
Some instance messages and methods

x || ^x

y || ^y

moveDx: dx Dy: dy ||

x <- x+dx

y <- y+dy

Executing the following code

p moveDX:2 Y:1

the value of the expressions p x and p y is the object 5.

148-a

Smalltalk
Inheritance

class name ColoredPoint

super class Point

class var

instance var color

class messages and methods

newX:xv Y:yv C:cv <. . . code . . . >

instance messages and methods

color ||^color

draw <. . . code . . . >
Definition of ColoredPoint class

149

� ColoredPoint inherits instance variables x and y,
methods x, y, moveDX:Dy:, etc.

� ColoredPoint adds an instance variable color and a
method color to return the color of a ColoredPoint.

� The ColoredPoint draw method redefines (or
overrides) the one inherited from Point.

� An option available in Smalltalk is to specify that a
superclass method should be undefined on a subclass.

150-c

Example: Consider

newX:xv Y:yv C:cv ||

^ self new x:xv y:yv color:cv

cp <- ColoredPoint newX:1 Y:2 C:red

cp moveDx:3 Dy:4

The value of cp x is the object 4, and the value of the
expression cp color is the object red.

Note that even though moveDx:Dy: is an inherited method,
defined originally for points without color, the result of moving
a ColoredPoint is again a ColoredPoint.

151

Smalltalk
Abstraction

Smalltalk rules:

� Methods are public.

Any code with a pointer to an object may send any
message to that object. If the corresponding method
is defined in the class of the object, or any superclass,
the method will be invoked. This makes all methods of
an object visible to any code that can access the object.

� Instance variables are protected.

The instance variables of an object are accessible only
to methods of the class of the object and to methods of
its subclasses.

152-a

Smalltalk
Dynamic lookup

The run-time structures used for Smalltalk classes and objects
support dynamic lookup in two ways.

1. Methods are selected through the receiver object.

2. Method lookup starts with the method dictionary of the
class of the receiver and then proceeds upwards through
the class hierarchy.

153-b

Example: A factorial method

factorial ||

self <= 1

ifTrue: [^1]

ifFalse: [^ (self-1) factorial * self]

in the Integer class for

Integer

SmallInt

ppppppppppp

LargeInt

NNNNNNNNNNN

154

Smalltalk
Interfaces as object types

Although Smalltalk does not use any static type checking,
there is an implicit form of type that every Smalltalk
programmer uses in some way.

The type of an object in Smalltalk is its interface, i.e. the set of
messages that can be sent to the object without receiving the
error “message not understood”.

The interface of an object is determined by its class, as a class
lists the messages that each object will answer. However,
different classes may implement the same messages, as there
are no Smalltalk rules to keep different classes from using the
same selector names.

155

Smalltalk
Subtyping

Type A is a subtype of type B if any context

expecting an expression of type B may take any

expression of type A without introducing a type error.

Semantically, in Smalltalk, it makes sense to associate
subtyping with the superset relation on class interfaces.

? Why?

156

� In Smalltalk, the interface of a subclass is often a subtype
of the interface of its superclass. The reason being that a
subclass will ordinarily inherit all of the methods of its
superclass, possibly adding more methods.

� In general, however, subclassing does not always lead to
subtyping in Smalltalk.

1. Because it is possible to delete a method from a
superclass in a subclass, a subclass may not produce
a subtype.

2. On the other hand, it is easy to have subtyping without
inheritance.

157-a

˜ Topic VI ˜
Types in programming languages

References:

� Chapter 6 of Concepts in programming languages
by J. C. Mitchell. CUP, 2003.

� Sections 4.9 and 8.6 of Programming languages:
Concepts & constructs by R. Sethi (2ND EDITION).
Addison-Wesley, 1996.

160

/. -,
() *+Types in programming

� A type is a collection of computational entities that share
some common property.

� There are three main uses of types in programming
languages:

1. naming and organizing concepts,

2. making sure that bit sequences in computer memory
are interpreted consistently,

3. providing information to the compiler about data
manipulated by the program.

161-a

� Using types to organise a program makes it easier
for someone to read, understand, and maintain the
program. Types can serve an important purpose in
documenting the design and intent of the program.

� Type information in programs can be used for many
kinds of optimisations.

162-a

/. -,
() *+Type systems

A type system for a language is a set of rules for associating a
type with phrases in the language.

Terms strong and weak refer to the effectiveness with which
a type system prevents errors. A type system is strong if it
accepts only safe phrases. In other words, phrases that are
accepted by a strong type system are guaranteed to evaluate
without type error. A type system is weak if it is not strong.

163-a

/. -,
() *+Type safety

A programming language is type safe if no program is
allowed to violate its type distinctions.

Safety Example language Explanation

Not safe C, C++ Type casts,
pointer arithmetic

Almost safe Pascal Explicit deallocation;
dangling pointers

Safe LISP, SML, Smalltalk, Java Type checking

164-a

/. -,
() *+Type checking

A type error occurs when a computational entity is used in a
manner that is inconsistent with the concept it represents.

Type checking is used to prevent some or all type errors,
ensuring that the operations in a program are applied properly.

Some questions to be asked about type checking in a
language:

� Is the type system strong or weak?

� Is the checking done statically or dynamically?

� How expressive is the type system; that is, amongst safe
programs, how many does it accept?

165-b

/. -,
() *+Static and dynamic type checking

Run-time type checking: The compiler generates code
so that, when an operation is performed, the code
checks to make sure that the operands have the
correct types.

Examples: LISP, Smalltalk.

Compile-time type checking: The compiler checks the
program text for potential type errors.

Example: SML.

NB: Most programming languages use some combination
of compile-time and run-time type checking.

166-b

Static vs. dynamic type checking

Main trade-offs between compile-time and run-time checking:

Form of type Advantages Disadvantages

checking

Run-time Prevents type errors Slows program
execution

Compile-time Prevents type errors May restrict
Eliminates run-time programming

tests because tests
Finds type errors before are conservative

execution and run-time
tests

167

Type checking in ML
Idea

Given a context Γ , an expression e, and a type τ, decide
whether or not the expression e is of type τ in context Γ .

168

Type checking in ML
Idea

Given a context Γ , an expression e, and a type τ, decide
whether or not the expression e is of type τ in context Γ .

Examples:

�
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 orelse e2 : bool

168-a

Type checking in ML
Idea

Given a context Γ , an expression e, and a type τ, decide
whether or not the expression e is of type τ in context Γ .

Examples:

�
Γ ⊢ e1 : bool Γ ⊢ e2 : bool

Γ ⊢ e1 orelse e2 : bool

TC(Γ, e1 orelse e2, τ)

=

TC(Γ, e1, bool)∧ TC(Γ, e2, bool) , if τ = bool

false , otherwise

168-b

�
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 ∗ τ2

169

�
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 ∗ τ2

TC(Γ, (e1, e2), τ)

=

TC(Γ, e1, τ1)∧ TC(Γ, e2, τ2) , if τ = τ1∗τ2
false , otherwise

169-a

/. -,
() *+Type equality

The question of type equality arises during type checking.

? What does it mean for two types to be equal!?

170

/. -,
() *+Type equality

The question of type equality arises during type checking.

? What does it mean for two types to be equal!?

Structural equality. Two type expressions are structurally
equal if and only if they are equivalent under the
following three rules.

SE1. A type name is structurally equal to itself.

SE2. Two types are structurally equal if they are
formed by applying the same type constructor
to structurally equal types.

SE3. After a type declaration, say type n = T, the
type name n is structurally equal to T.

170-a

Name equality:

Pure name equality. A type name is equal to itself, but
no constructed type is equal to any other constructed
type.

Transitive name equality. A type name is equal to itself
and can be declared equal to other type names.

Type-expression equality. A type name is equal only to
itself. Two type expressions are equal if they are
formed by applying the same constructor to equal
expressions. In other words, the expressions have to
be identical.

171-c

Examples:

� Type equality in Pascal/Modula-2. Type equality was
left ambiguous in Pascal. Its successor, Modula-2,
avoided ambiguity by defining two types to be compatible if

1. they are the same name, or

2. they are s and t, and s = t is a type declaration, or

3. one is a subrange of the other, or

4. both are subranges of the same basic type.

172

/. -,
() *+Type declarations

There are two basic forms of type declarations:

Transparent. An alternative name is given to a type that can
also be expressed without this name.

Opaque. A new type is introduced into the program that is
not equal to any other type.

173

/. -,
() *+Type inference

� Type inference is the process of determining the types
of phrases based on the constructs that appear in them.

� An important language innovation.

� A cool algorithm.

� Gives some idea of how other static analysis algorithms
work.

174-b

Type inference in ML
Idea

Typing rule:

Γ ⊢ x : τ
if x : τ in Γ

175

Type inference in ML
Idea

Typing rule:

Γ ⊢ x : τ
if x : τ in Γ

Inference rule:

Γ ⊢ x : γ

175-a

Type inference in ML
Idea

Typing rule:

Γ ⊢ x : τ
if x : τ in Γ

Inference rule:

Γ ⊢ x : γ
γ ≈ α if x : α in Γ

175-b

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

176

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f(e) : γ

176-a

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f : α

Γ ⊢ f(e) : γ

176-b

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f : α Γ ⊢ e : β

Γ ⊢ f(e) : γ

176-c

Typing rule:

Γ ⊢ f : σ −> τ Γ ⊢ e : σ

Γ ⊢ f(e) : τ

Inference rule:

Γ ⊢ f : α Γ ⊢ e : β

Γ ⊢ f(e) : γ
α ≈ β −> γ

176-d

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

177

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

Inference rule:

Γ ⊢ (fn x => e) : γ

177-a

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

Inference rule:

Γ, x : α ⊢ e : β

Γ ⊢ (fn x => e) : γ

177-b

Typing rule:

Γ, x : σ ⊢ e : τ

Γ ⊢ (fn x => e) : σ −> τ

Inference rule:

Γ, x : α ⊢ e : β

Γ ⊢ (fn x => e) : γ
γ ≈ α −> β

177-c

Example:

⊢ fn f => fn x => f(f(x)) : α0

178

Example:

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2

178-a

Example:

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4

178-b

Example:

f : α1, x : α3 ⊢ f : α5 f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4

178-c

Example:

√

f : α1, x : α3 ⊢ f : α5 f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

178-d

Example:

√

f : α1, x : α3 ⊢ f : α5

f : α1, x : α3 ⊢ f : α7 f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6

178-e

Example:

√

f : α1, x : α3 ⊢ f : α5

√

f : α1, x : α3 ⊢ f : α7 f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6 , α7 ≈ α1

178-f

Example:

√

f : α1, x : α3 ⊢ f : α5

√

f : α1, x : α3 ⊢ f : α7

√

f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

178-g

Example:

√

f : α1, x : α3 ⊢ f : α5

√

f : α1, x : α3 ⊢ f : α7

√

f : α1, x : α3 ⊢ x : α8

f : α1, x : α3 ⊢ f(x) : α6

f : α1, x : α3 ⊢ f(f(x)) : α4

f : α1 ⊢ fn x => f(f(x)) : α2

⊢ fn f => fn x => f(f(x)) : α0

α0 ≈ α1−> α2 , α2 ≈ α3−> α4 , α5 ≈ α6−> α4 , α5 ≈ α1

α7 ≈ α8−> α6 , α7 ≈ α1 , α8 ≈ α3

Solution: α0 = (α3 −> α3)−> α3−> α3

178-h

/. -,
() *+Polymorphism

Polymorphism, which literally means “having multiple forms”,
refers to constructs that can take on different types as needed.

Forms of polymorphism in contemporary programming
languages:

Parametric polymorphism. A function may be applied to any
arguments whose types match a type expression involving
type variables.

Parametric polymorphism may be:

Implicit. Programs do not need to contain types; types
and instantiations of type variables are computed.

Example: SML.

179-b

Explicit. The program text contains type variables that
determine the way that a construct may be treated
polymorphically.

Explicit polymorphism often involves explicit
instantiation or type application to indicate how type
variables are replaced with specific types in the use
of a polymorphic construct.

Example: C++ templates.

Ad hoc polymorphism or overloading. Two or more
implementations with different types are referred to by
the same name.

Subtype polymorphism. The subtype relation between
types allows an expression to have many possible types.

180-b

let-polymorphism

� The standard sugaring

let val x = v in e end 7→ (fn x => e)(v)

does not respect ML type checking.

For instance

let val f = fn x => x in f(f) end

type checks, whilst

(fn f => f(f))(fn x => x)

does not.

181

