Last time

• Started to look at time in distributed systems
 – Coordinating actions between processes
• Physical clocks ‘tick’ based on physical processes (e.g. oscillations in quartz crystals, atomic transitions)
 – Imperfect, so gain/lose time over time
 – (wrt nominal perfect ‘reference’ clock (such as UTC))
• The process of gaining/losing time is **clock drift**
• The difference between two clocks is called **clock skew**
• **Clock synchronization** aims to minimize clock skew between two (or a set of) different clocks
Dealing with Drift

• A clock can have positive or negative drift with respect to a reference clock (e.g. UTC)
 – Need to [re]synchronize periodically
• Can’t just set clock to ‘correct’ time
 – Jumps (particularly backward!) can confuse apps
• Instead aim for gradual compensation
 – If clock fast, make it run slower until correct
 – If clock slow, make it run faster until correct

Compensation

• Most systems relate real-time to cycle counters or periodic interrupt sources
 – e.g. calibrate CPU time-stamp counter (TSC) against CMOS RT clock at boot, and compute scaling factor (e.g. cycles per microsecond)
 – can now convert TSC differences to real-time
 – similarly can determine how much real-time passes between periodic interrupts: call this delta
 – on interrupt, add delta to software real-time clock
• Making small changes to delta gradually adjusts time
 – Once synchronized, change delta back to original value
 – (or try to estimate drift & continually adjust delta)
Obtaining accurate time

- Of course, need some way to know correct time (e.g. UTC) in order to adjust clock!
 - could attach a GPS receiver (or GOES receiver) to computer, and get ±1ms (or ±0.1ms) accuracy...
 - ...but too expensive/clunky for general use
 - (RF in server rooms and data centres non-ideal)
- Instead can ask some machine with a more accurate clock over the network: a time server
 - e.g. send RPC getTime() to server
 - What’s the problem here?

Cristian’s Algorithm (1989)

- Attempt to compensate for network delays
 - Remember local time just before sending: \(T_0\)
 - Server gets request, and puts \(T_s\) into response
 - When client receives reply, notes local time: \(T_1\)
 - Correct time is then approximately \((T_s + (T_1 - T_0) / 2)\)
 - (assumes symmetric behaviour...)
Cristian’s Algorithm: Example

- RTT = 460ms, so one way delay is [approx] 230ms.
- Estimate correct time as \((08:02:04.325 + 230ms) = 08:02:04.555\)
- Client gradually adjusts local clock to gain 2.425 seconds

Berkeley Algorithm (1989)

- Don’t assume have an accurate time server
- Try to synchronize a set of clocks to the average
 - One machine, M, is designated the master
 - M periodically polls all other machines for their time
 - (can use Cristian’s technique to account for delays)
 - Master computes average (including itself, but ignoring outliers), and sends an adjustment to each machine

\[
\text{Avg} = \frac{(01:17+01:12+02:01)}{3} = \frac{(04:30)}{3} = 01:30
\]
Network Time Protocol (NTP)

- Previous schemes designed for LANs; in practice today’s systems use NTP:
 - Global service designed to enable clients to stay within (hopefully) a few ms of UTC
- Hierarchy of clocks arranged into strata
 - Stratum0 = atomic clocks (or maybe GPS, GEOS)
 - Stratum1 = servers directly attached to stratum0 clock
 - Stratum2 = servers that synchronize with stratum1
 - ... and so on
- Timestamps made up of seconds and ‘fraction’
 - e.g. 32 bit seconds-since-epoch; 32 bit ‘picoseconds’

NTP Algorithm

- UDP/IP messages with slots for four timestamps
 - systems insert timestamps at earliest/latest opportunity
- Client computes:
 - Offset $O = \frac{(T_1 - T_0) + (T_2 - T_3)}{2}$
 - Delay $D = (T_3 - T_0) - (T_2 - T_1)$
- Relies on symmetric messaging delays to be correct (but now excludes variable processing delay at server)
NTP Example

- First request/reply pair:
 - Total message delay is \((6-3) - (38-37)) = 2\)
 - Offset is \((37-3) + (38-6) \)/\(2 = 33\)

- Second request/reply pair:
 - Total message delay is \((13-8) - (45-42)) = 2\)
 - Offset is \((42-8) + (45-13)) \)/\(2 = 33\)

NTP: Additional Details

- NTP uses multiple requests per server
 - Remember \(<\text{offset, delay}>\) in each case
 - Calculate the filter dispersion of the offsets & discard outliers
 - Chooses remaining candidate with the smallest delay

- NTP can also use multiple servers
 - Servers report synchronization dispersion = estimate of their quality relative to the root (stratum 0)
 - Combined procedure to select best samples from best servers (see RFC 5905 for the gory details)

- Various operating modes:
 - Broadcast ("multicast"): server advertises current time
 - Client-server ("procedure call"): as described on previous
 - Symmetric: between a set of NTP servers

- Security is supported
 - Desire to authenticate server, prevent replays
 - Cryptographic processing time significant, but compensated for
Physical Clocks: Summary

• Physical devices exhibit clock drift
 – Even if initially correct, they tick too fast or too slow, and hence time ends up being wrong
 – Drift rates depend on the specific device, and can vary with time, temperature, acceleration, ...
• Difference between clocks is called clock skew
• Clock synchronization algorithms attempt to minimize the skew between a set of clocks
 – Decide upon a target correct time (atomic, or average)
 – Communicate to agree, compensating for delays
 – In reality, will still have 1-10ms skew after sync ;--(

Ordering

• One use of time is to provide ordering
 – If I withdrew £100 cash at 23:59.44...
 – And the bank computes interest at 00:00.00...
 – Then interest calculation shouldn’t include the £100
• But in distributed systems we can’t perfectly synchronize time => cannot use this for ordering
 – Clock skew can be large, and may not be trusted
 – And over large distances, relativistic events mean that ordering depends on the observer
 – (similar effect due to finite ‘speed of Internet’ ;-)}
The “happens-before” relation

- Often don’t need to know when event \(a \) occurred
 - Just need to know if \(a \) occurred before or after \(b \)
- Define the *happens-before* relation, \(a \rightarrow b \)
 - If events \(a \) and \(b \) are within the same process, then \(a \rightarrow b \) if \(a \) occurs with an earlier local timestamp
 - Messages between processes are ordered *causally*, i.e. the event \(\text{send}(m) \rightarrow \text{receive}(m) \)
 - Transitivity: i.e. if \(a \rightarrow b \) and \(b \rightarrow c \), then \(a \rightarrow c \)
- Note that this only provides a partial order:
 - Possible for neither \(a \rightarrow b \) nor \(b \rightarrow a \) to hold
 - We say that \(a \) and \(b \) are concurrent and write \(a \sim b \)

Example

- Three processes (each with 2 events), and 2 messages
 - Due to process order, we know \(a \rightarrow b , c \rightarrow d \) and \(e \rightarrow f \)
 - Causal order tells us \(b \rightarrow c \) and \(d \rightarrow f \)
 - And by transitivity \(a \rightarrow c \), \(a \rightarrow d \), \(a \rightarrow f \), \(b \rightarrow d \), \(b \rightarrow f \), \(c \rightarrow f \)
- However event \(e \) is concurrent with \(a , b , c \) and \(d \)
Implementing Happens-Before

• One early scheme due to Lamport [1978]
 – Each process P_i has a logical clock L_i
 • L_i can simply be an integer, initialized to 0
 – L_i is incremented on every local event e
 • We write $L_i(e)$ or $L(e)$ as the timestamp of e
 – When P_i sends a message, it increments L_i and copies
 the value into the packet
 – When P_i receives a message from P_j, it extracts L_j and
 sets $L_i := \max(L_i, L_j)$, and then increments L_i
• Guarantees that if $a \rightarrow b$, then $L(a) < L(b)$
 – However if $L(x) < L(y)$, this doesn’t imply $x \rightarrow y$!

Lamport Clocks: Example

• When P_2 receives m_1, it extracts timestamp 2 and sets its
 clock to $\max(0, 2)$ before increment
• Possible for events to have duplicate timestamps
 – e.g. event e has the same timestamp as event a
• If desired can break ties by looking at pids, IP addresses, ...
 – this gives a total order, but doesn’t imply happens-before!
Vector Clocks

- With Lamport clocks, given $L(a)$ and $L(b)$, we can’t tell if $a \rightarrow b$ or $b \rightarrow a$ or $a \sim b$
- One solution is vector clocks:
 - An ordered list of logical clocks, one per-process
 - Each process P_i maintains $V[i]$, initially all zeroes
 - On a local event e, P_i increments $V[i]$
 - If the event is message send, new $V[i]$ copied into packet
 - If P_i receives a message from P_j then, for all $k = 0, 1, \ldots$, it sets $V[i][k] := \max(V[j][k], V[i][k])$, and increments $V[j][i]$
 - Intuitively $V[j][k]$ captures the number of events at process P_k that have been observed by P_i

Vector Clocks: Example

- When P_2 receives m_1, it merges the entries from P_1’s clock
 - choose the maximum value in each position
- Similarly when P_3 receives m_2, it merges in P_3’s clock
 - this incorporates the changes from P_1 that P_2 already saw
- Vector clocks *explicitly track the transitive causal order*: f’s timestamp captures the history of a, b, c & d
Using Vector Clocks for Ordering

• Can compare vector clocks piecewise:
 – \(V_i = V_j \) iff \(V_i[k] = V_j[k] \) for \(k = 0, 1, 2, ... \)
 – \(V_i \leq V_j \) iff \(V_i[k] \leq V_j[k] \) for \(k = 0, 1, 2, ... \)
 – \(V_i < V_j \) iff \(V_i \leq V_j \) and \(V_i \neq V_j \)
 – \(V_i \sim V_j \) otherwise

• For any two event timestamps \(T(a) \) and \(T(b) \):
 – if \(a \rightarrow b \) then \(T(a) < T(b) \); and
 – if \(T(a) < T(b) \) then \(a \rightarrow b \)

• Hence can use timestamps to determine if there is a causal ordering between any two events
 – i.e. determine whether \(a \rightarrow b, b \rightarrow a \) or \(a \sim b \)

Does this seem familiar? Recall time-stamp ordering and optimistic concurrency control for transactions last term.

\[[2,0,0] \text{ versus } [0,0,1] \]