
A restriction that made Pascal simpler than Algol 68:

procedure

Allowed(j,k: integer);

procedure

AlsoAllowed(procedure P(i:integer);

j,k: integer);

procedure

NotAllowed(procedure

MyProc(procedure

P(i:integer)));

106

� Pascal was the first language to propose index checking.

� Problematically, in Pascal, the index type of an array is
part of its type. The Pascal standard defines conformant
array parameters whose bounds are implicitly passed to a
procedure. The Ada programmig language uses so-called
unconstrained array types to solve this problem.

The subscript range must be fixed at compile time
permitting the compiler to perform all address calculations
during compilation.

procedure Allowed(a: array [1..10] of integer) ;

procedure

NotAllowed(n: integer;

a: array [1..n] of integer) ;

107-a

� Pascal uses a mixture of name and structural
equivalence for determining if two variables have the
same type.

Name equivalence is used in most cases for
determining if formal and actual parameters in
subprogram calls have the same type; structural
equivalence is used in most other situations.

� Parameters are passed by value or reference.

Complete static type checking is possible for
correspondence of actual and formal parameter
types in each subprogram call.

108-a

Pascal variant records
Variant records have a part common to all records of that type,
and a variable part, specific to some subset of the records.
type

kind = (unary, binary) ;

type { datatype }

UBtree = record { ’a UBtree = record of }

value: integer ; { ’a * ’a UBkind }

case k: kind of { and ’a UBkind = }

unary: ^UBtree ; { unary of ’a UBtree }

binary: record { | binary of }

left: ^UBtree ; { ’a UBtree * }

right: ^UBtree { ’a UBtree ; }

end

end ;

109

Variant records introduce weaknesses into the type
system for a language.

1. Compilers do not usually check that the value in the
tag field is consistent with the state of the record.

2. Tag fields are optional. If omitted, no checking is
possible at run time to determine which variant is
present when a selection is made of a field in a variant.

Note that datatype and case in ML effectively provide a safe
form of variant records. Why are they safe?

110-c

Summary

� The Algol family of languages established the
command-oriented syntax, with blocks, local declarations,
and recursive functions, that are used in most current
programming languages.

� The Algol family of languages is statically typed, as each
expression has a type that is determined by its syntactic
form and the compiler checks before running the program
to make sure that the types of operations and operands
agree.

111-a

˜ Topic V ˜
Object-oriented languages : Concepts and origins

SIMULA and Smalltalk

References:

⋆ Chapters 10 and 11 of Concepts in programming
languages by J. C. Mitchell. CUP, 2003.

� Chapters 8, and 12(§§2 and 3) of Programming
languages: Design and implementation (3RD EDITION)
by T. W. Pratt and M. V. Zelkowitz. Prentice Hall, 1999.

112

� Chapter 7 of Programming languages: Concepts &
constructs by R. Sethi (2ND EDITION). Addison-Wesley,
1996.

� Chapters 14 and 15 of Understanding programming
languages by M Ben-Ari. Wiley, 1996.

⋆ B. Stroustrup. What is “Object-Oriented Programming”?
(1991 revised version). Proc. 1st European Conf. on
Object-Oriented Programming. (Available on-line from
<http://public.research.att.com/~bs/papers.html>.)

113

Objects in ML !?
exception Empty ;

fun newStack(x0)

= let val stack = ref [x0]

in ref{ push = fn(x)

=> stack := (x :: !stack) ,

pop = fn()

=> case !stack of

nil => raise Empty

| h::t => (stack := t; h)

}end ;

exception Empty

val newStack = fn :

’a -> {pop:unit -> ’a, push:’a -> unit} ref

114-a

val BoolStack = newStack(true) ;

val BoolStack = ref {pop=fn,push=fn}

: {pop:unit -> bool, push:bool -> unit} ref

val IntStack0 = newStack(0) ;

val IntStack0 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref

val IntStack1 = newStack(1) ;

val IntStack1 = ref {pop=fn,push=fn}

: {pop:unit -> int, push:int -> unit} ref

115-b

IntStack0 := !IntStack1 ;

val it = () : unit

#pop(!IntStack0)() ;

val it = 1 : int

#push(!IntStack0)(4) ;

val it = () : unit

116-b

map (#push(!IntStack0)) [3,2,1] ;

val it = [(),(),()] : unit list

map (#pop(!IntStack0)) [(),(),(),()] ;

val it = [1,2,3,4] : int list

NB:

� ! The stack discipline for activation records fails!

� ? Is ML an object-oriented language?

! Of course not!

? Why?

117-b

Basic concepts in
object-oriented languagesa

Four main language concepts for object-oriented
languages:

1. Dynamic lookup.

2. Abstraction.

3. Subtyping.

4. Inheritance.

aNotes from Chapter 10 of Concepts in programming languages

by J. C.Mitchell. CUP, 2003.

118

/. -,
() *+Dynamic lookup

� Dynamic lookup means that when a message is sent to an
object, the method to be executed is selected dynamically,
at run time, according to the implementation of the object
that receives the message. In other words, the object
“chooses” how to respond to a message.

The important property of dynamic lookup is that different
objects may implement the same operation differently, and
so may respond to the same message in different ways.

119

� Dynamic lookup is sometimes confused with
overloading, which is a mechanism based on
static types of operands. However, the two are
very different. ? Why?

120

/. -,
() *+Abstraction

� Abstraction means that implementation details are hidden
inside a program unit with a specific interface. For objects,
the interface usually consists of a set of methods that
manipulate hidden data.

� Abstraction based on objects is similar in many ways to
abstraction based on abstract data types: Objects and
abstract data types both combine functions and data, and
abstraction in both cases involves distinguishing between
a public interface and private implementation.

Other features of object-oriented languages, however,
make abstraction in object-oriented languages more
flexible than abstraction with abstract data types.

121-a

/. -,
() *+Subtyping

� Subtyping is a relation on types that allows values of
one type to be used in place of values of another.
Specifically, if an object a has all the functionality of
another object b, then we may use a in any context
expecting b.

� The basic principle associated with subtyping is
substitutivity: If A is a subtype of B, then any expression
of type A may be used without type error in any context
that requires an expression of type B.

122

� The primary advantage of subtyping is that it permits
uniform operations over various types of data.

For instance, subtyping makes it possible to have
heterogeneous data structures that contain objects that
belong to different subtypes of some common type.

� Subtyping in an object-oriented language allows
functionality to be added without modifying general parts
of a system.

123

/. -,
() *+Inheritance

� Inheritance is the ability to reuse the definition of one
kind of object to define another kind of object.

� The importance of inheritance is that it saves the effort
of duplicating (or reading duplicated) code and that,
when one class is implemented by inheriting from
another, changes to one affect the other. This has a
significant impact on code maintenance and
modification.

124

Inheritance is not subtyping

Subtyping is a relation on interfaces,

inheritance is a relation on implementations.

One reason subtyping and inheritance are often confused is
that some class mechanisms combine the two. A typical
example is C++, in which A will be recognized by the compiler
as a subtype of B only if B is a public base class of A.
Combining subtyping and inheritance is an elective design
decision.

125

History of objects
SIMULA and Smalltalk

� Objects were invented in the design of SIMULA and
refined in the evolution of Smalltalk.

� SIMULA: The first object-oriented language.

The object model in SIMULA was based on procedures
activation records, with objects originally described as
procedures that return a pointer to their own activation
record.

� Smalltalk: A dynamically typed object-oriented language.

Many object-oriented ideas originated or were
popularised by the Smalltalk group, which built on Alan
Kay’s then-futuristic idea of the Dynabook.

126-b

SIMULA

� Extremely influential as the first language with classes
objects, dynamic lookup, subtyping, and inheritance.

� Originally designed for the purpose of simulation by
O.-J. Dahl and K. Nygaard at the Norwegian Computing
Center, Oslo, in the 1960s.

� SIMULA was designed as an extension and modification
of Algol 60. The main features added to Algol 60 were:
class concepts and reference variables (pointers to
objects); pass-by-reference; input-output features;
coroutines (a mechanism for writing concurrent programs).

127-b

� A generic event-based simulation program

Q := make_queue(initial_event);

repeat

select event e from Q

simulate event e

place all events generated by e on Q

until Q is empty

naturally requires:
� A data structure that may contain a variety of kinds

of events. ❀ subtyping

� The selection of the simulation operation according to
the kind of event being processed. ❀ dynamic lookup

� Ways in which to structure the implementation of
related kinds of events. ❀ inheritance

128-a

Objects in SIMULA

Class: A procedure returning a pointer to its activation
record.

Object: An activation record produced by call to a class,

called an instance of the class. ❀ a SIMULA object
is a closure

� SIMULA implementations place objects on the heap.

� Objects are deallocated by the garbage collector (which
deallocates objects only when they are no longer
reachable from the program that created them).

129

SIMULA
Object-oriented features

� Objects: A SIMULA object is an activation record
produced by call to a class.

� Classes: A SIMULA class is a procedure that returns
a pointer to its activation record. The body of a class
may initialise the objects it creates.

� Dynamic lookup: Operations on an object are selected
from the activation record of that object.

130-b

� Abstraction: Hiding was not provided in SIMULA 67 but
was added later and used as the basis for C++.

SIMULA 67 did not distinguish between public and private
members of classes.

A later version of the language, however, allowed
attributes to be made “protected”, which means that they
are accessible for subclasses (but not for other classes),
or “hidden”, in which case they are not accessible to
subclasses either.

131

� Subtyping: Objects are typed according to the classes
that create them. Subtyping is determined by class
hierarchy.

� Inheritance: A SIMULA class may be defined, by class
prefixing, as an extension of a class that has already
been defined including the ability to redefine parts of a
class in a subclass.

132-a

SIMULA
Sample code

a

CLASS POINT(X,Y); REAL X, Y;

COMMENT***CARTESIAN REPRESENTATION

BEGIN

BOOLEAN PROCEDURE EQUALS(P); REF(POINT) P;

IF P =/= NONE THEN

EQUALS := ABS(X-P.X) + ABS(Y-P.Y) < 0.00001;

REAL PROCEDURE DISTANCE(P); REF(POINT) P;

IF P == NONE THEN ERROR ELSE

DISTANCE := SQRT((X-P.X)**2 + (Y-P.Y)**2);

END***POINT***
aSee Chapter 4(§1) of SIMULA begin (2nd edition) by G.Birtwistle,

O.-J. Dahl, B.Myhrhug, and K.Nygaard. Chartwell-Bratt Ltd., 1980.

134

CLASS LINE(A,B,C); REAL A,B,C;

COMMENT***Ax+By+C=0 REPRESENTATION

BEGIN

BOOLEAN PROCEDURE PARALLELTO(L); REF(LINE) L;

IF L =/= NONE THEN

PARALLELTO := ABS(A*L.B - B*L.A) < 0.00001;

REF(POINT) PROCEDURE MEETS(L); REF(LINE) L;

BEGIN REAL T;

IF L =/= NONE and ~PARALLELTO(L) THEN

BEGIN

...

MEETS :- NEW POINT(...,...);

END;

END;***MEETS***

135

COMMENT*** INITIALISATION CODE

REAL D;

D := SQRT(A**2 + B**2)

IF D = 0.0 THEN ERROR ELSE

BEGIN

D := 1/D;

A := A*D; B := B*D; C := C * D;

END;

END***LINE***

136

SIMULA
Subclasses and inheritance

SIMULA syntax for a class C1 with subclasses C2 and C3 is

CLASS C1

<DECLARATIONS1>;

C1 CLASS C2

<DECLARATIONS2>;

C1 CLASS C3

<DECLARATIONS3>;

When we create a C2 object, for example, we do this by first
creating a C1 object (activation record) and then appending a
C2 object (activation record).

137

Example:

POINT CLASS COLOREDPOINT(C); COLOR C;

BEGIN

BOOLEAN PROCEDURE EQUALS(Q); REF(COLOREDPOINT) Q;

...;

END***COLOREDPOINT**

REF(POINT) P; REF(COLOREDPOINT) CP;

P :- NEW POINT(1.0,2.5);

CP :- NEW COLOREDPOINT(2.5,1.0,RED);

NB: SIMULA 67 did not hide fields. Thus,

CP.C := BLUE;

changes the color of the point referenced by CP.

138-a

SIMULA
Object types and subtypes

� All instances of a class are given the same type. The
name of this type is the same as the name of the class.

� The class names (types of objects) are arranged in a
subtype hierarchy corresponding exactly to the subclass
hierarchy.

139

Examples:

1. CLASS A; A CLASS B;

REF(A) a; REF(B) b;

a :- b; COMMENT***legal since B is

***a subclass of A

...

b :- a; COMMENT***also legal, but checked at

***run time to make sure that

***a points to a B object, so

***as to avoid a type error

2. inspect a

when B do b :- a

otherwise ...

140-a

3. An error in the original SIMULA type checker
surrounding the relationship between subtyping
and inheritance:

CLASS A; A CLASS B;

SIMULA subclassing produces the subtype relation
B<:A.

141-b

REF(A) a; REF(B) b;

SIMULA also uses the semantically incorrect principle
that, if B<:A then REF(B)<:REF(A).

So: this code . . .

PROCEDURE ASSIGNa(REF(A) x)

BEGIN x :- a END;

ASSIGNa(b);

. . . will statically type check, but may cause a type error
at run time.

P.S. The same type error occurs in the original
implementation of Eiffel. A similar problem occurs in
Java’s covariant arrays (see later).

142-a

Smalltalk

� Developed at XEROX PARC in the 1970s.

� Major language that popularised objects; very flexible and
powerful.

� The object metaphor was extended and refined.
� Used some ideas from SIMULA; but it was a

completely new language, with new terminology and
an original syntax.

� Abstraction via private instance variables (data
associated with an object) and public methods (code
for performing operations).

� Everything is an object; even a class. All operations
are messages to objects.

143-c

Smalltalk
Motivating application : Dynabook

� Concept developed by Alan Kay.
� Influence on Smalltalk:

� Objects and classes as useful organising concepts
for building an entire programming environment
and system.

� Language intended to be the operating system
interface as well as the programming language for
Dynabook.

� Syntax designed to be used with a special-purpose
editor.

� The implementation emphasised flexibility and
ease of use over efficiency.

144

Smalltalk
Classes and objects

class name Point

super class Object

class var pi

instance var x, y

class messages and methods

<. . . names and codes for methods . . . >

instance messages and methods

<. . . names and codes for methods . . . >

Definition of Point class

146

A class message and method for point objects

newX:xvalue Y:yvalue ||

^ self new x: xvalue y: yvalue

147

A class message and method for point objects

newX:xvalue Y:yvalue ||

^ self new x: xvalue y: yvalue

A new point at coordinates (3, 4) is created when the message

newX:3 Y:4

is sent to the Point class.

For instance:

p <- Point newX:3 Y:4

147-a

