Complexity Theory Lecture 7

Anuj Dawar

University of Cambridge Computer Laboratory

Term 2013

http://www.cl.cam.ac.uk/teaching/1213/Complexity/

2

Sets, Numbers and Scheduling

It is not just problems about formulas and graphs that turn out to be NP-complete.

Literally hundreds of naturally arising problems have been proved NP-complete, in areas involving network design, scheduling, optimisation, data storage and retrieval, artificial intelligence and many others.

Such problems arise naturally whenever we have to construct a solution within constraints, and the most effective way appears to be an exhaustive search of an exponential solution space.

Ő

 z_{v3}

 \cap

 \bar{z}_{v2}

0

 \bar{z}_{v3}

We now examine three more NP-complete problems, whose significance lies in that they have been used to prove a large number of other problems NP-complete, through reductions.

3 Complexity Theory Complexity Theory 4 **3D** Matching Reduction If a Boolean expression ϕ in **3CNF** has *n* variables, and *m* clauses, The decision problem of <u>3D</u> Matching is defined as: we construct for each variable v the following gadget. Given three disjoint sets X, Y and Z, and a set of triples $M \subseteq X \times Y \times Z$, does M contain a matching? \bar{z}_{v4} \overline{z}_{v1} I.e. is there a subset $M' \subseteq M$, such that each element of 0 X, Y and Z appears in exactly one triple of M'? $o > z_{v4}$ z_{v2} We can show that 3DM is NP-complete by a reduction from 3SAT. y_{n}

Anuj Dawar

Anuj Dawar

May 10, 2013

Anuj Dawar

Anuj Dawar

May 10, 2013

May 10, 2013

Complexity Theory

5

Complexity Theory

In addition, for every clause c, we have two elements x_c and y_c . If the literal v occurs in c, we include the triple

 (x_c, y_c, z_{vc})

in M.

Similarly, if $\neg v$ occurs in *c*, we include the triple

 (x_c, y_c, \bar{z}_{vc})

in M.

Finally, we include extra dummy elements in X and Y to make the numbers match up.

Anuj Dawar

Complexity Theory

Set Covering

More generally, we have the *Set Covering* problem:

Given a set U, a collection of $S = \{S_1, \ldots, S_m\}$ subsets of U and an integer budget B, is there a collection of B sets in S whose union is U?

Exact Set Covering

Two other well known problems are proved NP-complete by immediate reduction from 3DM.

Exact Cover by 3-Sets is defined by:

Given a set U with 3n elements, and a collection $S = \{S_1, \ldots, S_m\}$ of three-element subsets of U, is there a sub collection containing exactly n of these sets whose union is all of U?

The reduction from 3DM simply takes $U = X \cup Y \cup Z$, and S to be the collection of three-element subsets resulting from M.

Anuj Dawar

Complexity Theory

Knapsack

KNAPSACK is a problem which generalises many natural scheduling and optimisation problems, and through reductions has been used to show many such problems NP-complete.

In the problem, we are given n items, each with a positive integer value v_i and weight w_i .

We are also given a maximum total weight W, and a minimum total value V.

Can we select a subset of the items whose total weight does not exceed W, and whose total value exceeds V?

May 10, 2013

May 10, 2013

7

Anuj Dawar

May 10, 2013

May 10, 2013

Reduction

The proof that **KNAPSACK** is **NP**-complete is by a reduction from

the problem of Exact Cover by 3-Sets.

9

Scheduling

Some examples of the kinds of scheduling tasks that have been proved NP-complete include:

ers each ods), a set Trequired ,1} which

r · · · · · · · · · · · · · · · · · · ·	
Circup a set $U = \{1, \dots, 2n\}$ and a collection of 2 element subsets of	Timetable Design
Given a set $U = \{1,, 3n\}$ and a collection of 3-element subsets of $U, S = \{S_1,, S_m\}$.	Given a set H of work periods, a set W of worke
We map this to an instance of $KNAPSACK$ with m elements each	with an associated subset of H (available periods of <i>tasks</i> and an assignment $r: W \times T \to \mathbb{N}$ of <i>rea</i> <i>work</i> , is there a mapping $f: W \times T \times H \to \{0, 1\}$
corresponding to one of the S_i , and having weight and value	
$\Sigma_{j\in S_i}(m+1)^{j-1}$	completes all tasks?
and set the target weight and value both to	
$\Sigma_{j=0}^{3n-1}(m+1)^j$	
nj Dawar May 10, 2013	Anuj Dawar
mplexity Theory 11	
Scheduling	
Sequencing with Deadlines	
Given a set T of <i>tasks</i> and for each task a <i>length</i> $l \in \mathbb{N}$, a	
release time $r \in \mathbb{N}$ and a deadline $d \in \mathbb{N}$, is there a work	
schedule which completes each task between its release time and its deadline?	
Job Scheduling	
Given a set T of <i>tasks</i> , a number $m \in \mathbb{N}$ of processors a	
length $l \in \mathbb{N}$ for each task, and an overall deadline $D \in \mathbb{N}$, is there a multi-processor schedule which completes all	
tasks by the deadline?	
nj Dawar May 10, 2013	

May 10, 2013

Anuj Dawar

Complexity Theo