Complexity Theory 1

Complexity Theory
Lecture 12

Anuj Dawar

University of Cambridge Computer Laboratory
Easter Term 2013

http://www.cl.cam.ac.uk/teaching/1213/Complexity/

Anuj Dawar May 22, 2013

Complexity Theory 2
Complexity Classes

We have established the following inclusions among complexity
classes:

L C NL C P C NP C PSPACE C EXP

Showing that a problem is NP-complete or PSPACE-complete, we
often say that we have proved it intractable.

While this is not strictly correct, a proof of completeness for these
classes does tell us that the problem is structurally difficult.

Similarly, we say that PSPACE-complete problems are harder than
NP-complete ones, even if the running time is not higher.

Anuj Dawar May 22, 2013

Complexity Theory 3

Provable Intractability

Our aim now is to show that there are languages (or, equivalently,

decision problems) that we can prove are not in P.

This is done by showing that, for every reasonable function f, there
is a language that is not in TIME(f(n)).

The proof is based on the diagonal method, as in the proof of the
undecidability of the halting problem.

Anuj Dawar May 22, 2013

Complexity Theory 4

Constructible Functions

A complexity class such as TIME(f(n)) can be very unnatural, if
f(n) is.

We restrict our bounding functions f(n) to be proper functions:

Definition
A function f: IN — IN is constructible if:

e f is non-decreasing, i.e. f(n+ 1) > f(n) for all n; and

e there is a deterministic machine M which, on any input of
length n, replaces the input with the string 0/, and M runs
in time O(n + f(n)) and uses O(f(n)) work space.

Anuj Dawar May 22, 2013

Complexity Theory 5

Examples

All of the following functions are constructible:

e [logn];

If f and g are constructible functions, then so are
f+g, f-g,2" and f(g) (this last, provided that f(n) > n).

Anuj Dawar May 22, 2013

Complexity Theory 6

Using Constructible Functions

NTIME(f(n)) can be defined as the class of those languages L
accepted by a nondeterministic Turing machine M, such that for
every x € L, there is an accepting computation of M on x of
length at most O(f(n)).

If f is a constructible function then any language in NTIME(f(n))
is accepted by a machine for which all computations are of length

at most O(f(n)).

Also, given a Turing machine M and a constructible function f, we

can define a machine that simulates M for f(n) steps.

Anuj Dawar May 22, 2013

Complexity Theory 7

Inclusions

The inclusions we proved between complexity classes:
e NTIME(f(n)) C SPACE(f(n));
e NSPACE(f(n)) C TIME(k'en+/(m);
o NSPACE(f(n)) € SPACE(f(n)?)

really only work for constructible functions f.

The inclusions are established by showing that a deterministic

machine can simulate a nondeterministic machine M for f(n) steps.

For this, we have to be able to compute f within the required
bounds.

Anuj Dawar May 22, 2013

Complexity Theory 8
Time Hierarchy Theorem

For any constructible function f, with f(n) > n, define the
f-bounded halting language to be:

Hy = {[M],z | M accepts z in f(|z|) steps}

where [M] is a description of M in some fixed encoding scheme.
Then, we can show

H; € TIME(f(n)3) and Hy & TIME(f(|n/2]))

Time Hierarchy Theorem
For any constructible function f(n) > n, TIME(f(n)) is properly
contained in TIME(f(2n + 1)3).

Anuj Dawar May 22, 2013

Complexity Theory 9 Complexity Theory 10
Strong Hierarchy Theorems Consequences
For any constructible function f(n) > n, TIME(f(n)) is properly e For each k, TIME(n*) # P.
contained in TIME(f(n)(log f(n))).
e P £ EXP.
Space Hierarchy Theorem
For any pair of constructible functions f and g, with f = O(g) and
. . . . e L # PSPACE.
g # O(f), there is a language in SPACE(g(n)) that is not in
SPACE(f(n)).
e Any language that is EXP-complete is not in P.
Similar results can be established for nondeterministic time and e There are no problems in P that are complete under linear time
space classes. reductions.
Anuj Dawar May 22, 2013 Anuj Dawar May 22, 2013
Complexity Theory 11 Complexity Theory 12

Descriptive Complexity

Descriptive Complexity is an attempt to study the complexity of
problems and classify them, not on the basis of how difficult it is to
compute solutions, but on the basis of how difficult it is to describe
the problem.

This gives an alternative way to study complexity, independent of

particular machine models.

Based on definability in logic.

Anuj Dawar May 22, 2013

Graph Properties

As an example, consider the following three decision problems on

graphs.
1. Given a graph G = (V, E) does it contain a triangle?

2. Given a directed graph G = (V| E) and two of its vertices
s,t € V, does G contain a path from a to b?

3. Given a graph G = (V, E) is it 3-colourable? That is,

is there a function x : V' — {1, 2,3} so that whenever
(u,v) € E, x(u) # x(v).

Anuj Dawar May 22, 2013

Complexity Theory 13 Complexity Theory 14
Graph Properties Logical Definability
1. Checking if G contains a triangle can be solved in polynomial In what kind of formal language can these decision problems be
time and logarithmic space. specified or defined?
2. Checking if G contains a path from a to b can be done in The graph G = (V, E) contains a triangle.
polynomaial time.
Can it be done in logarithmic space?
Jr e VIyeVIzeV(r#yNy # zAx # 2z AE(x,y)ANE(x, 2)AE(y, 2))
Unlikely. It is NL-complete.
3. Checking if G is 3-colourable can be done in exponential time The other two properties are provably not definable with only
and polynomial space. first-order quantification over vertices.
Can it be done in polynomial time?
Unlikely. It is NP-complete.
Anuj Dawar May 22, 2013 Anuj Dawar May 22, 2013
Complexity Theory 15 Complexity Theory 16

Second-Order Quantifiers

3-Colourability and reachability can be defined with quantification

over sets of vertices.

JRCVIBCVIGCV
Va(Rx V Bx V Gx)A
Va(=(Rx A Bx) A —=(Bx A Gx) A =(Rx A Gx))A
VaVy(Exy — (—~(Rx A Ry)A

Bx A By)A

Gz A Gy)))

-

-

(
(

VS CV(ae SAVzVy((x € SANE(z,y)) —yeS)—bes)

Anuj Dawar May 22, 2013

Anuj Dawar

Descriptive Complexity
Any property of graphs that is expressible in first-order logic is in L.

A property of graphs is definable in existential second-order logic if,
and only if, it is in NP.

Is there a logic, intermediate between first and second-order logic

that expresses exactly graph properties in P?

May 22, 2013

Complexity Theory 17

The End

Please provide feedback, using the link sent to you by e-mail.

Anuj Dawar May 22, 2013

