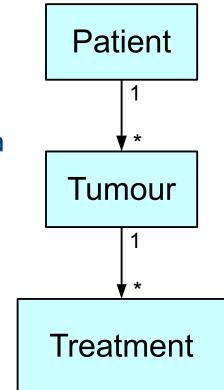
National Cancer Registry Migration: A database case study

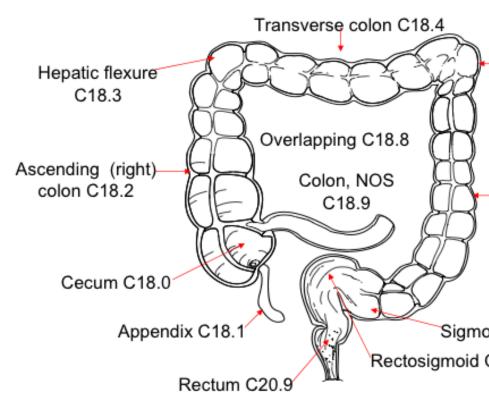
Brian Shand

Eastern Cancer Registration and Information Centre http://www.ecric.nhs.uk/


Brian.Shand@cbcu.nhs.uk

Overview

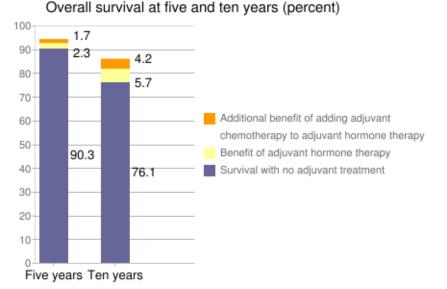
- Cancer registration overview
- Registry database structures
- Web-based access (Ruby on Rails) and data security
- Automation and electronic data processing
- Registry migration and scalability


Cancer registration

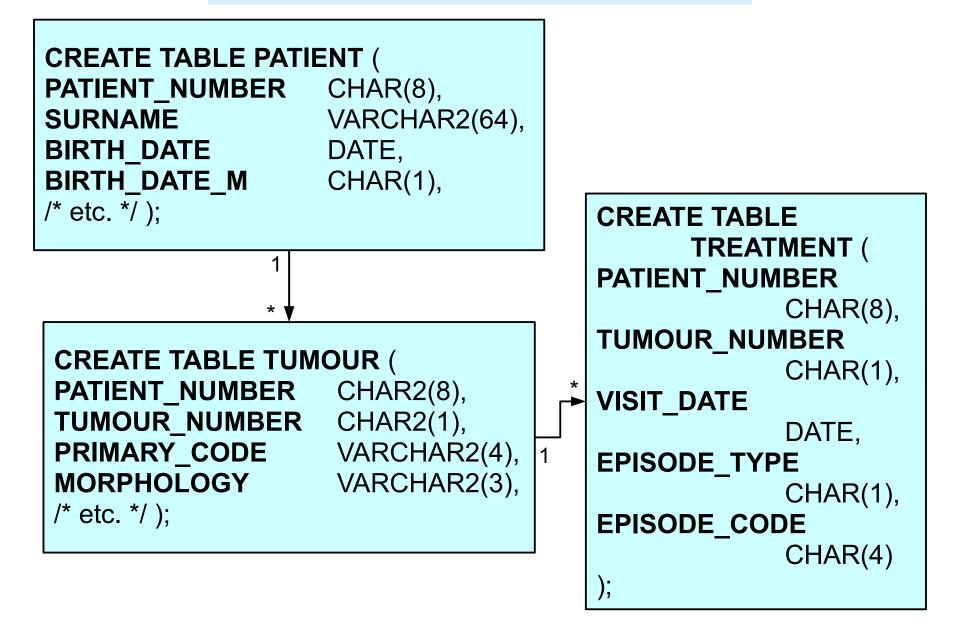
- UK cancer registries collect population-based data about cancer incidence and mortality
 - Long-term statistical analysis
 - More immediate uses: clinical audit, planning for service delivery
 - Special authorisation to collect cancer data (NHS Act 2006 Section 251)
 - Expert knowledge provides a synthesis of available information, not simply an amalgamation of data
- Historically a loose federation of independent databases
 - Shared minimum dataset sent to Office for National Statistics (ONS)

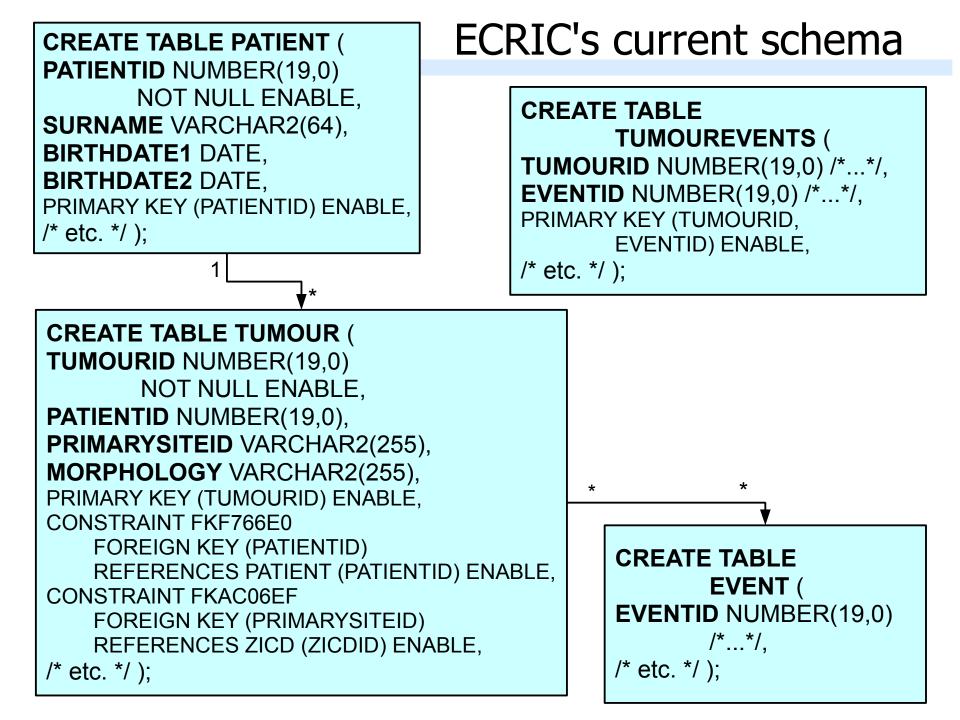
Cancer registration (2)

- Tumour registrations are the primary output
 - Tumour site
 C18.4 = transverse colon [ICD-O-3]
 - Morphology/behaviour 8140/3 = adenocarcinoma
 - Stage at diagnosis
 T1 N0 M0 = stage I
 - Patient demographics,
 e.g. birth date, name,
 postcode at diagnosis
 - Treatment received
 - Hospitals where treated
- High data quality is needed to analyse rare tumours



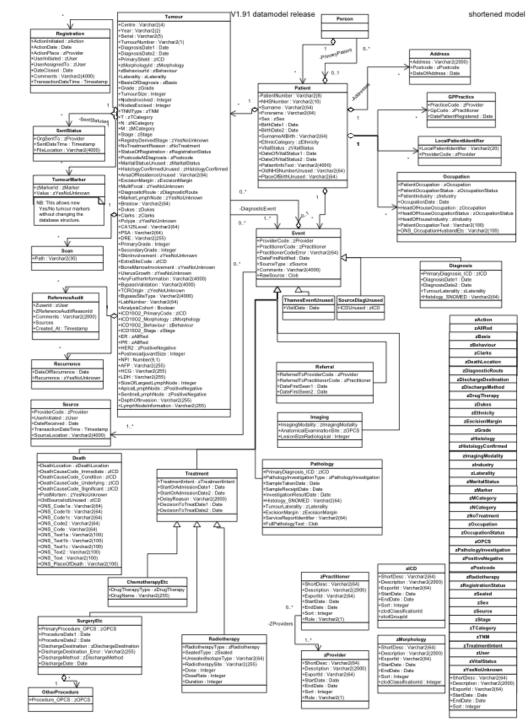
Examples of data use


- Historically: asbestosis, smoking causes cancer
- Melanoma study
 - Identified that patients are presenting earlier due to public awareness.
 - Early treatment has increased survival statistics.
- Predict tool
 - Helps patients and doctors choose the best course of treatment after breast surgery.


PREDICT Tool: Breast Cancer Survival

Patient name			
Age at diagnosis	55 🕄		
Mode of detection	Screen-detected	 Symptomatic 	🔘 Unknown
Tumour size	12 🕄 mm (blan)	k if unknown)	
Tumour grade	0 1 0 2	⊙ 3	🔘 Unknown
Number of positive nodes 1 (blank if unknown)			
ER status	Positive	Negative	🔘 Unknown
HER2 status	Positive	 Negative 	🔘 Unknown
Gen chemo regimen	🔘 No chemo	 Second 	🔘 Third
Predict Survival Clear All Fields Print results About this tool			

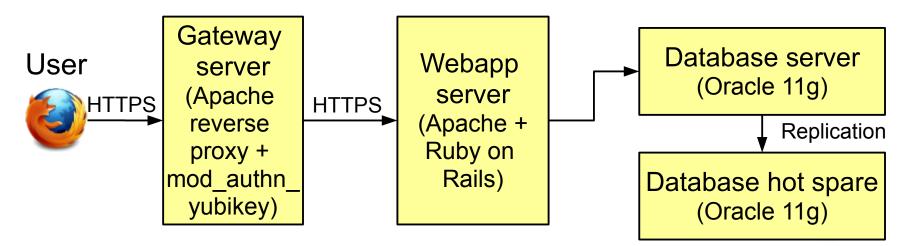
ECRIC's old database schema



ECRIC's current schema (2)

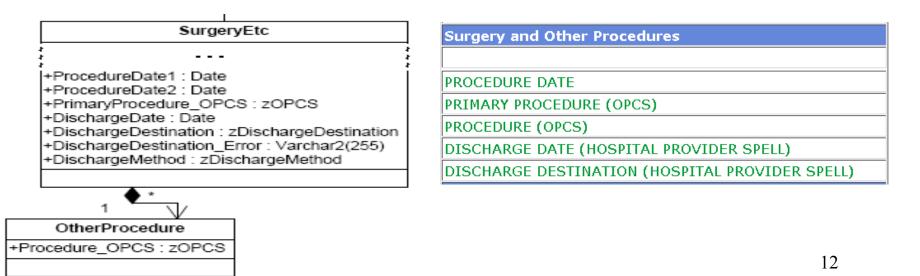
- So it's a better schema
 - Primary keys on every table
 - Foreign key constraints wherever possible
 - PRIMARYSITEID includes the classification system
 - Well normalised (can link 1 pathology report to 2 tumours)
 - Date ranges instead of approximate dates
- But it's changing in nature
 - We can now store anything / everything we receive
 - Now, instead of simply an expert summary, it also encapsulates the backing data
 - and audits changes to the core data
 - and structural changes to coding spaces over time
 e.g. ICD10-O-2 vs ICD-O-3 vs ICD-O-3 (2011 update)

- Before you know it, the core of your data model looks like this ----->
- Broadly consistent with HL7 version 3 structures
- It's changed from a summary of the data to as much original data as possible, plus summary information.



ECRIC database schema overview

- The schema represents the core of the database
 - It aims to follow the Cancer Registration Dataset in the NHS Data Dictionary wherever practical http://www.datadictionary.nhs.uk/data_dictionary/messages/ clinical_data_sets/cancer_registration_data_set_fr.asp? shownav=1
- The database is not the complete workflow
 - People and physical workflows
 - It's taken years to stop turning every tumour registration into paper
 - Secondary databases are also hard to avoid
 - Auxilliary tables (not shown) drive the import of electronic data sources


Overview (2)

- Cancer registration overview
- Registry database structures
- Web-based access (Ruby on Rails) and data security
- Automation and electronic data processing
- Registry migration and scalability

Database

- Oracle database back-end provides high availability and scalable performance
 - Multiple redundant backups (including off-site) without downtime; continuous redo logs
 - Triggers record a forensic timeline of all data changes
- Table structures follow the National Cancer Data Set

Application server

- Ruby on Rails provides a responsive system, allowing continuous, incremental evolution
- Consistent data validations apply to all new data
 - This includes automated processing, interactive import of electronic data, and manual data entry
 - As validations evolve, historical data can be reassessed, improving the quality of the whole dataset
 - Warnings also protect against common potential errors

```
=begin rdoc warning
Warn against the birth date the same as the death date.
=end
def warn_against_birthdate_eq_deathdate
    if (birthdate1 == dateofvitalstatus1) && !alive?
        warnings.add(:dateofvitalstatus,
                "Death date is the same as birth date.")
    end
```

end

Electronic data processing

- Electronic data sources are processed as soon as possible after receipt
 - Automated scripts scan for new data from regular feeds
 - Quick processing enables rapid QA of data source quality
- Source mapping files simplify adding new data sources, e.g. Somerset mapping snippet:

```
CancerRegistry:
```

- column: NHSNumber mappings: [{field: nhsnumber, clean: :nhsnumber}]
- column: HospitalNumber
 - mappings: [{field: hospitalnumber}]
- column: OrgCodeSubmitting
- column: CareSpellID
- column: PatientSurname mappings: [{field: surname}]
- column: PatientForename mappings: [{field: forenames}]

Workflow

- Electronic data sources pass through a customisable, multi-stage workflow
 - Preprocessing (using Monarch or Ruby)
 - Validation of format, postcodes, and internal data consistency
 - Tracing
 - Automatic patient matching
 - Manual patient matching (of ambiguous matches)
 - Record deduplication
 - E.g. automatically handles overlap between NBTR vs ECRIC cancer waits records
 - Assignment of batches of work to users / automatic scripts
 - Transfer of records to patients / tumours, coded by registration officers where appropriate

Workflow (2)

- When transferring electronic sources, records for a single patient are batched together, allowing a more complete view of the circumstances of diagnosis
 - Optimise for human context switches, and minimise page round trips
- To support the information gathering and QA, followup actions can be assigned to tumours
- At the end of a registration period, registerable tumours are staged, and flagged as "Final"

Data security

- A formal security audit identifies key security requirements
- The security of the code and the system is continuously monitored, and tested frequently
 - Separate code review for security (e.g. SQL injection attacks)
- Defense in depth: multiple overlaid security protections
 - Independent audits of database logins and data changes
- We provide extra security training before granting users external (web) access
 - Two-factor authentication

Cancer registry migration

- All 8 registries in England are migrating to a single shared system "encore"
 - Tumours are registered according to the patient's postcode at first diagnosis
 - A single centralised database avoids the need to exchange extra-regional tumours

Distributed systems are a Good Thing, but also hard – especially with an effective latency of months!

- Other efficiencies, e.g. shared hardware, less duplicated development
- Migrating the data should be easy!

It's the easy bit!

Scale / scope of the task

- Scaling up a production system x 8, over two years
 - Without significant downtime [a few planned weekends]
- A web-based interactive cancer registration system
 - About 300 active users; about ¹/₂ use it full time
 - Ruby on Rails provides a rapid development environment
- Automated processing of electronic data sources
 - Pathology reports, PAS data, Death notifications, Multi-Disciplinary Team reports, Cancer Waiting Times, Hospital Episode Statistics, ...
 - Automate the routine, minimise human context switching
- Unified analysis platform
 - Simplify access to cancer data for researchers

It's never quite so easy Scale / scope of the task

- It's a production system Can't defer all other changes
- A web-based interactive cancer registration system
 About the provided and the prov

Rails 3.1, 3.2, ... rovi ICD-O-3 (2011 update) iro IE 7 (!)

- Automated processing of electronic data sources IE 6 (?!)
 - Pathology reports, PAS data, Death notifications, Multi-Disciplinary Team reports, Cancer Waiting Times, Hospital Episode Statistics, Imaging Radiotherapy
 - Automate the routine, minimise human context switching
- Different coding systems => different ways of counting "Low grade endometrial stromal sarcomas are behaviour 3 in ICD-O-3, but behaviour 1 in ICD-O-2; should they be included in our count of all xnmsc?"

But will it scale?

- Essentially, it's an append-only dataset
 - Larger data blobs (e.g. pathology reports) are usually added and then never changed
 - Tumours are seldom updated (few more than 10 times)
 - 40GB for one registry (ECRIC) => 1TB should fit 8 registries
- Agile ≈ Lazy development *(i.e. just in time)*
 - Especially with the help of a nice ORM framework

Conclusion

- Real data is full of exceptions
 - Most sane validations will have occasional, genuine exceptions
 - Tumour diagnosis date after date of death
 - Different patients with the same NHS number

Reality is like this, and recorded data more so.

- Data migration
 - Common core fields may have surprisingly different interpretations. New fields are actually easier.
 - The current owners / custodiens of the data can be responsible for the schema transformation.

Or you could bring in some management consultants, and blame every future glitch on them.

- Avoiding the second system problem is essential.
- Future directions