20/02/2013

Distributed Systems
8L for Part IB

Lecture 8

Dr Robert N. M. Watson

Last Time

Looked at replication in distributed systems

Strong consistency:

— Approximately as if only one copy of object

— Requires considerable coordination on updates

— Transactional consistency & quorum systems
Weak consistency:

— Allow clients to potentially read stale values

— Some guarantees can be provided (FIFO, eventual,

session), but at additional cost to availability

* Service replication:

— Stateless (easy!) or Passive (primary/backup) common,
Active (state-machine replication) less so

Access Control

 Distributed systems may want to allow access to
resources based on a security policy

* As with local systems, three key concepts:
— Identification: who you are (e.g. user name)
— Authentication: proving who you are (e.g. password)
— Authorization: determining what you can do

* Can consider authority to cover actions an
authenticated subject may perform on objects

— Access Matrix = set of rows, one per subject, where
each column holds allowed operations on some object

ACLs and Capabilities

* Access matrix is typically large & sparse:
— Just keep non-NULL entries by column or by row
* Access Control Lists:

— Keep columns, i.e. for each object O, keep list of subjects
and their allowable access

— ACLs stored with objects (e.g. local filesystems)
— Bit like a guest list on the door of a night club
* Capabilities:
— Keep rows, i.e. for each subject S, keep list of objects and
the allowable access to them
— Capabilities stored with subjects (e.g. processes)
— Bit like a key or access card that you carry around

20/02/2013

Access Control in Distributed Systems

* In single systems usually have small number of users
(subjects) and large number of objects:

— e.g. afew hundred users in a Unix system

— Easy to track subjects (e.g. effective user id of current
process), and to keep ACL with objects (e.g. with files)

* Distributed systems are large & dynamic:
— Can have huge (and unknown?) number of users

— Interactions over the network — may not have explicit ‘log
in” and associated process per user

* Capability model is a more natural fit:
— Client presents capability with request for operation
— System only performs operation if capability checks out

Cryptographic Capabilities

* Privileged server can issue capabilities
— e.g. has secret key k and a one-way function f()
— Issues a capability <oid, access, f(k, oid, access) >
— Simple example is f(k,0,a) = shal(k|o]|a)
* Client transmits capability with request
— If server knows k, can check if operation allowed
— (otherwise can ask privileged server to validate)
* Can use same capability to access many servers
— And one server can use it on your behalf
— e.g. allow web tier to access objects on storage tier

20/02/2013

Capabilities: Pros and Cons

* Relatively simple and pretty scalable

* Allow anonymous access (i.e. server does not need to
know identity of client)
— And hence easily allows delegation

* However this also means:
— Capabilities can be stolen (unauthorized users)...

— ... and are difficult to revoke (like someone cutting a copy
of your house key)

e Can address these problems by:
— Having time-limited validity (e.g. 30 seconds)

— Incorporating version into capability, and storing version
with the object: increasing version => revoke all access

Combining ACLs and Capabilities

* Recall one problem with ACLs was inability to
scale to large number of users (subjects)

* However in practice we may have a small-ish
number of authority levels
— e.g. moderator versus contributor on chat site

e Can use to build role-based access control:
— Have (small-ish) well-defined number of roles
— Store ACLs at objects based on roles
— Allow subjects to enter roles according to some rules
— Issue capabilities which attest to current role

20/02/2013

Role-Based Access Control

* General idea is very powerful
— Separates { principal = role }, {role - privilege }

— Developers of individual services only need to focus on the
rights associated with a role

— Easily handles evolution (e.g. an individual moves from
being an undergraduate to an alumnus)

* Possible to have sophisticated rules for role entry:
— e.g. enter different role according to time of day
— or entire role hierarchy (1B student <= CST student)

— or parametric/complex roles (“the doctor who is currently
treating you”)

Single-System Sign On

* Distributed systems inherently involve a number of
different machines

— Frustrating to have to authenticate to each one!
* Single-system sign on aims to ease user burden while
maintaining good security

— e.g. Kerberos, Microsoft Active Directory let you
authenticate to a single domain controller

— Get a session key and a ticket (~= a capability)
— Ticket is for access to the ticket-granting server (TGS)

— When wish to e.g. log on to another machine, or access a
remote volume, s/w asks TGS for a ticket for that resource

* Some wide-area schemes too (OpenlID, Shibboleth)

20/02/2013

20/02/2013

Coordination Services

Client App. | Message Servers | Server App.

1
! |
| o | td
_{TTT] ! 01 : _{TTT]
1
(T : . : (T
local message ! queues | local message
queues ! | queues
S U — ! RS 1
[e[= [et

* Earlier looked at middleware support for RPC/RMI
— Imperative and (typically) synchronous interaction

* An alternative is message-oriented middleware
— Communication via asynchronous messages
— Messages stored in message queues

MOM: Pros and Cons

* Asynchronous interaction
— Client and server are only loosely coupled
— Messages are queued
— Good for application integration
* Support for reliable delivery service
— Keep queues in persistent storage
* Processing of messages by message server(s)
— May do filtering, transforming, logging, ...
— Networks of message servers
* But pretty low-level (‘packet level’) interactions, and still
just point-to-point messages with no typing...
* Examples: IBM MQSeries, Java Message Service (JMS)

Publish-Subscribe

* Get more flexibility with publish-subscribe:
— Publishers advertise and publish events

— Subscribers register interest in topics (i.e. a set of
properties of events)

— Event-service notifies interested subscribers of
published events
* Keeps asynchronous (decoupled) nature of
message-oriented middleware but:
— Allows 1-to-many communication

— Dynamic membership (publishers and subscribers can
join or leave at any time)

Publish-Subscribe: Pros and Cons

* Pub/sub useful for ‘ad hoc’ systems such as embedded
systems or sensor networks:

— Client(s) can ‘listen’ for occasional events

— Don’t need to define semantics of entire system in
advance (e.g. what to do if get event <X>)

* Leads to natural “reactive” programming:
— when <X>, <Y> occur then do <Z>

— event-driven systems like Apama can help understand
business processes in real-time

e But:
— Can be awkward to use if application doesn’t fit
— And difficult to make perform well...

20/02/2013

Simplifying Distributed Systems

* Traditional middleware systems provide a number of
‘medium-level’ abstractions
— Naming and directory services
— Synchronous RPC and asynchronous events
— Group communication and ordered multicast
— Failure detectors and membership protocols
— Consensus schemes (2PC, 3PC, Paxos, ...)
— Capabilities and access control
* However still rather tricky to actually build a
distributed system in the real world

* Recent advances in full (?!) distribution transparency

Google’s MapReduce

* Programming framework for datacenter scale
— Run a program across 100’s or 10,000’s machines
* Framework takes care of:

— Parallelization, distribution, load-balancing,
scaling up (or down) & fault-tolerance

* Programmer provides two methods ;-)
— map(key, value) -> list of (key’, value’) pairs
— reduce(key’, value’) -> result
— Inspired by functional programming

20/02/2013

MapReduce: The Big Picture

weut | L) U U U U UL

v OOOOOOOO

IS e
Shuffle §V~ SRR

| \E

e OOOO0O0OC0
oot |][] [J U U UL

Example Programs

* Sorting data is trivial (map, reduce both identity function)
— Works since the shuffle step essentially sorts data
* Distributed grep (search for words)
— map: emit a line if it matches a given pattern
— reduce: just copy the intermediate data to the output
Count URL access frequency
— map: process logs of web page access; output <URL, 1>
— reduce: add all values for the same URL
* Reverse web-link graph
— map: output <target, source> for each link to target in a page

— reduce: concatenate the list of all source URLs associated with a
target. Output <target, list(source)>

18

20/02/2013

MapReduce: Pros and Cons

* Extremely simple, and:

— Can auto-parallelize (since operations on every element in
input are independent)

— Can auto-distribute (since rely on underlying GFS
distributed file system)

— Gets fault-tolerance (since tasks are idempotent, i.e. can
just re-execute if a machine crashes)

* Doesn’t really use any of the sophisticated algorithms
we’ve seen (though does use storage replication)
* However not a panacea:

— Limited to batch jobs, and computations which are
expressible as a map() followed by a reduce()

Other Frameworks

* MapReduce stems from 2004, and Google (and
others) have done a lot since then

* If interested check out Apache Hadoop
— http://hadoop.apache.org/

* Includes HDFS and Hadoop (clones of GFS and
MapReduce respectively), as well as:
— Cassandra (scalable multi-master database), and
— Zookeeper (coordination/consensus service)

* Lots of ongoing research in this space

— Current hot topics involve dealing with iterative and/
or real-time computations

20

20/02/2013

10

Summary (1)

* Distributed systems are everywhere
* Core problems include:
— Inherently concurrent systems
— Any machine can fail...
— ... as can the network (or parts of it)
— And we have no notion of global time
* Despite this, we can build systems that work
— Basic interactions are request-response
— Can build synchronous RPC/RMI on top of this ...
— Or asynchronous message queues or pub/sub

21

Summary (2)

* Coordinating actions of larger sets of computers
requires higher-level abstractions
— Process groups and ordered multicast
— Consensus protocols, and
— Replication and Consistency
* Various middleware packages (e.g. CORBA, EJB)
provide implementations of many of these:
— But worth knowing what’s going on “under the hood”
* Recent trends towards even higher-level:
— MapReduce and friends

22

20/02/2013

11

