}{=} \mathit{false} \in \llbracket \mathit{bool} \rrbracket$$

$$[\Gamma \vdash x](\rho) \stackrel{\text{def}}{=} \rho(x) \in [\Gamma(x)] \qquad (x \in dom(\Gamma))$$