20/02/2013

Distributed Systems
8L for Part IB

Lecture 7

Dr Robert N. M. Watson

Last time

* Looked at general issue of consensus:
— How to get processes to agree on something

— (FLP says “impossible” in asynchronous networks with at
least 1 failure ... but in practice we’re ok ;-)

— General idea useful for distributed mutual exclusion,
leader election: relies being able to detect failures

¢ Also looked at distributed transactions:

— Need to commit a set of “sub-transactions” across multiple
servers — want all-or-nothing semantics

— Use atomic commit protocol like 2PC

» Started on replication: using multiple copies to gain
performance, load-balancing & fault tolerance

Replication in Distributed Systems

* Have some number of servers (S, S,, S5, ...)
— Each holds a copy of all objects
* Each client C, can access any replica (any S))
— e.g. clients can choose closest, or least loaded
* If objects are read-only, then trivial:
— Start with one primary server P having all data
— If client asks S, for an object, S, returns a copy
— (S, fetches a copy from P if it doesn’t already have one)
* Can easily extend to allow updates by P
— When updating object O, send invalidate(O) to all S,
— (Or add just tag all objects with ‘valid-until’ field)
* In essence, this is how web caching / CDNs work today

Replication and Consistency

Gets more challenging if clients can perform updates
For example, imagine x has value 3 (in all replicas)
— C1 requests write(x, 5) from S4
— C2 requests read(x) from S3
— What should occur?
* With strong consistency, the distributed system
behaves as if there is no replication present:
— i.e. in above, C2 should get the value 5
— requires coordination between all servers
* With weak consistency, C2 may get 3 or 5 (or ...?)
— Less satisfactory, but much easier to implement

20/02/2013

20/02/2013

Achieving Strong Consistency

Need to ensure any update propagates to all replicas
before allow any subsequent reads
One solution:

— When S, receives request to update x, first locks x at all
other replicas

— Once successful, S; makes update, and propagates to all
other replicas, who acknowledge

— Finally, S, instructs all replicas to unlock
Need to handle failure (of replica, or network)

— Add step to tentatively apply update, and only actually
apply (“commit”) update if all replicas agree

* We've reinvented distributed transactions & 2PC ;-)

Quorum Systems

Transactional consistency works, but:

— High overhead, and

— Poor availability during update (worse if crash!)
An alternative is a quorum system:

— Imagine there are N replicas, a write quorum Q,,, and
a read quorum Q,, where Q,, > N/2 and (Q,, + Q,) >N

To perform a write, must update Q, replicas
— Ensures a majority of replicas have new value
To perform a read, must read Q, replicas

— Ensures that we read at least one updated value

Example

S, S, S, S, Se Se s, time

|X=5 vl,sl | Xx=5 vl1,s1 X=5 vl1,S51 |X=5 vl,sl | X=5 vl1,S51 Xx=5 vl1,s1 X=5 vl1,S51

X=5 v1,sl X=0 v2,S3 |X=0 v2,S3 | X=5 v1,s1 |X=0 v2,S3 ||X=0 v2,S3 ||X=0 v2,S3 |

* Seven replicas (N=7),Q,,=5,Q,=3
* All objects have associated version (T, S)
— Tis logical timestamp, initialized to zero
— Sis aserver ID (used to break ties)
* Any write will update at least Q,, replicas
* Performing a read is easy:
— Choose replicas to read from until get Q, responses
— Correct value is the one with highest version

Quorum Systems: Writes

e Performing a write is trickier:
— Must ensure get entire quorum, or cannot update
— Hence need a commit protocol (as before)

* In fact, transactional consistency is a quorum
protocol with Q,, =N and Q, = 1!

— But when Q,, < N, additional complexity since must
bring replicas up-to-date before updating

* Quorum systems are good when expect failures
— Additional work on update, additional work on reads...
— ... but increased availability during failure

20/02/2013

Weak Consistency

* Maintaining strong consistency has costs:
— Need to coordinate updates to all (or Q) replicas
— Slow... and will block other accesses for the duration

* Weak consistency provides fewer guarantees:
— e.g. C1 updates (replica of) object x at S3
— S3 lazily propagates changes to other replicas
— Other clients can potentially read old (“stale”) value
* Considerably more efficient:

— Write is simpler, and doesn’t need to wait for
communication with lots of other replicas...

— ... hence is also more available (i.e. fault tolerant)

FIFO Consistency

* As with group communication primitives, various
ordering guarantees possible
* FIFO consistency: all updates at S; occur in the same
order at all other replicas
— As with FIFO multicast, can buffer for as long as we like!
— But says nothing about how S's updates are interleaved
with §;'s at another replica (may put S, first, or S, or mix)
 Still useful in some circumstances
— e.g. single user accessing different replicas at disjoint times
— Essentially primary replication with primary=last accessed

20/02/2013

Eventual Consistency

* FIFO consistency doesn’t provide very nice semantics:
— e.g. we write first version of filefto S,
— later we read f from S,, and write version 2
— later again we read f from S; — changes lost!

* What happened?

— Update from S, arrived to S, after those from S,, who thus
overwrote them (stoooopid S,)

* A desirable property in weakly consistent systems is
that they converge to a more correct state

— i.e. in the absence of further updates, every replica will
eventually end up with the same latest version

* This is called eventual consistency

Implementing Eventual Consistency

» Servers S, keep a version vector V,(O) for each object
— For each update of O on S, increment V,(O)[i]
— (essentially a vector clock reused as a version number)
» Servers synchronize pair-wise from time to time
— For each object O, compare V,(0) to V,(O)
— IfVi(0) <V,(0), S; gets an up-to-date copy from S;;
if V,(0) < V{(0), S; gets an up-to-date copy from S,.
* If Vi(O) ~ Vj(O) we have a write-conflict:
— Concurrent updates have occurred at 2 or more servers
— Must apply some kind of reconciliation method
— (similar to revision control systems, and equally painful)

20/02/2013

Example: Amazon’s Dynamo

» Storage service used within Amazon’s WS
— By Amazon itself, and by 3™ party service providers

» Designed to emphasize availability above consistency:
— SLA to ensure bounded response time 99.99% of the time

— if customer wants to add something to shopping basket
and there’s a failure... still want addition to ‘work’

— Even if get (temporarily) inconsistent view... fix later!

* Built around notion of a so-called sloppy quorum:
— Have N, Q,, Q, as before ... but don’t actually require that
Q,, > N/2, or that (Q,, +Q,) >N
— Instead make tunable: lower Q values = higher availability
— Also let system continue during failure; add a new replica

Session Guarantees

* Eventual consistency seems great, but how can you
program to it?
— Need to know something about what guarantees are provided
to the client
* These are called session guarantees:
— Not system wide, just for one (identified) client
— Client must be a more active participant, e.g. client maintains
version vectors of objects it has read & written
* Example: Read Your Writes (RYW):

— if C, writes a new value to x, a subsequent read of x should see
this update ... even if C; is now reading from a different replica

— Need C, to remember highest id of any update it made
— Only read from a server if it has seen that update

20/02/2013

Session Guarantees & Availability

* There are a variety of session guarantees
— All deal with allowable state on replica given history of accesses
by a specific client
— (further examples included in additional, non-examinable
material downloadable from course web page)
* Session guarantees are weaker than strong consistency,
but stronger than ‘pure’ weak consistency:
— But this means that they sacrifice availability

— i.e. choosing not to allow a read or write if it would break a
session guarantee means not allowing that operation!

— ‘pure’ weak consistency would allow the operation
* Can we get the best of both worlds?

Consistency, Availability & Partitions

* Short answer: No ;-)

* The CAP Theorem (Brewer 2000, Gilbert & Lynch 2002) says
you can only guarantee two of:

— Consistent data, Availability, Partition-tolerance
* ..inasingle system.
* Inlocal-area systems, can sometimes drop partition-
tolerance by using redundant networks
* Inthe wide-area, this is not an option:
— Must choose between consistency & availability
— Most Internet-scale systems ditch consistency

* NB: this doesn’t mean that things are always inconsistent,
just that they’re not always guaranteed to be consistent

20/02/2013

Replication and Fault-Tolerance

Can also use replication for a service:
* Easiest is for stateless services:
— Simply duplicate functionality in K machines
— Clients use any (e.g. closest), fail over to another
* Very few totally stateless services, but e.g. much of the
web only has per-session soft-state:
— State generated per-client, lost when client leaves

* Commonly used to scale multi-tier web farms:

— First and second tiers (web servers and app servers) only have
per-session soft-state => trivial to replicate

— (clients are independent, so no coordination needed)

— Third tier (storage/db tier) either partitioned (disjoint clients on
different servers), or implements consistent replication

Primary/Backup (Passive) Replication

» A solution for stateful services is primary/backup:
— Backup server takes over in case of failure

* Based around persistent logs and system checkpoints:
— Periodically (or continuously) checkpoint primary
— If detect failure, start backup from checkpoint

* A few variants trade-off fail-over time:

— Cold-standby: backup server must start service (software),
load checkpoint & parse logs

— Warm-standby: backup server has software running in
anticipation — just needs to load primary state

— Hot-standby: backup server mirrors primary work, but
output is discarded; on failure, enable output

20/02/2013

20/02/2013

Active Replication

Have K replicas running at all times
Front-end server acts as an ordering node:

— Receives requests from client and forwards them to all
replicas using totally ordered multicast

— Replicas each perform operation and respond to front-end
— Front-end gathers responses, and replies to client
Typically require replicas to be “state machines”:
— i.e. act deterministically based on input
— Idea is that all replicas operate ‘in lock step’
Active replication is expensive (in terms of resources)...
— ... and not really worth it in the common case.
— However valuable if consider Byzantine failures

10

